Advances in Clinical Medicine
Vol. 12  No. 04 ( 2022 ), Article ID: 50901 , 7 pages
10.12677/ACM.2022.124513

CBCT观测上颌窦解剖结构的研究进展

伍丹杰1,2,章燕珍2

1浙江大学医学院口腔医学系,浙江 杭州

2浙江大学医学院附属第二医院综合牙科,浙江 杭州

收稿日期:2022年3月26日;录用日期:2022年4月21日;发布日期:2022年4月28日

摘要

上颌窦提升术作为上颌后牙区垂直骨量不足的解决方案被应用于临床中,为降低窦底黏膜穿孔、出血、上颌窦炎等并发症的发生率,需要在术前对上颌窦相关的解剖结构进行放射学检查。锥体束计算机断层扫描技术(cone-beam computed tomography, CBCT)对于上颌窦能够起到很好的显像作用,在临床中得到广泛的运用。本文就上颌窦术前应用CBCT观测上颌窦局部解剖结构的研究现状进行综述。

关键词

CBCT,上颌窦解剖,上颌窦提升术

Research Progress of Anatomical Structure of Maxillary Sinus Observed by CBCT

Danjie Wu1,2, Yanzhen Zhang2

1Department of Stomatology, Zhejiang University School of Medicine, Hangzhou Zhejiang

2Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang

Received: Mar. 26th, 2022; accepted: Apr. 21st, 2022; published: Apr. 28th, 2022

ABSTRACT

Maxillary sinus lift has been applied in clinical practice as a solution for vertical bone insufficiency in the maxillary posterior region. In order to reduce the incidence of sinus mucosa perforation, bleeding, maxillary sinusitis and other complications, it is necessary to conduct radiological examination of the related structures of maxillary sinus before surgery. Cone-beam computed tomography (CBCT) can play a good role in the imaging of maxillary sinus and has been widely used in clinical practice. In this paper, the current status of the study on the local anatomical structure of maxillary sinus observed by CBCT before maxillary sinus surgery was reviewed.

Keywords:CBCT, Anatomy of Maxillary Sinus, Maxillary Sinus Augmentation

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

1997年,Arial和同事发明了第一代CBCT [1] 技术。在随后两年里,该技术被应用于大约2000例牙齿及颌骨疾病手术前后的放射学评估中,结果证明它是可行的 [2]。相较于传统CT,CBCT具有体积小、成本低、辐射少的优点,使得该技术在口腔科的临床应用中得到进一步发展。

种植修复上颌后牙区的缺失,往往伴随剩余骨高度不足的问题 [3],上颌窦提升术为这一类患者提供了治疗条件,同时,也存在一些并发症 [4]。为了尽量减少术中和术后并发症的发生率,必须对患者进行全面的术前病史采集,以及详实的临床和影像学评估。CBCT已被证实是一种能够直观观测上颌窦三维解剖形态的工具 [5],并在临床得到广泛的运用。本文就CBCT观测上颌窦局部解剖特点的相关研究进行综述。

2. 上颌窦气化

上颌窦气化是指上颌窦窦腔伴随生长发育,由出生时的被液体到逐渐被气体充满一个生理过程。其气化过程,呈膨胀性向四周进行,与上颌后牙区种植密切相关的是上颌窦向牙槽突方向的气化。

上颌窦气化后的窦底形态,可分为平坦型、凹面型、凸面型 [6]。刘锦峰等 [7] 将上颌窦向牙槽突气化分为三型:I型(正常气化),上颌窦底部高于或等于硬腭的口腔面,上颌窦底壁是接近水平的;处于II型(显著气化)及III型(过度气化)时,上颌窦底部低于硬腭的口腔面,牙根未进入上颌窦底部为II型,否则为III型。NIU等将上颌窦底形态分为A (窄锥形)、B (锥形)、C (卵形)、D (方形)、E (不规则) 5型,并根据不同的窦底形态,提供与其相对应的上颌窦提升术式的选择 [8]。

