Advances in Clinical Medicine
Vol. 12  No. 05 ( 2022 ), Article ID: 52123 , 5 pages
10.12677/ACM.2022.125703

UBR5在肿瘤发生发展中作用及其机制 研究进展

王小兵1,伍阅2,李金昊2,龚建平2*

1重庆渝北区人民医院普通外科(胃肠外科),重庆

2重庆医科大学附属第二医院肝胆外科,重庆

收稿日期:2022年4月27日;录用日期:2022年5月21日;发布日期:2022年5月31日

摘要

泛素蛋白酶系统(ubiquitin-proteasome system, UPS)是细胞信号转导和蛋白质稳定的重要调节因子,对多种细胞过程有着重要的作用。泛素蛋白链接酶E3识别素5,(ubiquitin protein ligase E3 component n-recognin 5, UBR5,又名EDD1)具有独特的结构特征,参与了DNA损伤反应、代谢、转录和凋亡的调节,在癌症和发育过程中成为UPS的关键调节因子。UBR5在癌症中的作用引起了科研人员的广泛关注。本文将从UBR5的结构、泛素化与E3泛素化连接酶的作用、UBR5在各种癌症中的作用及其作用机制进行综述。

关键词

泛素–蛋白酶体系统,UBR5,肿瘤

Research Progress on the Role and Mechanism of UBR5 in Tumorigenesis and Development

Xiaobin Wang1, Yue Wu2, Jinhao Li2, Jianping Gong2*

1General Surgery (Gastrointestinal Surgery), Yubei District People’s Hospital, Chongqing

2Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Apr. 27th, 2022; accepted: May 21st, 2022; published: May 31st, 2022

ABSTRACT

The ubiquitin-proteasome system (UPS) is an important regulator of cell signal transduction and protein stability, and plays an important role in a variety of cellular processes. Ubiquitin protein ligase E3 recognin 5, (ubiquitin protein ligase E3 component n-recognin 5, UBR5, also known as EDD1) has unique structural features and is involved in the regulation of DNA damage response, metabolism, transcription and apoptosis, and is involved in the regulation of DNA damage response, metabolism, transcription and apoptosis, and becomes a key regulator of the UPS during development. The role of UBR5 in cancer has attracted extensive attention from researchers. This article will review the structure of UBR5, the role of ubiquitination and E3 ubiquitination ligase, the role of UBR5 in various cancers and its mechanism of action.

Keywords:Ubiquitin-Protease System, UBR5, Tumor

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

2015年,估计全国共新发恶性肿瘤392.9万例,粗发病率排在前五位的是肺癌、乳腺癌、胃癌、结直肠癌和肝癌。在过去的10余年里,恶性肿瘤生存率呈现逐渐上升趋势,目前我国恶性肿瘤的5年相对生存率约为40.5%,中国预后较好的肿瘤如乳腺癌(82.0%)、甲状腺癌(84.3%)和前列腺癌(66.4%)仍与美国还存在很大差距(90.9%、98%、99.5%)。传统的肿瘤治疗手段主要包括外科手术、药物化疗以及放疗,由于肿瘤的异质性高,造成了临床治疗困难。肿瘤基因治疗为生物治疗的重要组成部分,因其具有较强的特异性而成为全球研究的热点。泛素蛋白酶系统(UPS)在细胞周期和凋亡的进程中是必不可少的,在包括癌症等许多疾病中的具有不可小觑的治疗潜力。泛素特异性蛋白酶如UBR5是一类广泛的去泛素化酶,在参与细胞增殖与周期阻滞相关的关键蛋白,如p53、p27、Cyclins和NF-kB等中发挥其特异性调控作用,有望成为新的治疗靶点 [1] [2]。

2. UBR5结构

UBR5 (泛素蛋白链接酶E3识别素5)是E3连接酶家族的成员之一,也称为EDD1、HHYD、KIAA0896或DD5,是果蝇黑色素瘤抑制因子增生盘(HYD)的同系物,有59个外显子,编码约10 kb的mRNA以及300 kDa的蛋白,位于染色体8q22.3,具有477个潜在的磷酸化位点,是MAP激酶ERK2的底物 [3]。哺乳动物的UBR5是一种识别N端退化的HECT (羧基与E6相关蛋白同源) E3泛素连接酶;人类的UBR5基因高度保守,广泛表达在各种类型的细胞中。根据系统发育分析,UBR5被归入一个HECT连接酶的第IV类别,是从共同的祖先基因重复进化而来,包括UBR和其他三个在序列水平上高度分化的家族 [4]。

