Advances in Clinical Medicine
Vol. 13  No. 11 ( 2023 ), Article ID: 75700 , 10 pages
10.12677/ACM.2023.13112537

三阴性乳腺癌的耐药机制及与DLG5的研究 进展

王旭升1,陈波1,车景敏2,王虎霞3,徐翠香2,宋张骏4*

1西安医学院研究生工作部,陕西 西安

2陕西省人民医院感染与免疫疾病重点实验,陕西 西安

3陕西省肿瘤医院乳腺病院,陕西 西安

4陕西省人民医院肿瘤外科,陕西 西安

收稿日期:2023年10月21日;录用日期:2023年11月14日;发布日期:2023年11月21日

摘要

三阴性乳腺癌(Triple Negative Breast Cancer, TNBC)是乳腺癌的一种特定亚型,因其不表达雌激素受体 (Estrogen Receptor, ER)、孕酮受体(Progesterone Receptor, PR)或人表皮生长因子受体-2 (Epidermal Growth Factor Receptor, HER-2)具有高侵袭能力,预后较其他类型乳腺癌差,在治疗上往往因为出现耐药性导致癌症进展和复发。早期应用化疗药物对三阴性乳腺癌有明显治疗效果,但随着化疗药物的应用,患者可逐渐出现耐药,导致总体生存率低下。因此,研究三阴性乳腺癌的化疗耐药性是目前乳腺癌的关注热点。本文回顾了三阴性乳腺癌耐药的研究进展,特别是极性蛋白DLG5在三阴性乳腺癌耐药中的作用以及影响,以期为临床治疗提供参考。

关键词

三阴性乳腺癌,DLG5,耐药机制

Drug Resistance Mechanism of Triple-Negative Breast Cancer and Research Progress with DLG5

Xusheng Wang1, Bo Chen1, Jingmin Che2, Huxia Wang3, Cuixiang Xu2, Zhangjun Song4*

1Department of Graduate Affairs, Xi’an Medical University, Xi’an Shaanxi

2Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

3Breast Hospital, Shaanxi Provincial Cancer Hospital, Xi’an Shaanxi

4Department of Oncology, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

Received: Oct. 21st, 2023; accepted: Nov. 14th, 2023; published: Nov. 21st, 2023

ABSTRACT

Triple negative breast cancer (TNBC) is a specific subtype of breast cancer because it does not express estrogen receptor (ER), progesterone receptor (PR) or human epidermal growth factor receptor (epidermal growth factor receptor, HER-2) has high aggressiveness, has a worse prognosis than other types of breast cancer, and is often treated because of drug resistance leading to cancer progression and recurrence. Early use of chemotherapy drugs has a significant therapeutic effect on triple-negative breast cancer, but with the application of chemotherapy drugs, patients can gradually develop drug resistance, resulting in low overall survival. Therefore, the study of chemotherapy resistance in triple-negative breast cancer is currently a hot spot in breast cancer. This article reviews the research progress of triple-negative breast cancer drug resistance, especially the role and impact of polar protein DLG5 in triple-negative breast cancer drug resistance, in order to provide reference for clinical treatment.

Keywords:Triple-Negative Breast Cancer, DLG5, Mechanisms of Drug Resistance

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

乳腺癌是女性常见的恶性肿瘤之一,发病率位居女性恶性肿瘤的首位,严重危害妇女的身心健康(乳腺癌诊疗指南)。乳腺癌根据是否表达雌激素或孕激素受体和人表皮生长因子受体-2 (HER-2),可将乳腺癌分为以下三个主要亚型:激素受体阳性/HER-2阴性、HER-2阳性和三阴性 [1] 。三阴性乳腺癌(TNBC)是乳腺癌的特定亚型 [2] ,具有高侵袭性、高转移潜能、易复发和预后差等临床特征 [3] [4] 。由于缺乏治疗靶点,目前化疗仍然是改善TNBC患者预后的主要手段 [5] 。新辅助治疗的出现让TNBC患者预后看到了希望,有研究报道,接受新辅助治疗的TNBC患者病理完全缓解(Pathologic Complete Response, pCR)率明显高于非TNBC患者的(22% vs. 11%)。然而由于肿瘤本身对化疗药物不敏感或者在治疗过程中出现耐药性,导致癌症的复发和转移,严重影响患者的生活质量以及身心健康 [1] [6] [7] 。本篇综述主要是回顾和总结三阴性乳腺癌在治疗中可能存在的耐药机制,并探讨DLG5在TNBC耐药中的作用以及影响,以期为临床治疗TNBC提供潜在的诊治靶点。

2. TNBC的治疗手段

新辅助治疗(主要是用靶向药物进行化疗)已被广泛接受为TNBC标准的治疗方法 [5] ,首先通过新辅助全身治疗后再进行手术和放疗,发现达到病理完全缓解的术后病人显著改善了其无病生存率和总生存率 [8] 。新辅助或辅助化疗可将患者的复发风险降低约30% [9] ,蒽环类和紫杉烷类化疗是早期三阴性乳腺癌的主要全身治疗方法,局部治疗可选择保乳手术和乳腺切除术 [8] [10] [11] 。在新辅助治疗中,与激素受体阳性乳腺癌患者相比,TNBC患者对标准化疗的反应率更高。约30%~40%的TNBC患者在标准药物蒽环类加环磷酰胺和紫杉醇类新辅助化疗后获得病理完全缓解(pCR) [6] 。使用铂类药物新辅助化疗后,pCR率增加了15.1% (OR 1.96, 95% CI 1.46~2.62, P < 0.001) [12] ,但随之会导致3级和4级血液学不良事件的风险显著增加,接受以铂类药物为基础的新辅助治疗的癌症患者可能会出现更高的停药率和剂量减少 [13] [14] 。出于这些原因,三阴性乳腺癌患者在选择标准新辅助化疗中加入铂类药物的利弊需要在治疗期间严密观察并随访 [12] 。