上颌窦过度气化会导致上颌后牙区的牙槽骨剩余骨量不足 [9],术前CBCT观测上颌窦形态对上颌后牙区种植术式的方案选择具有指导意义。

3. 上颌窦黏膜

上颌窦黏膜,又称施耐德膜(Schneiderian membrane)、上颌窦黏骨膜,是上颌窦内壁上附着的黏膜组织,对大体进行测量显示其组织学平均厚度为(0.30 ± 0.17) mm,CBCT测量上颌窦黏膜的厚度约为组织学厚度的2.6倍,二者具有显著性差异 [10],由于组织学厚度的不可获得性,临床上通常以影像学厚度作为参考。

目前认为,上颌窦黏膜过薄或者过厚在上颌窦提升术中都易出现上颌窦黏膜穿孔的并发症 [11],且上颌窦黏膜的增厚还可能致使上颌窦窦口阻塞,上颌窦内部液体难以排出,从而增加鼻窦炎症的发生概率 [12]。上颌窦黏膜病理性增厚与鼻窦炎症、颌骨囊肿、根尖囊肿相关 [13],也可能是由创伤、化学物质、异物反应、肿瘤或气道条件所致,同时牙龈生物型、牙周病、吸烟、季节变化等因素也会影响鼻窦黏膜厚度 [14]。

对于施耐德膜厚度的研究,有学者认为施耐德膜大于2 mm为病理性增厚 [15] [16],Maska等认为这个值为1 mm [17],还有学者认为大于3 mm或者大于5 mm可界定为病理性增厚 [18] [19]。目前,不同学者对上颌窦黏膜病理性增厚的阈值还存在争议。临床上有病例显示,对施耐德膜厚度15 mm且无症状患者行上颌窦内提升同期植入种植体,患者预后良好 [13];有研究结果显示上颌窦黏膜无症状增厚2~5 mm组与正常组相比,上颌窦提升术后骨形成及黏膜增厚变化无显著性差异 [20]。可见上颌窦黏膜增厚并非上颌窦提升术禁忌症,临床上还需结合患者病史、体征来评估手术可行性。

4. 上颌窦骨分隔

上颌窦骨分隔,或称上颌窦间隔,为上颌窦内最常见的解剖变异之一 [21],其存在与上颌窦黏膜穿孔的发生有着密切关系 [22] [23]。上颌窦骨分隔的发生率,不同学者对其的研究结果差异较大。Lana等以人数为对象进行研究,其发生率为44.4% [24],Naitoh等以上颌窦数为对象进行研究,其发生率为37% [25],褚杨等以上颌窦数和人数为对象得到的结果分别为21.6%和28.8% [26],总体而言,其人群患病率在约28%~58%之间 [26] [27] [28]。

上颌窦骨分隔因分布、高度的不同呈现不同类型。孔伟等根据骨分隔方向将其分为垂直冠状骨分隔、垂直矢状骨分隔、斜型骨分隔、水平骨分隔 [29],研究发现垂直矢状骨分隔占比较大 [26] [29]。上颌窦间隔在不同部位的发生率不同,Orhan等将上颌窦分为前、中、后三部分,上颌窦中部为间隔常见发生部位 [30];根据发生的牙位来区分,以第一磨牙和第二磨牙最为常见 [31]。

上颌窦骨分隔可分为原发性骨分隔和继发性骨分隔 [32]。最早发现上颌窦骨分隔的Underwood认为,原发性骨分隔为颌骨发育时由于牙齿萌出,牙齿之间骨板沉积形成的分隔,而他发现另一种骨分隔产生原因则不相同 [33]。Krennmair等将上颌窦骨分隔分为原发性骨分隔和继发性骨分隔,原发性骨分隔与Underwood描述的相同,他认为继发型骨分隔是由于牙齿脱落后上颌窦底不规则气化导致的 [34]。有研究对200个上颌窦进行CT观测发现上颌后牙缺失窦间隔发生率(31.76%)高于完整牙列窦间隔发生率(22.61%),该差异具有统计学意义 [35],提示牙齿缺失对上颌窦间隔发生的具有一定影响作用,佐证了Krennmair的观点。目前认为,上颌窦骨分隔如果位于上颌牙上方,则被归类于原发性骨分隔;位于无牙颌上方的骨分隔,可被认定为继发性或者原发性,也可以是两者结合 [36]。对于继发性窦间隔的界定,目前不同学者的看法还存在一定争议,仍需进一步的研究。临床上,对于上颌窦提升影响较大的是垂直向骨分隔,尤其是位于缺牙区的骨分隔,需要医生进行术前影像排查以进一步选择治疗方案。