HECT-E3泛素连接酶在泛素蛋白和底物蛋白之间形成硫酯键,高度依赖于HECT结构域中保守的半胱氨酸 [5]。与其他HECT连接酶相比,UBR5的HECT结构域具有一些独特的结构特征,其C端没有泛素蛋白的非共价结合表面,是否存在N端,目前尚不清楚。UBR5还具有一个锌指泛素识别盒(UBR)结构域,两个核定位序列和一个MLLE/PABC结构域,参与了N端底物识别,调节由HECT结构域催化的泛素转移 [6]。

3. UBR5与肿瘤的作用及其机制

UBR5参与了多种癌症生物学功能的调节,成为癌症泛素–蛋白酶体系统(UPS)的关节调节因子。

3.1. UBR5与肺癌

在观察蛋白酶抑制剂MG132/bortezomib对肺癌作用研究中发现,MG132/bortezomib能在mRNA和蛋白水平上显著抑制细胞AGR2的表达,其机制是通过激活自噬促进了多泛素化AGR2的降解 [7]。在儿童性肺癌中,通过测序分析发现存在UBR5等多个基因突变 [8]。在抵抗死亡受体介导的凋亡的乳腺、胰腺和肺癌细胞系中UBR5表达上调。UBR5与癌细胞凋亡密切相关 [9]。

3.2. UBR5与乳腺癌

UBR5是雌激素受体-α (Estrogen receptor-α, ERα)蛋白水平和活性的调节因子 [10]。UBR5作为一种癌蛋白,通过旁分泌与免疫系统的相互作用推动肿瘤生长,特别是通过抑制CD8T淋巴细胞介导的细胞毒反应,转录控制上皮–间充质转化的关键调节因子ID1和ID3,以一种肿瘤细胞自主的方式促进转移,在乳腺癌的生长和转移过程中发挥作用 [11]。临床资料显示,超过20%的乳腺癌患者显现UBR5过度表达。在三阴性乳腺癌中,UBR5的mRNA及蛋白明显升高,UBR5的调节既可能发生在转录水平上,也有可能发生在转录后翻译水平。已有研究表示,在实验性小鼠TNBC模型中,CRISPR/Cas9介导的UBR5缺失显著地抑制了小鼠体内肿瘤的生长和转移,肿瘤内血管生成障碍,伴随着细胞凋亡、坏死和生长停滞,而通过与野生型UBR5的重组,抑制效果能够完全逆转。其作用机制可能是因为UBR5的缺失引起了上皮细胞向间质细胞的异常转移(EMT),且主要是通过抑制E-cadherin的表达,从而导致肿瘤细胞转移的极少 [12]。同时,UBR5可以通过泛素化MYC蛋白,抑制P53突变型乳腺癌细胞的MYC [或在乳腺、胰腺和肺癌细胞系中通过表达上调、抑制死亡受体的表达介导的凋亡 [9] [13]。在ERα (+)的乳腺癌治疗研究中发现,他莫昔芬的耐药性可能是UBR5增加了β-catenin的稳定性所致,提示UBR5/β-catenin信号通路可能是治疗对他莫昔芬耐药的难治性乳腺癌的潜在靶点 [14]。

3.3. UBR5与胃癌和结直肠癌

UBR5与胃癌和肝癌关系的研究较少,Yang等在观察UBR5在人胃癌中的功能时发现,胃癌组织中UBR5的表达水平明显高于正常胃粘膜和配对的非癌胃组织。UBR5促进胃癌细胞生长的机制可能是UBR5与肿瘤抑制因子1 (GKN1)结合,并增加其泛素化,从而降低GKN1的蛋白稳定性 [15]。有研究发现,UBR5在大肠癌细胞系呈高表达,在大肠癌组织中的表达也明显高于癌旁组织,在大肠癌患者中,UBR5的mRNA水平或蛋白水平与疾病进展和生存不良呈正相关 [16]。多因素分析显示,UBR5的改变是大肠癌预后的独立预测因素。在细胞实验中,UBR5的敲除可以阻止大肠癌细胞的增值、集落形成、迁徙和侵袭;体内动物实验模型也进一步证实,UBR5基因敲除可以减少大肠癌肿瘤的生长,而过表达UBR5后,促进了体外细胞增殖以及体内肿瘤的生长。UBR5促进肿瘤的机制也被证实,可能通过泛素化途径降解p21 [17] [18],或是直接与肿瘤抑制因子食管癌相关基因(ECRG4)结合,并增加其泛素化,从而降低ECRG4的蛋白稳定性 [19]。

