Advances in Clinical Medicine
Vol. 13  No. 08 ( 2023 ), Article ID: 70993 , 6 pages
10.12677/ACM.2023.1381874

PCSK9抑制剂的降脂治疗研究进展

宫喜1,魏子秀2*

1济宁医学院临床医学院,山东 济宁

2济宁市第一人民医院心内科,山东 济宁

收稿日期:2023年7月23日;录用日期:2023年8月15日;发布日期:2023年8月22日

摘要

低密度脂蛋白胆固醇(LDL-C)水平升高是冠状动脉粥样硬化性心血管疾病(ASCVD)的重要危险因素。他汀类药物仍是当前降脂治疗的基石,经过他汀类药物治疗后,仍有部分高危患者无法降至目标LDL-C水平。前蛋白转化酶枯草杆菌蛋白酶Kexin-9 (PCSK9)是一种参与LDL-C受体降解过程的蛋白酶,已成为降脂治疗的关键靶点。PCSK9抑制剂可通过抑制PCSK9加速LDL-C清除,为降脂治疗提供了新思路,其疗效及安全性已在临床试验中得到证实。本综述对PCSK9作用机制及PCSK9抑制剂临床疗效进行了总结。

关键词

PCSK9抑制剂,低密度脂蛋白胆固醇,依洛尤单抗,阿利西尤单抗

Research Progress of PCSK9 Inhibitors in Lipid-Lowering Therapy

Xi Gong1, Zixiu Wei2*

1Clinical Medical College of Jining Medical University, Jining Shandong

2Department of Cardiology, Jining No. 1 People’s Hospital, Jining Shandong

Received: Jul. 23rd, 2023; accepted: Aug. 15th, 2023; published: Aug. 22nd, 2023

ABSTRACT

Elevated low-density lipoprotein cholesterol (LDL-C) level is an important risk factor for atherosclerotic cardiovascular disease (ASCVD). Statins are still the cornerstone of current lipid-lowering therapy, and some high-risk patients still cannot reach the target LDL-C level after statin therapy. Proprotein convertase subtilisin kexin type 9 (PCSK9) is a protease involved in the degradation of LDL-C receptors and has become a key target for lipid-lowering therapy. PCSK9 inhibitors can accelerate LDL-C clearance by inhibiting PCSK9, and provides a new idea for lipid-lowering therapy, and its efficacy and safety have been confirmed in clinical trials. This review summarizes the mechanism of action of PCSK9 and the clinical efficacy of PCSK9 inhibitors.

Keywords:PCSK9 Inhibitor, Low-Density Lipoprotein Cholesterol, Evolocumab, Alirocumab

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C)是血液中胆固醇的主要载体,其水平升高是冠状动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease, ASCVD)的重要危险因素 [1] [2] 。对于心血管高危人群,应及早降低其LDL-C水平。目前,临床上大多单独使用他汀类药物,或联合应用胆固醇吸收抑制剂(依折麦布)。部分患者LDL-C基线水平较高,经足量上述药物干预后LDL-C仍难控制在目标水平 [3] 。同时,我国部分患者对他汀类药物耐受性较差,在用药后易产生肌痛、消化道反应等问题 [4] 。前蛋白转化酶枯草杆菌蛋白酶Kexin-9 (proprotein convertase subtilisin/kexin type 9, PCSK9)抑制剂可通过抑制PCSK9加速LDL-C清除,为降脂治疗提供了新思路 [5] 。对基线LDL-C水平较高,且预计经他汀类药物联合胆固醇吸收抑制剂治疗后难以达标的超高危患者,可直接启动他汀类药物联合PCSK9抑制剂治疗 [6] 。本文对PCSK9作用机制及PCSK9抑制剂临床疗效等进行相关综述。