5. 上颌窦口

上颌窦口位于上颌窦内侧壁的上侧面,与中鼻道相通,窦口的大小在3到10毫米之间 [37],起到引流上颌窦内液体的作用。近年来有研究表明上颌窦口解剖结构与上颌窦黏膜增厚具有一定的相关性,白洋等对200例上颌窦窦口直径、鼻中隔偏曲、剩余牙槽嵴高度以及上颌窦黏膜厚度进行CBCT测量,得出前三者均与上颌窦黏膜呈负相关,该结果具有统计学意义 [38]。

上颌窦口阻塞可能是上颌窦提升术后出现上颌窦炎的原因之一 [39]。其影响机制可能为上颌窦术后易引起黏膜水肿,当肿胀范围波及上颌窦口,会导致窦口阻塞,以进一步加剧上颌窦炎的发生。

综上,上颌窦炎症与窦口的阻塞呈协同作用,为减少术后出现严重并发症的概率,术前进行CBCT排查上颌窦口解剖有无异常具有较好的临床应用意义。

6. 上颌窦侧壁

上颌窦侧壁即上颌窦外侧骨壁,骨壁的厚度越厚,上颌窦外提升的手术难度越大,相应窦黏膜穿孔等并发症的发生率也随之增加 [40]。Basma等对209例CBCT影像进行观测,结果显示穿孔组的冠状面至窦底4 mm和6 mm处平均壁厚大于非穿孔组的厚度,该差异具有统计学意义 [41]。

上颌窦骨壁平均厚度为1.95 ± 0.98 mm [42],且该厚度受到牙位、距离窦底高度、有无牙颌等因素影响。研究发现距离窦底高度越高,骨壁厚度越大;完全无牙颌组的骨壁厚度小于部分无牙组,该差异具有统计学意义;第一磨牙骨壁厚度最大,第二前磨牙和第二磨牙厚度最小 [43]。Danesh-Sani等对860侧上颌窦CBCT影像进行观测,结果显示无牙组的骨壁厚度小于有牙组,该结果支持上述研究的结论,但该结果无显著性统计学差异;第一前磨牙、第二前磨牙、第一磨牙骨壁厚度相近,第二磨牙骨壁厚度最小 [44]。LIM等以眶底为标志点,向下测量,发现骨壁厚度随高度增高而增厚,从尖牙区到第一磨牙区逐渐增厚,第二磨牙区厚度最小,该结果也进一步印证了之前的研究 [45]。综上所述,上颌窦侧壁厚度随距离窦底高度升高而增厚,在第一磨牙处厚度最厚,第二磨牙厚度最薄,同时,有无牙颌也会对侧壁厚度造成一定影响 [46]。

对于需要行上颌窦外提升术的患者,术前测量上颌窦侧壁厚度,有利于更精准地评估手术难度,进一步辅助手术入路的选择,具有一定的临床现实意义。

7. 上颌窦侧壁血管

上颌窦侧壁血管是由上牙槽后动脉和眶下动脉在上颌窦侧壁吻合而形成 [47],其损伤是引起上颌窦外提升术围术期出血的主要原因 [48]。为减少出血并发症,术前通过CBCT对上颌窦侧壁动脉的位置、直径进行观测显得尤为重要。然而,并不是所有上颌窦动脉在CBCT图像上都能够有所体现。研究发现,在尸解中可以100%发现上颌窦侧壁血管的存在 [49],而CBCT图像上的检出率仅为61.25%~94.98% [50]。其原因可能是有些侧壁血管直径较小,或位于窦内及骨壁浅表,与软组织无明显分界,从而致其在CBCT图像上无法完全显现 [50]。

上颌窦侧壁血管的直径是影响术中出血的重要因素之一,一般认为血管直径小于1 mm,损伤血管对手术影响较小,血管直径越大,出血的风险也随之越高,大于2 mm的血管损伤则被认为会引起较严重的出血。Fayek等对600例上颌窦CBCT图像测量得到,血管平均直径在1.0 ± 0.5 mm,管径小于1 mm的占55.8%,大于2 mm的占4.0% [51]。Karslioglu等学者得出的结果,管径小于1 mm占44%,大于等于1 mm占56% [47]。Danesh-Sani等对860例上颌窦CBCT图像测量得到,血管直径小于1 mm的占37.8%,1~2 mm的占55.8%,大于2 mm的占6.4% [44]。可见侧壁血管直径小于2 mm占多数。