3.4. UBR5与肝癌和胆囊癌

使用小干扰RNA(SiRNA)介导的方法选择性下调四种依赖Arg/N降解的泛素连接酶UBR1、UBr2、UBR4和UBR5,发现癌细胞的迁移和增殖减少,自发凋亡增加。用携带siRNA的脂质纳米粒(LNPs)在小鼠体内进行慢性治疗,可以有效地下调肝脏中UBr-泛素连接酶的表达,而不会产生任何明显的毒性作用,但会影响免疫系统并引起炎症。然而,再肝癌小鼠模型中,当以较低的剂量使用时,结合化疗药物,下调Arg/N-degron途径E3连接酶可通过减少肝癌的增殖和增加凋亡,同时避免更多的炎症反应,成功地降低了肿瘤负荷 [20]。UBR5在胆囊癌肿瘤组织中过表达,而且过表达的UBR5与肿瘤大小、肿瘤分化程度显著相关。在细胞实验与动物实验中,UBR5基因敲除后,胆囊癌细胞的体内外增殖和集落形成均有明显的抑制作用。其机制与UBR5激活PI3K/Akt通路从而降解PTEN有关 [21]。

3.5. UBR5与卵巢癌

UBR5在卵巢癌中的表达与复发和死亡风险呈正相关 [22],且在几种卵巢癌细胞系中表达上调 [23]。通过免疫共沉淀发现,UBR5是凋亡蛋白1 (MOAP-1)的结合蛋白,在体外泛素化MOAP-1,并抑制培养细胞中MOAP-1的稳定性。推测它可能调节MOAP-1的泛素化和降解 [24]。此外研究者发现,在卵巢癌患者中UBR5过表达且具有调节肿瘤微环境的功能,是卵巢癌侵袭性的关键驱动因子,在小鼠模型中UBR5的缺失使得肿瘤相关巨噬细胞的旁分泌调节和细胞内调控的球体形成过程受到干扰,从而阻断肿瘤生长和腹膜转移 [25],而针对UBR5的特异靶向治疗可提高常规化疗和免疫治疗的生存率,进一步揭示了UBR5在卵巢癌发生发展过程中的重要影响。而在另一研究中发现,使用siRNA或shRNA将UBR5下调后,增加了MOAP-1的表达,激活Bax的功能,减少Mcl-1信使RNA,通过其泛素连接酶活性调节细胞对顺铂的反应,并使耐药细胞对顺铂诱导的凋亡敏感,证明UBR5具有增强卵巢癌对顺铂的耐药性 [16] [23]。新近发现的一种癌基因即高尔基体磷蛋白3 (Golgi phosphoprotein 3, GOLPH3)在通过激活Wnt/β-catenin信号、促进子宫内膜上皮细胞转分化时,UBR5可能是GOLPH3的下游因子 [26]。

4. 总结与展望

作为E3泛素连接酶UBR5在乳腺癌、结直肠癌等多种肿瘤中高表达,涉及P53、P21、PI3K./Akt、Wnt/β-catenin等。UBR5的相关功能是由其底物泛素化促进的,许多与UBR5相互作用的底物蛋白已被鉴定,尽管UBR5逐渐成为UPS在癌症和发育中的关键调节因子,但是,UBR5与肿瘤的关系仍需继续探索。建立良好的动物肿瘤模型,将能更好地诠释其在各种癌症类型的肿瘤发生发展中的生物学功能和重要作用,为UBR5作为治疗靶点的潜力具有更重要的意义。除此外,改进现有检测分子的工具,挖掘新的酶底物,将会是未来研究UBR5在正常细胞生物学以及癌症病理学中的功能重要的方向。

文章引用

王小兵,伍 阅,李金昊,龚建平. UBR5在肿瘤发生发展中作用及其机制研究进展
Research Progress on the Role and Mechanism of UBR5 in Tumorigenesis and Development[J]. 临床医学进展, 2022, 12(05): 4853-4857. https://doi.org/10.12677/ACM.2022.125703

参考文献

  1. 1. Johnson, D.E. (2015) The Ubiquitin-Proteasome System: Opportunities for Therapeutic Intervention in Solid Tumors. Endocrine-Related Cancer, 22, T1-17. https://doi.org/10.1530/ERC-14-0005