2. PCSK9及其功能

2.1. PCSK9简介

2003年,Abifadel等在家族性高胆固醇血症的患者中发现了编码PCSK9的基因突变,该基因位于人类1号染色体p32.3上 [7] 。通过对PCSK9研究的进一步深入,PCSK9被发现有两种突变方式:功能缺失突变和功能获得突变。有究表明,PCSK9功能缺失突变与较低的LDL-C水平及冠心病发病率相关,而功能获得突变会导致蛋白质功能过表达并与家族性高胆固醇血症及心血管事件风险增加相关 [8] [9] 。PCSK9又可称之为神经细胞凋亡调节转化酶-1,是由692个氨基酸组成、大小为72 kD的可溶性分泌型丝氨酸蛋白酶。成熟PCSK9的组成结构包括信号序列、前结构域、催化结构域和含有半胱氨酸和组氨酸的C端结构域 [7] [10] 。PCSK9在肝脏、肾脏、胃肠道和神经系统中表达丰富 [11] 。

2.2. PCSK9在脂代谢中的作用

PCSK9由肝脏分泌,其浓度取决于其自身的合成、加工和清除。分泌型PCSK9的主要特征活性是翻译后调节细胞表面LDL受体(LDL receptor, LDLR)的数量 [12] 。在阐述PCSK9的生理作用之前,应先明确LDL-C的清除和分解代谢过程:在血浆中,LDL-C与LDLR结合,并与其形成复合物,通过网格介导的内吞作用进入细胞,将其降解,LDLR再回到肝细胞膜表面,进入下一轮循环。PCSK9的催化结构域能够在细胞膜上与LDLR的第一个表皮生长因子样重复结构域A (epidermal growth factor-like repeat homology domain A, EGF-A)的N末端结合,这一步骤阻止LDLR再循环到细胞表面,从而增强溶酶体降解 [13] [14] 。此外,PCSK9还可通过相对快速的细胞内途径增强LDLR降解 [15] 。通过PCSK9的上述作用,可导致血浆中LDL-C水平升高。此外,有研究发现PCSK9的表达与脂蛋白A [lipoprotein(a), LP(a)]的表达呈正相关,并可促进LP(a)的分泌,但具体机制不明。有研究显示,PCSK9被抑制后,LP(a)水平会下降,这可能是由于Lp(a)-apo(a)的分泌减少,从而使LP(a)合成下降,同时也增加了LDLR对LP(a)的摄取和清除 [16] 。

3. 他汀类药物与PCSK9

胆固醇生物合成抑制剂(如他汀类药物)的使用会导致血脂水平的初步降低。通过他汀类药物的使用,固醇调节元件结合蛋白-2 (sterol regulatory element binding proteins-2, SREBP-2)随之被激活,通过固醇调节元件(sterol regulatory element, SRE)致使LDLR和PCSK9表达的上调 [17] [18] 。在人类和动物模型中,已有相关研究表明使用他汀类药物治疗增加了血浆PCSK9水平,导致他汀类药物对LDLR表达的影响部分减弱:有研究表明使用阿托伐他汀(40毫克/天)使循环PCSK9水平显着增加34%,并使LDL-C水平降低42%;对小鼠施用他汀类药物会导致肝脏中LDLR的过度增加,并增强血浆中LDL的清除率 [19] [20] [21] 。有研究显示,每天应用40 mg阿托伐他汀治疗可使血液中PCSK9水平提高34%,若将阿托伐他汀的剂量增加到每天80 mg可使PCSK9水平提高47% [21] [22] 。此外,每天20 mg瑞舒伐他汀治疗可使男性和女性的PCSK9血浆水平分别提高28%和35% [23] 。一些患者的他汀类药物耐药性或与PCSK9相关。

4. PCSK9抑制剂

目前PCSK9抑制剂主要包括单克隆抗体(如依洛尤单抗、阿利西尤单抗)、RNA干扰药物(如Inclisiran)等,更多新类型的PCSK9抑制剂也陆续进入临床研究阶段。