TNBC与其他乳腺癌亚型相比,其复发、转移和死亡风险更高。由于无法从传统内分泌治疗和HER-2靶向治疗中获益,到目前为止,化疗仍然是新辅助和辅助环境中TNBC治疗的主要选择 [15] 。然而大多数患者在化疗期间会出现化疗耐药性。耐药性的获得是一个多因素和复杂的过程,由多种机制驱动,如增加细胞损伤修复或减少细胞凋亡。一旦发生化疗耐药性,疾病会迅速复发和进展,这已成为治疗TNBC的主要障碍。因此,迫切需要确定新的治疗靶点,以克服TNBC的化疗耐药性 [16] 。

3. 三阴性乳腺癌的耐药机制

3.1. ABC转运蛋白介导Hedgehog通路

化疗耐药性是治疗恶性肿瘤的重要障碍,在转移性乳腺癌中占治疗失败的90%。转运蛋白介导药物外流是一种已被验证存在的耐药机制 [17] 。三磷酸腺苷结合盒(ATP-Binding Cassette, ABC)转运蛋白利用ATP将各种化合物流出细胞膜,包括具有不同结构和性质的多种抗癌药物 [18] 。许多ABC转运体与实体肿瘤的化疗耐药性密切相关 [19] 。与其他乳腺癌的亚型相比,TNBC中多药耐药蛋白-1 (ABCC1/MRP1)、乳腺癌耐药蛋白(ABCG2/BCRP)和多药耐药蛋白-8 (ABCC11/MRP8)的表达显著增加 [20] 。接受新辅助化疗后增加了TNBC中ABCC1蛋白的表达,进一步支持了ABCC1在TNBC化疗耐药性中的作用 [21] 。此外,由于ABC转运蛋白的上调,激活了TNBC中的Hedgehog信号通路导致耐药性产生 [22] 。Hedgehog信号通路是一个复杂的网络,对胚胎发育和组织再生至关重要。该途径的信号传导改变与干细胞更新和致癌有关 [23] 。Hedgehog通路由三种分泌配体组成,Sonic Hedgehog (SHH)、跨膜受体/共受体Patched (PTCH)和Smoothed (SMO)。三种神经胶质瘤相关癌基因转录因子(GLI1-3)是主要效应物,并调节许多靶基因的表达,如ABCG2和VEGF。当SHH结合PTCH时,经典通路被激活,使其不稳定,从而减轻其对SMO的抑制。SMO激活GLI转录因子后易位到细胞核,通过GLIAs上调靶基因。GLI1/2与各种人类肿瘤的细胞存活、增殖、侵袭、上皮–间质转化(Epithelial-Mesenchymal Transition, EMT)、血管生成和化疗耐药性有关 [24] 。研究发现,GLI1表达的增加促进了TNBC细胞的存活、迁移、侵袭和转移 [25] 。从机制上讲,Hedgehog信号通过增强细胞外基质重塑金属蛋白酶和血管内皮生长因子受体-3的表达,促进TNBC的生长、侵袭性和转移性扩散,刺激血管生成 [25] [26] 。使乳腺肿瘤在化疗过程中产生耐药性。

3.2. 癌症干细胞

癌症干细胞(Cancer Stem Cell, CSC)在实体瘤中具有独特的肿瘤更新能力 [27] 。其与肿瘤发生、肿瘤异质性、复发和转移有关,在接受化疗后凭借干细胞特性可以重建肿瘤。在接受常规化疗后的残留肿瘤和已经接受新辅助化疗后的原发性乳腺肿瘤中检测发现CSCs的表达显著升高,结果证明了CSC与乳腺癌化疗耐药性有关 [28] [29] 。与其他亚型乳腺癌相比,CSC在TNBC中表达更丰富 [30] [31] 。而CSC具有高表达的ABC转运蛋白,最显著的是乳腺癌耐药蛋白(ABCG2),从而引起TNBC产生耐药性 [20] [32] 。

3.3. 缺氧

缺氧是肿瘤微环境的一个基本特征,与肿瘤的侵袭性、转移潜能和治疗耐药性有关 [33] 。缺氧在几个重要方面导致化学耐药性。首先,血管系统不足阻碍药物渗透。其次,缺氧会引起酸性肿瘤微环境,从而影响TNBC治疗中广泛使用的某些药物的摄取 [34] 。第三,许多药物的细胞毒性作用是氧依赖性的 [35] 。第四,缺氧诱导乳腺CSC表型 [36] 。第五,缺氧通过激活免疫抑制信号通路并作为免疫效应细胞的屏障,直接或间接调节肿瘤免疫 [37] 。最后,缺氧刺激细胞适应,成为成功治疗的障碍。这些包括:ABC转运蛋白(包括ABCG2和ABCC1)的表达增加 [38] [39] ;增殖减少 [35] ;细胞衰老和凋亡的复杂调节 [35] ;诱导有助于肿瘤存活的自噬 [40] ;增强的遗传不稳定性和随后的侵袭性表型的克隆选择;促血管生成因子的上调和E-钙粘蛋白的抑制,从而促进转移扩散 [35] 。

TNBC经常表现出缺氧特征的形态学特征,例如存在纤维化和坏死区域 [41] 。HIF-1调节的关键基因碳酸酐酶IX (CAIX)的表达与TNBC亚型和较短的生存期有关 [42] 。HIF-1在TNBC中的过度活跃与其低生存率也有关 [43] 。缺氧通过HIF-1也促进了EMT的转变,并诱导了TNBC细胞的侵袭 [44] 。此外,肿瘤细胞在经过化疗后会通过细胞衰老形成保护性的自体吞噬,以维持自身的生存和代谢,而缺氧环境会加速细胞衰老和自体吞噬的进程,因此,细胞衰老和自体吞噬与TNBC的耐药性也有着密切关联。