根据上颌窦侧壁血管与骨壁的关系,可将其分为骨内型(69.6%)、浅表型(24.3%)、窦内型(6.1%) [44],其中以骨内型占大多数 [47] [51];根据血管的垂直高度,研究中分别采用了血管下缘距离牙槽嵴顶和上颌窦底的高度,临床中也需要对这两者进行测量,利于进一步辅助上颌窦外提升术的开窗设计。

8. 小结

上颌窦各个局部解剖形态较为复杂,且易出现变异,对上颌窦提升的术中、术后都可能产生一定影响,如黏膜穿孔、出血、上颌窦炎等。CBCT能够对上颌窦各个解剖结构达到较为清楚的显像,比如在上颌窦侧壁血管的显影上明显优于传统CT [50],能够为医生提供很好的参考价值。因此,在上颌窦提升术前临床医生借助CBCT对上颌窦解剖进行观测非常具有临床意义。

文章引用

伍丹杰,章燕珍. CBCT观测上颌窦解剖结构的研究进展
Research Progress of Anatomical Structure of Maxillary Sinus Observed by CBCT[J]. 临床医学进展, 2022, 12(04): 3535-3541. https://doi.org/10.12677/ACM.2022.124513

参考文献

  1. 1. Arai, Y., Tammisalo, E., Iwai, K., et al. (1999) Development of a Compact Computed Tomographic Apparatus for Dental Use. Dento Maxillo Facial Radiology, 28, 245-248. https://doi.org/10.1038/sj.dmfr.4600448

  2. 2. Terakado, M., Hashimoto, K., Arai, Y., et al. (2000) Diagnostic Imaging with Newly Developed Ortho Cubic Super-High Resolution Computed Tomography (Ortho-CT). Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 89, 509-518. https://doi.org/10.1016/S1079-2104(00)70133-8

  3. 3. Gu, Y., Sun, C., Wu, D., et al. (2018) Evaluation of the Relationship between Maxillary Posterior Teeth and the Maxillary Sinus Floor Using Cone-Beam Computed Tomography. BMC Oral Health, 18, Article No. 164. https://doi.org/10.1186/s12903-018-0626-z

  4. 4. Molina, A., Sanz-Sánchez, I., Sanz-Martín, I., et al. (2022) Complications in Sinus Lifting Procedures: Classification and Management. Periodontology 2000, 88, 103-115. https://doi.org/10.1111/prd.12414

  5. 5. Wang, X., Zhang, M., Han, J., et al. (2020) Three-Dimensional Evaluation of Maxillary Sinus and Maxilla for Adolescent Patients with Unilateral Cleft Lip and Palate Using Cone-Beam Computed Tomography. International Journal of Pediatric Otorhinolaryngology, 135, Article ID: 110085. https://doi.org/10.1016/j.ijporl.2020.110085

  6. 6. 李春娥, 蓝鹏, 杨晓光, 等. 上颌窦底形态与种植关系的研究进展[J]. 世界最新医学信息文摘, 2017, 17(68): 50-51.

  7. 7. 刘锦峰, 戴金升, 周沫, 等. 上颌窦前部气化的CT观察及临床意义[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(18): 1447-1454.

  8. 8. Niu, L., Wang, J., Yu, H., et al. (2018) New Classification of Maxillary Sinus Contours and Its Relation to Sinus Floor Elevation Surgery. Clinical Im-plant Dentistry and Related Research, 20, 493-500. https://doi.org/10.1111/cid.12606

  9. 9. Lim, H.C., Kim, S., Kim, D.H., et al. (2021) Factors Affecting Maxillary Sinus Pneumatization Following Posterior Maxillary Tooth Extraction. Journal of Periodontal & Implant Science, 51, 285-295. https://doi.org/10.5051/jpis.2007220361

  10. 10. Insua, A., Monje, A., Chan, H.L., et al. (2017) Accuracy of Schneiderian Membrane Thickness: A Cone-Beam Computed Tomography Analysis with Histological Validation. Clinical Oral Implants Research, 28, 654-661. https://doi.org/10.1111/clr.12856