4.1. 依洛尤单抗

依洛尤单抗是第一个在我国上市的PCSK9抑制剂,是一种全人源IgG2型单克隆抗体,其可通过与PCSK9蛋白结合,阻断PCSK9介导的LDLR降解作用 [24] 。研究表明,与安慰剂相比,依洛尤单抗可显著降低LDL-C水平,单次皮下给药140 mg或420 mg依洛尤单抗后4小时内实现了对游离PCSK9的最大抑制,LDL-C水平在第14天和第21天达到最低点 [25] 。一项大型荟萃分析显示,与安慰剂相比,420 mg/月和140 mg/2周方案的依洛尤单抗均显著降低了LDL-C,二者分别降低了54.6%和60.4% [26] 。依洛尤单抗与他汀类药物合用后,LDL-C水平可进一步降低,具有显著的控制血脂的效果,且未发现明显的临床副作用。另外,依洛尤单抗对总胆固醇(total cholesterol, TC)、非高密度脂蛋白胆固醇(non-high density lipoprotein cholesterol, non-HDL-C)、载脂蛋白-β (apolipoprotein beta, ApoB)、甘油三酯(triglyceride, TG)等血脂相关指标的调控也具有积极作用。FOURIER试验(NCT01764633)纳入了27,564名患有动脉粥样硬化性疾病且LDL-C水平大于或等于1.8 mmol/L的患者,其中的6635名患者进入FOURIER-OLE研究阶段,结果显示:长期使用依洛尤能降低LDL-C水平,且其安全性及耐受性良好;早期接受依洛尤单抗治疗的患者发生不良心血管事件的风险显著降低 [27] 。

4.2. 阿利西尤单抗

阿利西尤单抗是一种全人单克隆抗体(IgG1型),以高亲和力形式结合PCSK9。通过增加LDLR的表达,阿利西尤单抗可降低TC、非HDL-C、ApoB、TG和Lp(a)的水平,同时可使HDL-C水平升高 [28] 。在临床使用过程中,无需根据患者的年龄、体重或轻度至中度肝、肾损伤调整阿利西尤单抗的剂量,但对于严重肝、肾功能不全的患者应用阿利西尤单抗的有效性及安全性还有待进一步研究。ODYSSEY OUTCOMES共纳入18,924例经强化他汀治疗LDL-C仍高于70 mg/dL的急性冠状动脉综合征(acute coromary syndrome, ACS)患者,结果显示,在他汀类药物基础上联用阿利西尤单抗可进一步降低LDL-C达55%,显著降低心血管不良事件相对风险15% [29] 。在他汀类药物不耐受时,加用阿利西尤单抗可以降低ACS患者心血管不良事件的发生率,并降低其死亡率 [30] 。ODYSSEY OUTCOMES事后分析表明,在近期发生ACS的患者中,代谢危险因素的累积与心血管不良事件风险增高有关,阿利西尤单抗治疗有助于降低合并多种代谢危险因素的患者心血管不良事件发生率 [31] 。一项旨在评估阿利西尤单抗治疗与缺血性和出血性卒中发病率之间关系的分析显示,无论基线时的LDL-C值如何,也无论是否有脑血管疾病史,阿利西尤单抗都能独立降低这两种类型卒中的发生风险 [32] 。

4.3. Inclisiran

Inclisiran是一种新型化学合成的靶向抑制PCSK9的小干扰RNA (siRNA),可减少细胞内和细胞外的PCSK9水平,具有显著和持久地降低LDL-C的作用 [33] 。Inclisiran由互补核苷酸双链构成,该双链与配体N-乙酰半乳糖胺(N-acetyl-galactosamine, GalNAc)缀合,通过与肝细胞表达的去唾液酸糖蛋白受体(asialoglycoprotein receptor, ASGPR)结合,能特异性地被细胞摄取,并能促进PCSK9mRNA的降解,从而抑制PCSK9的表达,使LDLR增加,提高了血浆LDL-C清除效率并降低其循环水平 [34] 。

一项II期、安慰剂对照、双盲、随机试验ORION I评估了接受了最大耐受剂量他汀类或依折麦布药物治疗,仍有较高LDL-C水平的患者使用Inclisiran的疗效、安全性和耐受性 [35] 。在ORION I中,每年两次注射Inclisiran可将高胆固醇血症、冠心病患者的LDL-C水平降低约50%,且安全性良好。相关研究表明,轻度、中度肝功能不全患者及肾功能不全患者使用Inclisiran无需调整剂量,在严重肝损伤患者中的应用则有待进一步评估 [36] 。与单克隆抗体类PCSK9抑制剂相比,Inclisiran的给药方案具有明显的临床优势,即在初始基线首日和3月两次用药后每6个月给药一次进行维持治疗,与单克隆抗体类药物每2周或每月给药一次的方案相比,这种给药方案在一定程度上提高了患者的依从性。