3.4. 细胞的自噬作用

自噬是一种稳态分解代谢降解过程,通过该过程,受损或不需要的细胞器和蛋白质聚集体被输送到溶酶体进行降解 [45] 。自噬对维持细胞的正常功能和代谢至关重要,而且对癌症细胞具有保护作用,导致耐药性产生 [46] 。高迁移率族蛋白B1 (High Mobility Group Protein 1, HMGB1)是一种高度保守的染色质结合核蛋白,在各种癌症细胞的增殖、侵袭和转移中起关键作用 [47] ,被认为是自噬的关键调节器,起自噬诱导剂的作用。HMGB1是自噬促进乳腺癌化疗抵抗和放射抵抗的关键因素。有研究发现,HMGB1通过激活PI3K/Akt/mTORC1通路诱导自噬并促进化疗耐药 [48] 。调节复合体亚基19 (Mediator Complex Subunit 19, Med19)是一个关键亚基,对稳定转录调节、细胞增殖和凋亡有很大作用 [49] 。Med19在人类乳腺癌组织中的表达显著上调,这与高度恶性特征显著相关。此外,通过RNA干扰的Med19基因敲除可显著抑制乳腺癌症细胞的生长、侵袭和转移。从机制上讲,Med19过表达通过靶向HMGB1-NFκB/p65轴诱导自噬并增强对化疗药物细胞毒性作用的抵抗力,最终导致耐药性产生 [50] 。

3.5. Wnt/β-连环蛋白通路(Canonical Wnt/β-Catenin Pathway)

Wnt信号传导与肿瘤起始、干性和转移扩散有关 [51] 。在没有Wnt的情况下,β-连环蛋白由于多蛋白破坏复合物的作用而迅速降解。Wnt与其受体和共受体的结合最终导致稳定β-连环蛋白的破坏复合物的溶解。积累的β-连环蛋白可以自由地转移到细胞核,并激活Wnt靶向基因的转录,对调节细胞骨架和癌症细胞的迁移至关重要 [52] 。大量文献数据强调了Wnt/β-catenin信号通路激活促进细胞存活、增殖、EMT和迁移 [53] 。在小鼠模型中,β-连环蛋白被敲低的TNBC细胞生长明显较慢,迁移能力受损,更容易接受化疗,并形成明显较小的肿瘤。并且检测到Wnt/β-catenin敲低的TNBC中干细胞数量也减少 [54] 。结果证明β-连环蛋白对TNBC的化疗耐药性具有促进作用。

3.6. PI3K/AKT信号通路

环状RNA (circRNA)是一种不同于传统线性RNA的新型RNA分子,它们具有闭环结构,在真核转录组中非常丰富,通常由宿主基因外显子或内含子的切割和环化形成。它们比线性RNA更稳定,在临床上被用作肿瘤标志物和潜在靶点 [55] 。CircWAC在TNBC中高表达,通过与miR-142竞争性结合,间接上调了WWP1的表达,WWP1已被证实在多种癌症中起癌基因的作用,包括乳腺癌 [56] 。WWP1的高表达调节PTEN多泛素化,诱导了AKT的磷酸化从而促进PI3K/AKT信号通路的激活 [57] 。PI3K信号传导负责EMT的发生,从而诱导乳腺癌症恶性进展及耐药性的产生。

4. 极性蛋白DLG5

极性蛋白DLG5是膜相关鸟苷酸激酶(Membrane-Associated Guanylate Kinases, MAGUK)家族的主要成员。DLG5通过与β-catenin、vinexin-vinculin复合物和钙粘蛋白相互作用以及通过促进N-钙粘蛋白向质膜的递送,参与上皮极性的维持 [58] [59] 。DLG5在正常乳腺组织中的表达强于癌症组织,低级别癌症组织中DLG5的表达高于高级别癌症组织。乳腺癌症细胞系也显示出类似的结果。非转化乳腺上皮细胞系和低度乳腺癌症细胞系的DLG5蛋白和mRNA表达水平高于高级乳腺癌症细胞系。管腔型乳腺癌细胞系中DLG5的表达高于基底型。这些结果表明了DLG5可能参与乳腺癌症的发展 [60] 。

4.1. DLG5的缺失促进细胞增殖

经典的DLG蛋白和ZO亚家族成员如DLG1、DLG3、ZO1、ZO2和ZO3 [61] 与细胞增殖有关。DLG5具有类似于经典DLG蛋白和ZO亚家族成员 [62] 的结构,这表明DLG5也可能在细胞增殖中发挥作用。DLG5敲低细胞比正常细胞具有更高的生长速率,并且在细胞周期S期和G2/M期的细胞百分比增加,G1期的细胞比例降低;相反DLG5过度表达的细胞中细胞周期的受到抑制。结果表明,DLG5的缺失可能通过增加S期的DNA合成来促进细胞增殖。检DLG5表达的缺失诱导细胞周期蛋白D1表达的上调和p21、p27和p53表达的显著下调,而过表达DLG5导致细胞中细胞循环蛋白D1表达减少,p21、p27和p53的表达增加。细胞外信号调节激酶(ERK) 1/2参与Ras-Raf-MEK-ERK信号转导级联,参与调节癌症的发展和进展、细胞粘附、细胞增殖和细胞迁移 [63] 。DLG5通过上调细胞周期蛋白D1来加速细胞增殖;下调p21、p27和p53;以及增强Ras-Raf MEK-ERK信号传导。

4.2. DLG5敲低会破坏乳腺细胞腺泡的极性

通过3D培养中培养MCF10A-shDLG5细胞和NC细胞。与NC细胞相比,DLG5敲低细胞未能形成腺泡或形成形态发生紊乱的腺泡。E-钙粘蛋白在MCF10A-NC细胞形成的腺泡外层呈连续环状分布。DLG5敲低诱导E-钙粘蛋白表达的部分丧失和腺泡外层不连续的E-钙粘素分布。在3D形态发生研究中,GM130被视为高尔基体朝向管腔方向的生物标志物;因此,GM130定位错误表示细胞极性 [64] 的变化。作为对DLG5表达缺失的反应,GM130被转移到腺泡的外表面。这些结果表明DLG5在维持乳腺腺泡细胞极性方面起着重要作用。