  2. 2. Pal, A., Young, M.A. and Do-nato, N.J. (2014) Emerging Potential of Therapeutic Targeting of Ubiquitin-Specific Proteases in the Treatment of Cancer. Cancer Research, 74, 4955-4966. https://doi.org/10.1158/0008-5472.CAN-14-1211

  3. 3. Bethard, J.R., Zheng, H., Roberts, L. and Eblen, S.T. (2011) Identification of Phosphorylation Sites on the E3 Ubiquitin Ligase UBR5/EDD. Journal of Proteomics, 75, 603-609. https://doi.org/10.1016/j.jprot.2011.08.023

  4. 4. Grau-Bové, X., Sebé-Pedrós, A. and Ruiz-Trillo, I. (2013) A Genomic Survey of HECT Ubiquitin Ligases in Eukaryotes Reveals Independent Expan-sions of the HECT System in Several Lineages. Genome Biology and Evolution, 5, 833-847. https://doi.org/10.1093/gbe/evt052

  5. 5. Swenson, S.A., Gilbreath, T.J., Vahle, H., et al. (2020) UBR5 HECT Do-main Mutations Identified in Mantle Cell Lymphoma Control Maturation of B Cells. Blood, 136, 299-312. https://doi.org/10.1182/blood.2019002102

  6. 6. Munoz-Escobar, J., Matta-Camacho, E., Kozlov, G. and Gehring, K. (2015) The MLLE Domain of the Ubiquitin Ligase UBR5 Binds to Its Catalytic Domain to Regulate Substrate Bind-ing. Journal of Biological Chemistry, 290, 22841- 22850. https://doi.org/10.1074/jbc.M115.672246

  7. 7. Wang, D., Xu, Q., Yuan, Q., Jia, M., Niu, H., Liu, X., et al. (2019) Proteasome Inhibition Boosts Autophagic Degradation of Ubiquitinated-AGR2 and Enhances the Antitumor Efficiency of Bevacizumab. Oncogene, 38, 3458-3474. https://doi.org/10.1038/s41388-019-0675-z

  8. 8. De Martino, L., Errico, M.E., Ruotolo, S., Cascone, D., Chiaraval-li, S., Collini, P., et al. (2018) Pediatric Lung Adenocarcinoma Presenting with Brain Metastasis: A Case Report. Journal of Medical Case Reports, 12, 243. https://doi.org/10.1186/s13256-018-1781-1

  9. 9. Dompe, N., et al. (2011) A Whole-Genome RNAi Screen Identi-fies an 8q22 Gene Cluster That Inhibits Death Receptor-Mediated Apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 108, E943-E951. https://doi.org/10.1073/pnas.1100132108

  10. 10. Bolt, M.J., Stossi, F., Callison, A.M., Mancini, M.G., Dandekar, R. and Mancini, M.A. (2014) Systems Level-Based RNAi Screening by High Content Analysis Identifies UBR5 as a Regulator of Estrogen Receptor-α Protein Levels and Activity. Oncogene, 34, 154-164. https://doi.org/10.1038/onc.2013.550

  11. 11. Song, M., Wang, C., Wang, H., Zhang, T., Li, J., Benezra, R., et al. (2020) Targeting Ubiquitin Protein Ligase E3 Component N-Recognin 5 in Cancer Cells Induces a CD8+ T Cell Mediated Immune Response. Oncoimmunology, 9, Article ID: 1746148. https://doi.org/10.1080/2162402X.2020.1746148

  12. 12. Liao, L., Song, M., Li, X., Tang, L., Zhang, T., Zhang, L., et al. (2017) E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer. Cancer Re-search, 77, 2090-2101. https://doi.org/10.1158/0008-5472.CAN-16-2409

  13. 13. Qiao, X., Liu, Y., Prada, M.L., Mohan, A.K., Gupta, A., Jaiswal, A., et al. (2020) UBR5 Is Coamplified with MYC in Breast Tumors and Encodes an Ubiquitin Ligase That Lim-its MYC-Dependent Apoptosis. Cancer Research, 80, 1414- 1427. https://doi.org/10.1158/0008-5472.CAN-19-1647

  14. 14. Yang, Y., Zhao, J., Mao, Y., Lin, G., Li, F. and Jiang, Z. (2020) UBR5 Over-Expression Contributes to Poor Prognosis and Tamoxifen Resistance of ERa+ Breast Cancer by Stabilizing β-Catenin. Breast Cancer Research and Treatment, 184, 699-710. https://doi.org/10.1007/s10549-020-05899-6