  11. 11. Insua, A., Monje-Gil, F., García-Caballero, L., et al. (2018) Mechanical Characteristics of the Maxillary Sinus Schneiderian Membrane ex Vivo. Clinical Oral Investigations, 22, 1139-1145. https://doi.org/10.1007/s00784-017-2201-4

  12. 12. Costa, F., Emanuelli, E. and Robiony, M. (2018) Incidence of Maxillary Sinus Disease before Sinus Floor Elevation Surgery as Identified by Cone-Beam Computed Tomography: A Literature Review. The Journal of Oral Implantology, 44, 161-166. https://doi.org/10.1563/aaid-joi-D-17-00209

  13. 13. 杨阳, 张歆缘, 满毅, 等. 施耐德膜增厚对上颌窦底提升术影响的研究进展[J]. 口腔颌面外科杂志, 2021, 31(2): 114-119.

  14. 14. Amid, R., Kadkhodazadeh, M., Moscowchi, A., et al. (2021) Effect of Schneiderian Membrane Thickening on the Maxillary Sinus Augmentation and Implantation Outcomes: A Systematic Review. Journal of Maxillofacial and Oral Surgery, 20, 534-544. https://doi.org/10.1007/s12663-021-01551-y

  15. 15. García-Denche, J.T., Wu, X., Martinez, P.P., et al. (2013) Membranes over the Lateral Window in Sinus Augmentation Procedures: A Two-Arm and Split-Mouth Randomized Clinical Trials. Journal of Clinical Periodontology, 40, 1043-1051. https://doi.org/10.1111/jcpe.12153

  16. 16. Sánchez-Pérez, A., Boracchia, A.C., López-Jornet, P., et al. (2016) Characterization of the Maxillary Sinus Using Cone Beam Computed Tomography. A Retrospective Radiographic Study. Implant Dentistry, 25, 762-769. https://doi.org/10.1097/ID.0000000000000485

  17. 17. Maska, B., Lin, G.H., Othman, A., et al. (2017) Dental Im-plants and Grafting Success Remain High Despite Large Variations in Maxillary Sinus Mucosal Thickening. Interna-tional Journal of Implant Dentistry, 3, 1. https://doi.org/10.1186/s40729-017-0064-8

  18. 18. Hsiao, Y.J., Yang, J., Resnik, R.R., et al. (2019) Prevalence of Maxillary Sinus Pathology Based on Cone-Beam Computed Tomography Evaluation of Multiethnicity Dental School Population. Implant Dentistry, 28, 356-366. https://doi.org/10.1097/ID.0000000000000902

  19. 19. Manji, A., Faucher, J., Resnik, R.R., et al. (2013) Prevalence of Maxillary Sinus Pathology in Patients Considered for Sinus Augmentation Procedures for Dental Implants. Implant Dentistry, 22, 428-435. https://doi.org/10.1097/ID.0b013e31829d1a20

  20. 20. Yildirim, T.T., Güncü, G.N., Göksülük, D., et al. (2017) The Effect of Demographic and Disease Variables on Schneiderian Membrane Thickness and Appearance. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 124, 568-576. https://doi.org/10.1016/j.oooo.2017.09.002

  21. 21. Henriques, I., Caramês, J., Francisco, H., et al. (2021) Prevalence of Maxillary Sinus Septa: Systematic Review and Meta-Analysis. International Journal of Oral and Maxillofacial Surgery. https://doi.org/10.1016/j.ijom.2021.10.008

  22. 22. Van Den Bergh, J.P., Ten Bruggenkate, C.M., Disch, F.J., et al. (2000) Anatomical Aspects of Sinus Floor Elevations. Clinical Oral Implants Research, 11, 256-265. https://doi.org/10.1034/j.1600-0501.2000.011003256.x

  23. 23. Tavelli, L., Borgonovo, A.E., Re, D., et al. (2017) Sinus Presurgical Evaluation: A Literature Review and a New Classification Proposal. Minerva Stomatologica, 66, 115-131. https://doi.org/10.23736/S0026-4970.17.04027-4