4.3. DLG5的缺失诱导EMT并促进细胞迁移和侵袭

细胞极性的破坏总是伴随着EMT [65] 。DLG5敲低改变了某些EMT标记物的表达;间充质标志物N-钙粘蛋白和波形蛋白的表达增加,上皮标志物ZO1的表达减少,而上皮标志物E-钙粘蛋白的表达没有改变。DLG5的表达降低引起ZO1和E-钙粘蛋白的表达显著增加,N-钙粘蛋白和波形蛋白的表达减少。此外,DLG5敲低后,ZO1、E-钙粘蛋白和N-钙粘蛋白定位在细胞-细胞连接处和细胞质中。结果表明,DLG5的缺失可能部分诱发EMT。为了确定DLG5在细胞迁移中的作用,通过MCF10A-shDLG5和MCF7-shDLG5细胞进行了单层伤口愈合和Transwell测定。DLG5敲低导致细胞迁移增加,而对细胞增殖没有影响。与NC细胞相比,DLG5表达的缺失增加了细胞的侵袭能力。DLG5过表达细胞减少了迁移和侵袭。证明了DLG5表达的缺失诱导了部分EMT,并增强了细胞的迁移和侵袭;DLG5也可能参与调节癌症的转移进程 [62] 。

4.4. DLG5的缺失使Hippo信号通路失活

Hippo信号通路是一种进化上保守的激酶级联,参与器官大小控制、组织稳态和癌症 [66] 。Yes相关蛋白(YAP)是Hippo信号的主要效应器;它与DNA结合转录因子TEAD相互作用,与细胞增殖、存活、迁移和侵袭密切相关 [67] 。研究表明,Hippo信号通路的失活和YAP核定位与多种上皮恶性肿瘤密切相关,如乳腺癌。Scrible是果蝇和哺乳动物细胞中Hippo信号通路活性所必需的。由于Mst1/2和Lats1/2与Scribble之间的相互作用缺失,Scribble的敲除导致YAP核定位和TEAD转录增加,最终使Hippo信号通路失活 [68] 。

ZO2也是MAGUK的成员。DLG5具有与ZO2相似的结构,并包含4个PDZ结构域。在我们的研究中,Scrible在MCF10A-shDLG5和MCF7-shDLG5细胞的表达显著降低,MDA-MB-231-oxDLG5中的表达增加。此外,Scrible在MCF10A-shDLG5细胞中的错误定位增加。DLG5表达的缺失损害了Mst1/2和Lats1/2与Scribble的相互作用。结果表明DLG5可能是Hippo信号通路的上游调节因子 [69] 。

YAP是Hippo信号通路的下游效应器,研究发现,DLG5表达的缺失降低了p-MST1/2、SAV1、p-MOB1、p-LAST1、p-Y APS127和p-Y APS397的水平。Ser127上的YAP磷酸化也减少,这导致YAP-143-3结合和YAP细胞质滞留减少。与NC细胞相比,MCF10A-shDLG5和MCF7-shDLG5细胞中的细胞核YAP和TEAD转录明显增加。此外,DLG5表达的缺失增加了TEAD下游两个基因CTGF和CYR6的表达。DLG5的缺失不仅增加了YAP表达,还降低了p-YAPS397水平。最近的一份报告显示,β-Trcp识别Ser397上的YAP磷酸化,并触发YAP降解。检测到MCF10A-shDLG5细胞中β-Trcp的表达显著降低。相反,在NC细胞中,当蛋白质合成不被环己酰亚胺(CHX)阻断时,DLG5的缺失促进了YAP的稳定。此外,YAP在NC细胞中积累,但在shDLG5细胞中没有,这表明DLG5表达的丧失可能抑制YAP的降解。总之,DLG5表达的缺失抑制了Hippo信号通路,并增加了YAP的表达和核定位。进而促进乳腺上皮细胞和乳腺癌症细胞的增殖,诱导EMT发生,破坏细胞极性的维持,以及增加细胞迁移和侵袭 [68] 。

综合上述讨论,我们认为三阴性乳腺癌耐药性的产生与乳腺癌细胞的增殖、EMT发生、细胞迁移和侵袭能力有关。

5. 极性蛋白DLG5与三阴性乳腺癌耐药

DLG5通过抑制TGF-β受体介导的信号传导来抑制上皮细胞–间充质转化(Epithelial-Mesenchymal Transition,简称EMT) [70] 。TGF-β信号通路可以促进肿瘤细胞的EMT、增殖、血管生成、转移扩散、化疗耐药性的产生,并具有免疫调节作用 [71] 。并且TGF-β通路对乳腺癌干细胞的调节至关重要。人类乳腺癌症细胞系经TGF-β诱导EMT并获得干细胞特性,包括化疗耐药性 [72] 。TβRI和TβRII的降解是TGF-β信号传导的主要调节机制之一。该受体依赖于蛋白酶体和溶酶体降解途径,DLG5通过增强TβRI的蛋白酶体依赖性的降解途径,促进了TβRI降解,抑制TGF-β信号通路从而抑制EMT的发生。在三阴性乳腺癌中,由于DLG5的低表达导致TGF-β信号通路增强,促进癌症细胞EMT发生发展。我们认为在三阴性乳腺癌中,DLG5低表达促进癌症细胞EMT进展从而引起化疗耐药性产生。

EMT是上皮性癌症细胞失去细胞间黏附并获得间充质特征的发育过程,包括侵袭性和迁移性增加。癌症中的EMT控制肿瘤的发生、发展、转移和抗癌治疗的耐药性 [73] [74] 。最新一项研究发现,RHOJ,一种小的Rho-GTPas,在EMT癌症细胞中高表达,通过增强对DNA损伤反应的激活调节EMT相关的化疗耐药性,使肿瘤细胞能够快速修复化疗诱导的DNA损伤。RHOJ调节许多促进DNA复制和DNA修复的蛋白质的表达。EMT肿瘤细胞以RHOJ依赖的方式激活休眠起源,这有助于在复制减慢的情况下继续进行DNA复制,并促进化疗后的细胞存活。此外,EMT还与肌动蛋白细胞骨架的重塑有关,肌动蛋白细胞骨架对促进细胞迁移和侵袭至关重要 [75] 。RHOJ还促进TGF-β诱导的乳腺癌症细胞迁移和侵袭 [76] 。最近的研究表明核肌动蛋白与DNA修复和复制叉修复有关。从机制上讲,RHOJ通过调节二甲双胍依赖性核肌动蛋白聚合来调节DNA修复和激活休眠复制起源,RHOJ作为关键因子促进EMT肿瘤细胞对化疗产生耐药性。