  15. 15. Yang, M., Jiang, N., Cao, Q.-W., Ma, M.-Q. and Sun, Q. (2016) The E3 Ligase UBR5 Regulates Gastric Cancer Cell Growth by Destabilizing the Tumor Suppressor GKN1. Biochemical and Biophysical Research Communications, 478, 1624-1629. https://doi.org/10.1016/j.bbrc.2016.08.170

  16. 16. Xie, Z., Liang, H., Wang, J., Xu, X., Zhu, Y., Guo, A., et al. (2017) Significance of the E3 Ubiquitin Protein UBR5 as an Oncogene and a Prognostic Biomarker in Colorectal Cancer. Oncotarget, 8, Article ID: 108079-92. https://doi.org/10.18632/oncotarget.22531

  17. 17. Eblen, S.T. and Bradley, A. (2017) MOAP-1, UBR5 and Cisplatin Resistance in Ovarian Cancer. Translational Cancer Research, 6, S18-S21. https://doi.org/10.21037/tcr.2017.02.01

  18. 18. Ji, S.Q., et al. (2017) UBR5 Promotes Cell Proliferation and Inhibits Apoptosis in Colon Cancer by Destablizing P21. Pharmazie, 72, 408-413.

  19. 19. Wang, J., Zhao, X., Jin, L., Wu, G. and Yang, Y. (2017) UBR5 Contributes to Colorectal Cancer Progression by Destabilizing the Tumor Suppressor ECRG4. Digestive Diseases and Sciences, 62, 2781-2789. https://doi.org/10.1007/s10620-017-4732-6

  20. 20. Leboeuf, D., Abakumova, T., Prikazchikova, T., Rhym, L. ander-son, D.G., Zatsepin, T.S., et al. (2020) Downregulation of the Arg/N-degron Pathway Sensitizes Cancer Cells to Chem-otherapy in Vivo. Molecular Therapy, 28, 1092-1104. https://doi.org/10.1016/j.ymthe.2020.01.021

  21. 21. Zhang, Z., Zheng, X., Li, J., Duan, J., Cui, L., Yang, L., et al. (2019) Overexpression of UBR5 Promotes Tumor Growth in Gallbladder Cancer via PTEN/PI3K/Akt Signal Pathway. Journal of Cellular Biochemistry, 120, 11517-11524. https://doi.org/10.1002/jcb.28431

  22. 22. O’Brien, P.M., Davies, M.J., Scurry, J.P., Smith, A.N., Barton, C.A., Hen-derson, M.J., et al. (2008) Erratum: The E3 Ubiquitin Ligase EDD Is an Adverse Prognostic Factor for Serous Epithelial Ovarian Cancer and Modulates Cisplatin Resistance in Vitro. British Journal of Cancer, 98, 1085-1093. https://doi.org/10.1038/sj.bjc.6604281

  23. 23. Bradley, A., Zheng, H., Ziebarth, A., Sakati, W., Branham-O’Connor, M., Blumer, J.B., et al. (2014) EDD Enhances Cell Survival and Cisplatin Resistance and Is a Therapeutic Target for Ep-ithelial Ovarian Cancer. Carcinogenesis, 35, 1100- 1109. https://doi.org/10.1093/carcin/bgt489

  24. 24. Matsuura, K., Huang, N.J., Cocce, K., Zhang, L. and Kornbluth, S. (2016) Downregulation of the Proapoptotic Protein MOAP-1 by the UBR5 Ubiquitin Ligase and Its Role in Ovarian Cancer Resistance to Cisplatin. Oncogene, 36, 1698- 1706. https://doi.org/10.1038/onc.2016.336

  25. 25. Song, M., Yeku, O.O., Rafiq, S., Purdon, T., Dong, X., Zhu, L., et al. (2020) Tumor Derived UBR5 Promotes Ovarian Cancer Growth and Metastasis through Inducing Immunosuppressive Macrophages. Nature Communications, 11, Article No. 6298. https://doi.org/10.1038/s41467-020-20140-0

  26. 26. Sun, J., Yang, X., Zhang, R., Liu, S., Gan, X., Xi, X., et al. (2017) GOLPH3 Induces Epithelial-Mesenchymal Transition via Wnt/β-Catenin Signaling Pathway in Epithelial Ovarian Cancer. Cancer Medicine, 6, 834-844. https://doi.org/10.1002/cam4.1040

  27. NOTES

    *通讯作者。

期刊菜单