  24. 24. Lana, J.P., Carneiro, P.M., Machado, V.D.E.C., et al. (2012) Anatomic Variations and Lesions of the Maxillary Sinus Detected in Cone Beam Computed Tomography for Dental Implants. Clinical Oral Implants Research, 23, 1398-1403. https://doi.org/10.1111/j.1600-0501.2011.02321.x

  25. 25. Naitoh, M., Suenaga, Y., Kondo, S., et al. (2009) As-sessment of Maxillary Sinus Septa Using Cone-Beam Computed Tomography: Etiological Consideration. Clinical Im-plant Dentistry and Related Research, 11, e52-e58. https://doi.org/10.1111/j.1708-8208.2009.00194.x

  26. 26. 褚杨, 王宇, 何鑫, 等. 北京地区成年汉族人群上颌窦骨分隔及窦底小骨尖/嵴的CBCT影像分析[J]. 口腔颌面修复学杂志, 2021, 22(5): 364-369.

  27. 27. Ata-Ali, J., Diago-Vilalta, J.V., Melo, M., et al. (2017) What Is the Frequency of Anatomical Variations and Pathological Findings in Maxillary Sinuses among Patients Subjected to Maxillofacial Cone Beam Computed Tomography? A Systematic Review. Medicina Oral, Patologia Oral y Cirugia Bucal, 22, e400-e409. https://doi.org/10.4317/medoral.21456

  28. 28. Pommer, B., Ulm, C., Lorenzoni, M., et al. (2012) Prevalence, Loca-tion and Morphology of Maxillary Sinus Septa: Systematic Review and Meta-Analysis. Journal of Clinical Periodon-tology, 39, 769-773. https://doi.org/10.1111/j.1600-051X.2012.01897.x

  29. 29. 孔伟. 上颌窦骨性分隔的MSCT表现及临床意义[J]. 中国现代医生, 2016, 54(22): 100-102+107+69.

  30. 30. Orhan, K., Kusakci Seker, B., Aksoy, S., et al. (2013) Cone Beam CT Evaluation of Maxillary Sinus Septa Prevalence, Height, Location and Morphology in Children and an Adult Population. Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre, 22, 47-53. https://doi.org/10.1159/000339849

  31. 31. Shen, E.C., Fu, E., Chiu, T.J., et al. (2012) Prevalence and Location of Maxillary Sinus Septa in the Taiwanese Population and Relationship to the Absence of Molars. Clinical Oral Implants Research, 23, 741-745. https://doi.org/10.1111/j.1600-0501.2011.02195.x

  32. 32. 高文莫, 耿威, 陈明. 上颌窦底提升相关局部因素的考量[J]. 中国口腔种植学杂志, 2021, 26(1): 67-71.

  33. 33. Underwood, A.S. (1910) An Inquiry into the Anatomy and Pathology of the Maxillary Sinus. Journal of Anatomy and Physiology, 44, 354-369.

  34. 34. Krennmair, G., Ulm, C.W., Lugmayr, H., et al. (1999) The Incidence, Location, and Height of Maxillary Sinus Septa in the Edentulous and Dentate Maxilla. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 57, 667-671. https://doi.org/10.1016/S0278-2391(99)90427-5

  35. 35. Kim, M.J., Jung, U.W., Kim, C.S., et al. (2006) Maxillary Sinus Septa: Prevalence, Height, Location, and Morphology. A Reformatted Computed Tomography Scan Analysis. Journal of Periodontology, 77, 903-908. https://doi.org/10.1902/jop.2006.050247

  36. 36. Velásquez-Plata, D., Hovey, L.R., Peach, C.C., et al. (2002) Max-illary Sinus Septa: A 3-Dimensional Computerized Tomographic Scan Analysis. The International Journal of Oral & Maxillofacial Implants, 17, 854-860.

  37. 37. Vaid, S. and Vaid, N. (2015) Normal Anatomy and Anatomic Variants of the Paranasal Sinuses on Computed Tomography. Neuroimaging Clinics of North America, 25, 527-548. https://doi.org/10.1016/j.nic.2015.07.002

  38. 38. 白洋, 王永兰, 周健, 等. 上后牙缺失患者上颌窦窦口及毗邻结构与窦黏膜关系的CBCT研究[J]. 天津医科大学学报, 2022, 28(1): 81-84.