总结,在三阴性乳腺癌中,由于DLG5蛋白的缺失经TGF-β信号通路促进癌症细胞发生EMT,最终导致癌症治疗过程中耐药性产生。

6. 结语

三阴性乳腺癌与高侵袭性临床行为有关,化疗耐药性的产生仍是治疗三阴性乳腺癌的一个有待解决的重大问题。极性蛋白DLG5在乳腺癌的发生发展中起重要作用,DLG5表达缺失会导致Hippo信号通路的失活并增加了YAP的表达和核定位,增强乳腺癌细胞的增殖、EMT、细胞迁移和侵袭能力。癌症中的EMT控制肿瘤的发生、发展、转移和抗癌治疗的耐药性,其与三阴性乳腺癌耐药性的产生密切相关,DLG5的缺失可能通过促进乳腺癌细胞EMT的发生诱导TNBC耐药性的产生。

目前,标准化疗仍是TNBC基础治疗方法,在化疗过程中肿瘤可对细胞毒性药物产生耐药性是治疗失败的主要原因之一。因此,迫切需要阐明TNBC化疗耐药性分子驱动因素。TNBC化学抗性复杂,是由多种因素和信号通路相互协同作用的结果,寻找新的治疗方法有重要临床意义。

基金项目

1) 陕西省自然科学基础研究计划——重点项目(2022JZ-57);

2) 秦创原中医药创新研发转化项目(2022-QCYZH-004);

3) 陕西省感染与免疫疾病重点实验室开放课题——重点项目(2022-ZD-2);

4) 陕西省人民医院科技人才支持计划项目——领军人才(2021LJ-01)。

文章引用

王旭升,陈 波,车景敏,王虎霞,徐翠香,宋张骏. 三阴性乳腺癌的耐药机制及与DLG5的研究进展
Drug Resistance Mechanism of Tri-ple-Negative Breast Cancer and Research Progress with DLG5[J]. 临床医学进展, 2023, 13(11): 18067-18076. https://doi.org/10.12677/ACM.2023.13112537

参考文献

  1. 1. Waks, A.G. and Winer, E.P. (2019) Breast Cancer Treatment: A Review. JAMA, 321, 288-300. https://doi.org/10.1001/jama.2018.19323

  2. 2. Bianchini, G., de Angelis, C. and Licata, L. (2022) Treatment Land-scape of Triple-Negative Breast Cancer—Expanded Options, Evolving Needs. Nature Reviews Clinical Oncology, 19, 91-113. https://doi.org/10.1038/s41571-021-00565-2

  3. 3. Yin, L., Duan, J.J. and Bian, X.W. (2020) Tri-ple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Research: BCR, 22, Article No. 61. https://doi.org/10.1186/s13058-020-01296-5

  4. 4. Derakhshan, F. and Reis-Filho, J.S. (2022) Pathogenesis of Triple-Negative Breast Cancer. Annual Review of Pathology: Mechanisms of Disease, 17, 181-204. https://doi.org/10.1146/annurev-pathol-042420-093238

  5. 5. Won, K. and Spruck, C. (2020) Triple-Negative Breast Cancer Therapy: Current and Future Perspectives (Review). International Journal of Oncology, 57, 1245-1261. https://doi.org/10.3892/ijo.2020.5135

  6. 6. Liedtke, C., Mazouni, C. and Hess, K.R. (2008) Response to Neoadju-vant Therapy and Long-Term Survival in Patients with Triple-Negative Breast Cancer. Journal of Clinical Oncology: Of-ficial Journal of the American Society of Clinical Oncology, 26, 1275-1281. https://doi.org/10.1200/JCO.2007.14.4147

  7. 7. Kumar, P. and Aggarwal, R. (2016) An Overview of Tri-ple-Negative Breast Cancer. Archives of Gynecology and Obstetrics, 293, 247-269. https://doi.org/10.1007/s00404-015-3859-y

  8. 8. Loibl, S., Poortmans, P. and Morrow, M. (2021) Breast Cancer. The Lancet (London, England), 397, 1750-1769. https://doi.org/10.1016/S0140-6736(20)32381-3

  9. 9. Early Breast Cancer Trialists’ Collaborative Group, et al. (2012) Comparisons between Different Polychemotherapy Regimens for Early Breast Cancer: Meta-Analyses of Long-Term Outcome among 100,000 Women in 123 Randomised Trials. The Lancet, 379, 432-444. https://pubmed.ncbi.nlm.nih.gov/22152853/

  10. 10. Blum, J.L., Flynn, P.J., Yothers, G., et al. (2023) Anthracyclines in Early Breast Cancer: The ABC Trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG On-cology). Journal of Clinical Oncology, 35, 2647-2655. https://pubmed.ncbi.nlm.nih.gov/28398846/

  11. 11. Nitz, U., Gluz, O. and Clemens, M. (2019) West German Study PlanB Trial: Adjuvant Four Cycles of Epirubicin and Cyclophos-phamide plus Docetaxel versus Six Cycles of Docetaxel and Cyclophosphamide in HER2-Negative Early Breast Cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 37, 799-808. https://doi.org/10.1200/JCO.18.00028

  12. 12. Poggio, F., Bruzzone, M. and Ceppi, M. (2018) Platinum-Based Neo-adjuvant Chemotherapy in Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 29, 1497-1508. https://doi.org/10.1093/annonc/mdy127

  13. 13. Von Minckwitz, G., Schneeweiss, A. and Loibl, S. (2014) Neoadju-vant Carboplatin in Patients with Triple-Negative and HER2-Positive Early Breast Cancer (GeparSixto; GBG 66): A Randomised Phase 2 Trial. The Lancet Oncology, 15, 747-756. https://doi.org/10.1016/S1470-2045(14)70160-3

  14. 14. Sikov, W.M., Berry, D.A. and Perou, C.M. (2015) Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance). Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33, 13-21.