5. 小结与展望

综上所述,LDL-C是心血管疾病发生的重要危险因素,部分高危患者经常规他汀类药物治疗后仍无法降至目标LDL-C水平。他汀类药物在降低LDL-C的同时,会引起PCSK9的表达上调而影响疗效,他汀的不良反应也增加了服药风险性。PCSK9抑制剂作为一种新型强效降脂药物,使临床降脂治疗迈入了新阶段,为后他汀时代奠定了基础。PCSK9单克隆抗体抑制剂的疗效及安全已在临床试验中得到验证并逐步应用于临床,更多新类型的PCSK9抑制剂还需进一步的临床试验以评估其疗效及安全性。

文章引用

宫 喜,魏子秀. PCSK9抑制剂的降脂治疗研究进展
Research Progress of PCSK9 Inhibitors in Lipid-Lowering Therapy[J]. 临床医学进展, 2023, 13(08): 13414-13419. https://doi.org/10.12677/ACM.2023.1381874

参考文献

  1. 1. Borén, J., Chapman, M.J., Krauss, R.M., et al. (2020) Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease: Pathophysiological, Genetic, and Therapeutic Insights: A Consensus Statement from the European Atheroscle-rosis Society Consensus Panel. European Heart Journal, 41, 2313-2330. https://doi.org/10.1093/eurheartj/ehz962

  2. 2. Ference, B.A., Ginsberg, H.N., Graham, I., et al. (2017) Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38, 2459-2472.

  3. 3. Reiner, Z. (2014) Resistance and Intolerance to Statins. Nutrition, Metabolism and Cardi-ovascular Diseases, 24, 1057-1066. https://doi.org/10.1016/j.numecd.2014.05.009

  4. 4. (2013) HPS2-THRIVE Randomized Placebo-Controlled Trial in 25673 High-Risk Patients of ER Niacin/Laropiprant: Trial Design, Pre-Specified Muscle and Liver Outcomes, and Reasons for Stopping Study Treatment. European Heart Journal, 34, 1279-1291. https://doi.org/10.1093/eurheartj/eht055

  5. 5. Giugliano, R.P. and Sabatine, M.S. (2015) Are PCSK9 Inhibitors the Next Breakthrough in the Cardiovascular Field? Journal of the American College of Cardiology, 65, 2638-2651. https://doi.org/10.1016/j.jacc.2015.05.001

  6. 6. 王增武, 刘静, 李建军, 等. 中国血脂管理指南(2023年) [J]. 中国循环杂志, 2023, 38(3): 237-271.

  7. 7. Seidah, N.G., Benjannet, S., Wickham, L., et al. (2003) The Secretory Propro-tein Convertase Neural Apoptosis-Regulated Convertase 1 (NARC-1): Liver Regeneration and Neuronal Differentiation. Proceedings of the National Academy of Sciences of the United States of America, 100, 928-933. https://doi.org/10.1073/pnas.0335507100

  8. 8. Cuchel, M., Bruckert, E., Ginsberg, H.N., et al. (2014) Homozy-gous Familial Hypercholesterolaemia: New Insights and Guidance for Clinicians to Improve Detection and Clinical Management. A Position Paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Athero-sclerosis Society. European Heart Journal, 35, 2146-2157. https://doi.org/10.1093/eurheartj/ehu274

  9. 9. Kent, S.T., Rosenson, R.S., Avery, C.L., et al. (2017) PCSK9 Loss-of-Function Variants, Low-Density Lipoprotein Cholesterol, and Risk of Coronary Heart Disease and Stroke: Data from 9 Studies of Blacks and Whites. Circulation-Cardiovascular Genetics, 10, e1632. https://doi.org/10.1161/CIRCGENETICS.116.001632

  10. 10. Seidah, N.G. and Prat, A. (2002) Precursor Convert-ases in the Secretory Pathway, Cytosol and Extracellular Milieu. Essays in Biochemistry, 38, 79-94. https://doi.org/10.1042/bse0380079

  11. 11. Naureckiene, S., Ma, L., Sreekumar, K., et al. (2003) Functional Charac-terization of Narc 1, a Novel Proteinase Related to Proteinase K. Archives of Biochemistry and Biophysics, 420, 55-67. https://doi.org/10.1016/j.abb.2003.09.011