  39. 39. Lee, J.W., Yoo, J.Y., Paek, S.J., et al. (2016) Correlations between Anatomic Variations of Maxillary Sinus Ostium and Postoperative Complication after Sinus Lifting. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 42, 278-283. https://doi.org/10.5125/jkaoms.2016.42.5.278

  40. 40. Khajehahmadi, S., Rahpeyma, A. and Hoseini Zarch, S.H. (2014) Association between the Lateral Wall Thickness of the Maxillary Sinus and the Dental Status: Cone Beam Computed Tomography Evaluation. Iranian Journal of Radiology: A Quarterly Journal Published by the Iranian Ra-diological Society, 11, e6675. https://doi.org/10.5812/iranjradiol.6675

  41. 41. Basma, H., Saleh, I., Abou-Arraj, R., et al. (2021) Association be-tween Lateral Wall Thickness and Sinus Membrane Perforation during Lateral Sinus Elevation: A Retrospective Study. International Journal of Oral Implantology (Berlin, Germany), 14, 77-85.

  42. 42. Lozano-Carrascal, N., Salomó-Coll, O., Gehrke, S.A., et al. (2017) Radiological Evaluation of Maxillary Sinus Anatomy: A Cross-Sectional Study of 300 Pa-tients. Annals of Anatomy, 214, 1-8. https://doi.org/10.1016/j.aanat.2017.06.002

  43. 43. Kiakojori, A., Nasab, S.P.M., Abesi, F., et al. (2017) Radio-graphic Assessment of Maxillary Sinus Lateral Wall Thickness in Edentulous Posterior Maxilla. Electronic Physician, 9, 5948-5953. https://doi.org/10.19082/5948

  44. 44. Danesh-Sani, S.A. Movahed, A., Elchaar, E.S., et al. (2017) Radiographic Evaluation of Maxillary Sinus Lateral Wall and Posterior Superior Alveolar Artery Anatomy: A Cone-Beam Computed Tomographic Study. Clinical Implant Dentistry and Related Research, 19, 151-160. https://doi.org/10.1111/cid.12426

  45. 45. Lim, E.L., Ngeow, W.C. and Lim, D. (2017) The Implications of Different Lateral Wall Thicknesses on Surgical Access to the Maxillary Sinus. Brazilian Oral Research, 31, e97. https://doi.org/10.1590/1807-3107bor-2017.vol31.0097

  46. 46. Monje, A., Catena, A., Monje, F., et al. (2014) Max-illary Sinus Lateral Wall Thickness and Morphologic Patterns in the Atrophic Posterior Maxilla. Journal of Periodon-tology, 85, 676-682. https://doi.org/10.1902/jop.2013.130392

  47. 47. Karslioglu, H., Çitir, M., Gunduz, K., et al. (2021) The Radiological Evaluation of Posterior Superior Alveolar Artery by Using CBCT. Current Medical Imaging, 17, 384-389. https://doi.org/10.2174/1573405616666200628134308

  48. 48. 王宇, 王慧明. 上颌窦区动脉的解剖生理结构[J]. 口腔医学, 2021, 41(2): 189-192.

  49. 49. Caraballo, J., Gálvez, A., Manzanares-Céspedes, M.C., et al. (2017) Vascular Structures of the Lateral Wall of the Maxillary Sinus: A Vascular Labeling Technique. Implant Dentistry, 26, 153-157. https://doi.org/10.1097/ID.0000000000000529

  50. 50. Varela-Centelles, P., Loira-Gago, M., Seoane-Romero, J.M., et al. (2015) Detection of the Posterior Superior Alveolar Artery in the Lateral Sinus Wall Using Computed Tomogra-phy/Cone Beam Computed Tomography: A Prevalence Meta-Analysis Study and Systematic Review. International Journal of Oral and Maxillofacial Surgery, 44, 1405-1410. https://doi.org/10.1016/j.ijom.2015.07.001

  51. 51. Fayek, M.M., Amer, M.E. and Bakry, A.M. (2021) Evaluation of the Posterior Superior Alveolar Artery Canal by Cone-Beam Computed Tomography in a Sample of the Egyptian Pop-ulation. Imaging Science in Dentistry, 51, 35-40. https://doi.org/10.5624/isd.20200146

期刊菜单