  15. 15. Zhu, Y., Hu, Y. and Tang, C. (2022) Platinum-Based Systematic Therapy in Triple-Negative Breast Cancer. Biochimica et Biophysica Acta. Reviews on Cancer, 1877, Article ID: 188678. https://doi.org/10.1016/j.bbcan.2022.188678

  16. 16. Wang, X.L., Chen, T., Li, C., et al. (2022) CircRNA-CREIT In-hibits Stress Granule Assembly and Overcomes Doxorubicin Resistance in TNBC by Destabilizing PKR. Journal of Hematology & Oncology, 15, 122. https://pubmed.ncbi.nlm.nih.gov/36038948/

  17. 17. Nedeljković, M. and Damjanović, A. (2019) Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer—How We Can Rise to the Challenge. Cells, 8, Article No. 957. https://doi.org/10.3390/cells8090957

  18. 18. Sissung, T.M., Baum, C.E., Kirkland, C.T., et al. (2010) Phar-macogenetics of Membrane Transporters: An Update on Current Approaches. Molecular Biotechnology, 44, 152-167. https://pubmed.ncbi.nlm.nih.gov/19950006/

  19. 19. Sharom, F.J. (2008) ABC Multidrug Transporters: Structure, Function and Role in Chemoresistance. Pharmacogenomics, 9, 105-127. https://doi.org/10.2217/14622416.9.1.105

  20. 20. Yamada, A., Ishikawa, T. and Ota, I. (2013) High Expression of ATP-Binding Cassette Transporter ABCC11 in Breast Tumors Is Associated with Aggressive Subtypes and Low Dis-ease-Free Survival. Breast Cancer Research and Treatment, 137, 773-782. https://doi.org/10.1007/s10549-012-2398-5

  21. 21. Guestini, F., Ono, K. and Miyashita, M. (2019) Impact of Topoi-somerase IIα, PTEN, ABCC1/MRP1, and KI67 on Triple-Negative Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Breast Cancer Research and Treatment, 173, 275-288. https://doi.org/10.1007/s10549-018-4985-6

  22. 22. Das, S., Samant, R.S. and Shevde, L.A. (2013) Nonclassical Ac-tivation of Hedgehog Signaling Enhances Multidrug Resistance and Makes Cancer Cells Refractory to Smooth-ened-Targeting Hedgehog Inhibition. The Journal of Biological Chemistry, 288, 11824-11833. https://doi.org/10.1074/jbc.M112.432302

  23. 23. Skoda, A.M., Simovic, D. and Karin, V. (2018) The Role of the Hedgehog Signaling Pathway in Cancer: A Comprehensive Review. Bosnian Journal of Basic Medical Sciences, 18, 8-20. https://doi.org/10.17305/bjbms.2018.2756

  24. 24. Harris, L.G., Pannell, L.K. and Singh, S. (2012) Increased Vascularity and Spontaneous Metastasis of Breast Cancer by Hedgehog Signaling Mediated Upregulation of cyr61. On-cogene, 31, 3370-3380. https://doi.org/10.1038/onc.2011.496

  25. 25. Kwon, Y.-J., Hurst, D.R., Steg, A.D., et al. (2011) Gli1 Enhances Migration and Invasion via Up-Regulation of MMP-11 and Promotes Metastasis in ERα Negative Breast Cancer Cell Lines. Clinical & Experimental Metastasis, 28, 437-449. https://pubmed.ncbi.nlm.nih.gov/21442356/

  26. 26. Di Mauro, C., Rosa, R. and D’amato, V. (2017) Hedgehog Sig-nalling Pathway Orchestrates Angiogenesis in Triple-Negative Breast Cancers. British Journal of Cancer, 116, 1425-1435. https://doi.org/10.1038/bjc.2017.116

  27. 27. Shibata, M. and Hoque, M.O. (2019) Targeting Cancer Stem Cells: A Strategy for Effective Eradication of Cancer. Cancers, 11, Article No. 732. https://doi.org/10.3390/cancers11050732

  28. 28. Creighton, C.J., Li, X. and Landis, M. (2009) Residual Breast Can-cers after Conventional Therapy Display Mesenchymal as Well as Tumor-Initiating Features. Proceedings of the National Academy of Sciences of the United States of America, 106, 13820-13825. https://doi.org/10.1073/pnas.0905718106

  29. 29. Lee, H.E., Kim, J.H. and Kim, Y.J. (2011) An Increase in Cancer Stem Cell Population after Primary Systemic Therapy Is a Poor Prognostic Factor in Breast Cancer. British Journal of Cancer, 104, 1730-1738. https://doi.org/10.1038/bjc.2011.159

  30. 30. Park, S.Y., Lee, H.E., Li, H.L., et al. (2010) Heterogeneity for Stem Cell-Related Markers According to Tumor Subtype and Histologic Stage in Breast Cancer. Clinical Cancer Research, 16, 876-887. https://pubmed.ncbi.nlm.nih.gov/20103682/

  31. 31. Ma, F., Li, H.H., Wang, H.J., et al. (2014) Enriched CD44(+)/CD24(−) Population Drives the Aggressive Phenotypes Presented in Triple-Negative Breast Cancer (TNBC). Cancer Letters, 353, 153-159. https://pubmed.ncbi.nlm.nih.gov/25130168/

  32. 32. Zhou, S., Schuetz, J.D., Bunting, K.D., et al. (2001) The ABC Transporter Bcrp1/ABCG2 Is Expressed in a Wide Variety of Stem Cells and Is a Molecular Determinant of the Side-Population Phenotype. Nature Medicine, 7, 1028-1034. https://pubmed.ncbi.nlm.nih.gov/11533706/

  33. 33. Vaupel, P. (2008) Hypoxia and Aggressive Tumor Phenotype: Implications for Therapy and Prognosis. The Oncologist, 13, 21-26. https://doi.org/10.1634/theoncologist.13-S3-21

  34. 34. Gerweck, L.E., Vijayappa, S. and Kozin, S. (2006) Tumor pH Controls the in Vivo Efficacy of Weak Acid and Base Chemotherapeutics. Molecular Cancer Therapeutics, 5, 1275-1279. https://pubmed.ncbi.nlm.nih.gov/16731760/

  35. 35. Cosse, J.P. and Michiels, C. (2008) Tumour Hypoxia Affects the Responsiveness of Cancer Cells to Chemotherapy and Promotes Cancer Progression. Anti-Cancer Agents in Medicinal Chemistry, 8, 790-797. https://doi.org/10.2174/187152008785914798