  12. 12. Lambert, G., Sjouke, B., Choque, B., et al. (2012) The PCSK9 Decade. Journal of Lipid Research, 53, 2515-2524. https://doi.org/10.1194/jlr.R026658

  13. 13. Qian, Y.W., Schmidt, R.J., Zhang, Y., et al. (2007) Secreted PCSK9 Downregulates Low Density Lipoprotein Receptor through Receptor-Mediated Endocytosis. Journal of Lipid Research, 48, 1488-1498. https://doi.org/10.1194/jlr.M700071-JLR200

  14. 14. Kwon, H.J., Lagace, T.A., McNutt, M.C., et al. (2008) Molecu-lar Basis for LDL Receptor Recognition by PCSK9. Proceedings of the National Academy of Sciences of the United States of America, 105, 1820-1825. https://doi.org/10.1073/pnas.0712064105

  15. 15. Poirier, S., Mayer, G., Poupon, V., et al. (2009) Dissection of the Endogenous Cellular Pathways of PCSK9-Induced Low Density Lipoprotein Receptor Degradation: Evidence for an In-tracellular Route. Journal of Biological Chemistry, 284, 28856-28864. https://doi.org/10.1074/jbc.M109.037085

  16. 16. Watts, G.F., Chan, D.C., Somaratne, R., et al. (2018) Controlled Study of the Effect of Proprotein Convertase Subtilisin-Kexin Type 9 Inhibition with Evolocumab on Lipoprotein(a) Par-ticle Kinetics. European Heart Journal, 39, 2577-2585. https://doi.org/10.1093/eurheartj/ehy122

  17. 17. Rice, L.M., Donigan, M., Yang, M., et al. (2014) Protein Phospha-tase 2A (PP2A) Regulates Low Density Lipoprotein Uptake through Regulating Sterol Response Element-Binding Pro-tein-2 (SREBP-2) DNA Binding. Journal of Biological Chemistry, 289, 17268-17279. https://doi.org/10.1074/jbc.M114.570390

  18. 18. Jeong, H.J., Lee, H.S., Kim, K.S., et al. (2008) Sterol-Dependent Regulation of Proprotein Convertase Subtilisin/Kexin Type 9 Expression by Sterol-Regulatory Element Binding Protein-2. Journal of Lipid Research, 49, 399-409. https://doi.org/10.1194/jlr.M700443-JLR200

  19. 19. Bedi, M., Niesen, M. and Lopez, D. (2008) Inhibition of Squa-lene Synthase Upregulates PCSK9 Expression in Rat Liver. Archives of Biochemistry and Biophysics, 470, 116-119. https://doi.org/10.1016/j.abb.2007.11.011

  20. 20. Rashid, S., Curtis, D.E., Garuti, R., et al. (2005) Decreased Plasma Cholesterol and Hypersensitivity to Statins in Mice Lacking Pcsk9. Proceedings of the National Academy of Sciences of the United States of America, 102, 5374-5379. https://doi.org/10.1073/pnas.0501652102

  21. 21. Careskey, H.E., Davis, R.A., Alborn, W.E., et al. (2008) Atorvas-tatin Increases Human Serum Levels of Proprotein Convertase Subtilisin/Kexin Type 9. Journal of Lipid Research, 49, 394-398. https://doi.org/10.1194/jlr.M700437-JLR200

  22. 22. Welder, G., Zineh, I., Pacanowski, M.A., et al. (2010) High-Dose Atorvastatin Causes a Rapid Sustained Increase in Human Serum PCSK9 and Disrupts Its Correlation with LDL Cholesterol. Journal of Lipid Research, 51, 2714-2721. https://doi.org/10.1194/jlr.M008144

  23. 23. Awan, Z., Seidah, N.G., MacFadyen, J.G., et al. (2012) Rosuvastatin, Proprotein Convertase Subtilisin/Kexin Type 9 Concentrations, and LDL Cholesterol Response: The JUPITER Trial. Clinical Chemistry, 58, 183-189. https://doi.org/10.1373/clinchem.2011.172932

  24. 24. Dias, C.S., Shaywitz, A.J., Wasserman, S.M., et al. (2012) Ef-fects of AMG 145 on Low-Density Lipoprotein Cholesterol Levels: Results from 2 Randomized, Double-Blind, Place-bo-Controlled, Ascending-Dose Phase 1 Studies in Healthy Volunteers and Hypercholesterolemic Subjects on Statins. Journal of the American College of Cardiology, 60, 1888-1898. https://doi.org/10.1016/j.jacc.2012.08.986