  36. 36. Kim, H., Lin, Q., Glazer, P.M. and Yun, Z. (2018) The Hy-poxic Tumor Microenvironment in Vivo Selects the Cancer Stem Cell Fate of Breast Cancer Cells. Breast Cancer Re-search, 20, 16. https://pubmed.ncbi.nlm.nih.gov/29510720/

  37. 37. Chouaib, S., Noman, M.Z. and Kosmatopoulos, K. (2017) Hypoxic Stress: Obstacles and Opportunities for Innovative Immunotherapy of Cancer. Oncogene, 36, 439-445. https://doi.org/10.1038/onc.2016.225

  38. 38. Xiang, L., Liu, Z.-H., Huan, Q., et al. (2012) Hypox-ia-Inducible Factor-2a Is Associated with ABCG2 Expression, Histology-Grade and Ki67 Expression in Breast Invasive Ductal Carcinoma. Diagnostic Pathology, 7, 32. https://pubmed.ncbi.nlm.nih.gov/22452996/

  39. 39. Lv, Y., Zhao, S. and Han, J. (2015) Hypoxia-Inducible Factor-1α Induces Multidrug Resistance Protein in Colon Cancer. OncoTargets and Therapy, 8, 1941-1948. https://doi.org/10.2147/OTT.S82835

  40. 40. Daskalaki, I., Gkikas, I. and Tavernarakis, N. (2018) Hypoxia and Selec-tive Autophagy in Cancer Development and Therapy. Frontiers in Cell and Developmental Biology, 6, Article No. 104. https://pubmed.ncbi.nlm.nih.gov/30250843/

  41. 41. Livasy, C.A., Karaca, G. and Nanda, R. (2006) Phenotypic Eval-uation of the Basal-Like Subtype of Invasive Breast Carcinoma. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 19, 264-271. https://doi.org/10.1038/modpathol.3800528

  42. 42. Tan, E.Y., Yan, M. and Campo, L. (2009) The Key Hypoxia Reg-ulated Gene CAIX Is Upregulated in Basal-Like Breast Tumours and Is Associated with Resistance to Chemotherapy. British Journal of Cancer, 100, 405-411. https://doi.org/10.1038/sj.bjc.6604844

  43. 43. Chen, X., Iliopoulos, D., Zhang, Q., et al. (2014) XBP1 Promotes Tri-ple-Negative Breast Cancer by Controlling the HIF1α Pathway. Nature, 508, 103-107. https://pubmed.ncbi.nlm.nih.gov/24670641/

  44. 44. Lei, J., Fan, L. and Wei, G. (2015) Gli-1 Is Crucial for Hypox-ia-Induced Epithelial-Mesenchymal Transition and Invasion of Breast Cancer. Tumour Biology: The Journal of the In-ternational Society for Oncodevelopmental Biology and Medicine, 36, 3119-3126. https://doi.org/10.1007/s13277-014-2948-z

  45. 45. Klionsky, D.J. and Emr, S.D. (2000) Autophagy as a Regulated Pathway of Cellular Degradation. Science (New York, N.Y.), 290, 1717-1721. https://doi.org/10.1126/science.290.5497.1717

  46. 46. Chen, Y., Jia, Y. and Mao, M. (2021) PLAC8 Promotes Adriamycin Resistance via Blocking Autophagy in Breast Cancer. Journal of Cellular and Molecular Medicine, 25, 6948-6962. https://doi.org/10.1111/jcmm.16706

  47. 47. Wang, L., Zhang, H. and Sun, M. (2015) High Mobility Group Box 1-Mediated Autophagy Promotes Neuroblastoma Cell Chemoresistance. Oncology Reports, 34, 2969-2976. https://doi.org/10.3892/or.2015.4278

  48. 48. Yang, L., Yu, Y. and Kang, R. (2012) Up-Regulated Autophagy by En-dogenous High Mobility Group Box-1 Promotes Chemoresistance in Leukemia Cells. Leukemia & Lymphoma, 53, 315-322. https://doi.org/10.3109/10428194.2011.616962

  49. 49. Zhao, Y., Meng, Q. and Gao, X. (2017) Down-Regulation of Mediator Complex Subunit 19 (Med19) Induces Apoptosis in Human Laryngocarcinoma HEp2 Cells in an Apaf-1-Dependent Pathway. American Journal of Translational Research, 9, 755-761.

  50. 50. Liu, B., Qi, X. and Zhang, X. (2019) Med19 Is Involved in Chemoresistance by Mediating Autophagy through HMGB1 in Breast Cancer. Journal of Cellular Biochemistry, 120, 507-518. https://doi.org/10.1002/jcb.27406

  51. 51. Ng, L.F., Kaur, P. and Bunnag, N. (2019) WNT Signaling in Disease. Cells, 8, 826. https://doi.org/10.3390/cells8080826

  52. 52. Duchartre, Y., Kim, Y.-M. and Kahn, M. (2016) The Wnt Signaling Pathway in Cancer. Critical Reviews in Oncology/Hematology, 99, 141-149. https://pubmed.ncbi.nlm.nih.gov/26775730/

  53. 53. Liu, S., Wang, Z. and Liu, Z. (2018) miR-221/222 Activate the Wnt/β-Catenin Signaling to Promote Triple-Negative Breast Cancer. Journal of Molecular Cell Biology, 10, 302-315. https://doi.org/10.1093/jmcb/mjy041

  54. 54. Xu, J.H., Prosperi, J.R., Choudhury, N., et al. (2015) β-Catenin Is Re-quired for the Tumorigenic Behavior of Triple-Negative Breast Cancer Cells. PLOS ONE, 10, e0117097. https://pubmed.ncbi.nlm.nih.gov/25658419/

  55. 55. Vicens, Q. and Westhof, E. (2014) Biogenesis of Circular RNAs. Cell, 159, 13-14. https://doi.org/10.1016/j.cell.2014.09.005

  56. 56. Chen, C., Zhou, Z. and Sheehan, C.E. (2009) Overexpression of WWP1 Is Associated with the Estrogen Receptor and Insulin-Like Growth Factor Receptor 1 in Breast Carcinoma. In-ternational Journal of Cancer, 124, 2829-2836. https://doi.org/10.1002/ijc.24266

  57. 57. Lee, Y.R., Chen, M. and Lee, J.D. (2019) Reactivation of PTEN Tumor Suppressor for Cancer Treatment through Inhibition of a MYC-WWP1 Inhibitory Pathway. Science (New York, N.Y.), 364, eaau0159.