  25. 25. Keating, G.M. (2016) Evolocumab: A Review in Hyperlipidemia. American Journal of Cardiovascular Drugs, 16, 67-78. https://doi.org/10.1007/s40256-015-0153-0

  26. 26. Zhang, X.L., Zhu, Q.Q., Zhu, L., et al. (2015) Safety and Efficacy of Anti-PCSK9 Antibodies: A Meta-Analysis of 25 Random-ized, Controlled Trials. BMC Medicine, 13, Article No. 123. https://doi.org/10.1186/s12916-015-0358-8

  27. 27. O’Donoghue, M.L., Giugliano, R.P., Wiviott, S.D., et al. (2022) Long-Term Evolocumab in Patients with Established Atherosclerotic Cardiovascular Disease. Circulation, 146, 1109-1119. https://doi.org/10.1161/CIRCULATIONAHA.122.061620

  28. 28. Kastelein, J.J., Ginsberg, H.N., Langslet, G., et al. (2015) ODYSSEY FH I and FH II: 78 Week Results with Alirocumab Treatment in 735 Patients with Heterozygous Familial Hypercholesterolaemia. European Heart Journal, 36, 2996-3003. https://doi.org/10.1093/eurheartj/ehv370

  29. 29. Schwartz, G.G., Steg, P.G., Szarek, M., et al. (2018) Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. The New England Journal of Medicine, 379, 2097-2107. https://doi.org/10.1056/NEJMoa1801174

  30. 30. Goodman, S.G., Aylward, P.E., Szarek, M., et al. (2019) Effects of Alirocumab on Cardiovascular Events after Coronary Bypass Surgery. Journal of the American College of Cardiology, 74, 1177-1186. https://doi.org/10.1016/j.jacc.2019.07.015

  31. 31. Ostadal, P., Steg, P.G., Poulouin, Y., et al. (2022) Metabolic Risk Factors and Effect of Alirocumab on Cardiovascular Events after Acute Coronary Syndrome: A Post-Hoc Analysis of the Odyssey Outcomes Randomised Controlled Trial. The Lancet Diabetes & Endocrinology, 10, 330-340. https://doi.org/10.1016/S2213-8587(22)00043-2

  32. 32. Jukema, J.W., Zijlstra, L.E., Bhatt, D.L., et al. (2019) Effect of Alirocumab on Stroke in Odyssey Outcomes. Circulation, 140, 2054-2062. https://doi.org/10.1161/CIRCULATIONAHA.119.043826

  33. 33. Fitzgerald, K., Frank-Kamenetsky, M., Shul-ga-Morskaya, S., et al. (2014) Effect of an RNA Interference Drug on the Synthesis of Proprotein Convertase Subtil-isin/Kexin Type 9 (PCSK9) and the Concentration of Serum LDL Cholesterol in Healthy Volunteers: A Randomised, Single-Blind, Placebo-Controlled, Phase 1 Trial. The Lancet, 383, 60-68. https://doi.org/10.1016/S0140-6736(13)61914-5

  34. 34. Lo, S.P., Bottomley, M.J., Calzetta, A., et al. (2011) Mecha-nistic Implications for LDL Receptor Degradation from the PCSK9/LDLR Structure at Neutral pH. EMBO Reports, 12, 1300-1305. https://doi.org/10.1038/embor.2011.205

  35. 35. Ray, K.K., Landmesser, U., Leiter, L.A., et al. (2017) In-clisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. The New England Journal of Medicine, 376, 1430-1440. https://doi.org/10.1056/NEJMoa1615758

  36. 36. Wright, R.S., Collins, M.G., Stoekenbroek, R.M., et al. (2020) Effects of Renal Impairment on the Pharmacokinetics, Efficacy, and Safety of Inclisiran: An Analysis of the ORION-7 and ORION-1 Studies. Mayo Clinic Proceedings, 95, 77-89. https://doi.org/10.1016/j.mayocp.2019.08.021

  37. NOTES

    *通讯作者。

期刊菜单