  58. 58. Nechiporuk, T., Fernandez, T.E. and Vasioukhin, V. (2007) Failure of Epithelial Tube Maintenance Causes Hydrocephalus and Renal Cysts in Dlg5-/-Mice. Developmental Cell, 13, 338-350. https://pubmed.ncbi.nlm.nih.gov/17765678/

  59. 59. Sarrió, D., Rodriguez-Pinilla, S.M., et al. (2008) Epitheli-al-Mesenchymal Transition in Breast Cancer Relates to the Basal-Like Phenotype. Cancer Research, 68, 989-997. https://pubmed.ncbi.nlm.nih.gov/18281472/

  60. 60. Liu, J., Li, J. and Li, P. (2017) Loss of DLG5 Promotes Breast Cancer Malignancy by Inhibiting the Hippo Signaling Pathway. Scientific Reports, 7, Article No. 42125. https://doi.org/10.1038/srep42125

  61. 61. Qiao, X., Roth, I. and Féraille, E. (2014) Different Effects of ZO-1, ZO-2 and ZO-3 Silencing on Kidney Collecting Duct Principal Cell Proliferation and Adhesion. Cell Cycle (Georgetown, Tex.), 13, 3059-3075. https://doi.org/10.4161/15384101.2014.949091

  62. 62. Liu, J., Li, J. and Ren, Y. (2014) DLG5 in Cell Polarity Maintenance and Cancer Development. International Journal of Biological Sciences, 10, 543-549. https://doi.org/10.7150/ijbs.8888

  63. 63. Caunt, C.J., Sale, M.J. and Smith, P.D. (2015) MEK1 and MEK2 Inhibitors and Cancer Therapy: The Long and Winding Road. Nature Reviews. Cancer, 15, 577-592. https://doi.org/10.1038/nrc4000

  64. 64. Zhan, L., Rosenberg, A. and Bergami, K.C. (2008) Deregulation of Scribble Promotes Mammary Tumorigenesis and Reveals a Role for Cell Polarity in Carcinoma. Cell, 135, 865-878. https://doi.org/10.1016/j.cell.2008.09.045

  65. 65. Martin-Belmonte, F. and Perez-Moreno, M. (2011) Epithelial Cell Polarity, Stem Cells and Cancer. Nature Reviews. Cancer, 12, 23-38. https://doi.org/10.1038/nrc3169

  66. 66. Pan, D. (2010) The Hippo Signaling Pathway in Development and Cancer. Developmental Cell, 19, 491-505. https://doi.org/10.1016/j.devcel.2010.09.011

  67. 67. Zhao, B., Lei, Q.Y. and Guan, K.L. (2008) The Hippo-YAP Pathway: New Connections between Regulation of Organ Size and Cancer. Current Opinion in Cell Biology, 20, 638-646. https://doi.org/10.1016/j.ceb.2008.10.001

  68. 68. Grzeschik, N.A., Parsons, L.M. and Allott, M.L. (2010) Lgl, aPKC, and Crumbs Regulate the Salvador/Warts/Hippo Pathway through Two Distinct Mechanisms. Current Biol-ogy: CB, 20, 573-581. https://doi.org/10.1016/j.cub.2010.01.055

  69. 69. Zhao, B., Wei, X.M., Li, W.Q., et al. (2007) Inactivation of YAP Oncoprotein by the Hippo Pathway Is Involved in Cell Contact Inhibition and Tissue Growth Control. Genes & Devel-opment, 21, 2747-2761. https://pubmed.ncbi.nlm.nih.gov/17974916/

  70. 70. Sezaki, T., Inada, K., Sogabe, T., et al. (2012) Role of Dlg5/lp-dlg, a Membrane-Associated Guanylate Kinase Family Protein, in Epithelial-Mesenchymal Transition in LLc-PK1 Renal Epithelial Cells. PLOS ONE, 7, e35519. https://pubmed.ncbi.nlm.nih.gov/22539977/

  71. 71. Neuzillet, C., Tijeras-Raballand, A. and Cohen, R. (2015) Tar-geting the TGFβ Pathway for Cancer Therapy. Pharmacology & Therapeutics, 147, 22-31. https://doi.org/10.1016/j.pharmthera.2014.11.001

  72. 72. Asiedu, M.K., Ingle, J.N. and Behrens, M.D. (2011) TGF-beta/TNF(alpha)-Mediated Epithelial-Mesenchymal Transition Generates Breast Cancer Stem Cells with a Claudin-Low Phenotype. Cancer Research, 71, 4707-4719. https://doi.org/10.1158/0008-5472.CAN-10-4554

  73. 73. Brabletz, T., Kalluri, R. and Nieto, M.A. (2018) EMT in Cancer. Nature Reviews. Cancer, 18, 128-134. https://doi.org/10.1038/nrc.2017.118

  74. 74. Puisieux, A., Brabletz, T. and Caramel, J. (2014) Oncogenic Roles of EMT-Inducing Transcription Factors. Nature Cell Biology, 16, 488-494. https://pubmed.ncbi.nlm.nih.gov/24875735/

  75. 75. Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mecha-nisms of Epithelial-Mesenchymal Transition. Nature Reviews. Molecular Cell Biology, 15, 178-196. https://doi.org/10.1038/nrm3758

  76. 76. Chen, B., Yuan, Y. and Sun, L. (2020) MKL1 Mediates TGF-β Induced RhoJ Transcription to Promote Breast Cancer Cell Migration and Invasion. Frontiers in Cell and Developmental Biology, 8, Article No. 832. https://doi.org/10.3389/fcell.2020.00832

  77. NOTES

    *通讯作者。

期刊菜单