Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67609 , 9 pages
10.12677/ACM.2023.1361402

乳腺癌骨转移相关miRNAs

蔡艳秋,王淼舟*

青海大学附属医院乳腺疾病诊疗中心,青海 西宁

收稿日期:2023年5月21日;录用日期:2023年6月14日;发布日期:2023年6月26日

摘要

乳腺癌是女性最常见的原发性恶性肿瘤,骨转移是乳腺癌最常见的远处转移部位,骨转移会给患者造成相应的临床症状,从而使患者更加痛苦,严重影响其生活质量,尽管目前双磷酸盐等药物的使用在一定程度上可以减缓并改善骨相关症状,但是探索乳腺癌骨转移未知的机制,并且进行个体化治疗仍是很重要的,miRNA作为骨转移中细胞内分子变化的新驱动因素,正在被积极地探讨,已经有许多miRNA被证实与乳腺癌骨转移相关。

关键词

乳腺癌,骨转移,miRNA,RANKL/RANK/OPG系统

miRNAs Associated with Bone Metastases in Breast Cancer

Yanqiu Cai, Miaozhou Wang*

Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: May 21st, 2023; accepted: Jun. 14th, 2023; published: Jun. 26th, 2023

ABSTRACT

Breast cancer is the most common primary malignant tumor in women, and bone metastasis is the most common distant metastasis site of breast cancer. Bone metastasis will cause corresponding clinical symptoms to patients, which will make patients more painful and seriously affect their quality of life. Although the use of bisphosphonates and other drugs can alleviate and improve bone related symptoms to a certain extent, explore the unknown mechanism of breast cancer bone metastasis, and individualized treatment is still very important. As a new driving factor of intracellular molecular changes in bone metastasis, miRNA is being actively discussed. Many miRNAs have been confirmed to be related to bone metastasis of breast cancer.

Keywords:Breast Cancer, Bone Metastasis, miRNA, RANKL/RANK/OPG System

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 简介

1) 乳腺癌(breast cancer, BC)是乳腺上皮组织及导管上皮细胞在各种致癌因素作用下发生的一种恶性增殖性疾病,乳腺癌是女性最常见的原发性恶性肿瘤。据2023年美国癌症数据统计显示,预估女性乳腺癌发病率高居首位,死亡率位居第二,乳腺癌占女性恶性肿瘤发病率近1/3,死亡率占女性恶性肿瘤发病率的15% [1] [2] 。骨转移是乳腺癌最常见的远处转移部位。65%~75%的转移性和复发性晚期乳腺癌患者发生骨转移,27%~50%的患者在初始诊断时发现骨转移 [3] 。骨转移通常发生在胸腰椎、骶骨和肋骨 [4] 。患有骨转移的乳腺癌患者经常会经历与骨相关的事件,如骨痛、病理性骨折、脊椎压缩或变形、脊髓压迫和高钙血症,这些都会严重影响他们的生活质量 [5] [6] [7] [8] 。

2) microRNA (miRNAs)是一大类调节细胞内基因表达的短链非编码RNA。miRNA是基因表达的重要调节因子,miRNAs在多种癌症中是异常表达的,因此常被认为是诊断、治疗甚至是耐药相关的生物标记物 [9] [10] 。在近几年的报道中提到,一些miRNA可以作为骨转移中细胞内分子变化的驱动因素 [11] 。在乳腺癌骨转移中,miR-21、155、27、96、182和128被鉴定为促进骨转移基因,而miR-125、205、27、17、206和145被发现是可抑制骨转移的基因,它们相应的靶基因也进一步得到了相应的确定 [12] [13] 。

3) RANKL (也被称为OPGL,TRANCE或ODF)是肿瘤坏死因子(TNF)细胞因子家族的成员,与其受体RANK结合以控制破骨细胞的分化,激活和存活 [14] [15] [16] 。骨保护素(OPG)是一种可溶的RANKL诱饵受体,OPG的表达受多种代谢调控因子的调节,IL-1、TNF-α、TCF-β能增加破骨细胞的表达,而各种刺激骨吸收的因子如PTH、PGE2、1,25二羟基维生素D3降低OPG的表达 [17] ,在骨组织中,OPG作为一种诱骗受体,可以竞争性的与RANKL结合,从而封闭RANKL与OC表面的RANK结合,抑制破骨细胞的分化成熟 [18] 。RANKL/RANK/OPG系统可能在促进乳腺癌细胞向骨迁移及其随后的转移行为中发挥重要作用 [18] [19] [20] 。

4) 在这篇综述中,我们挑选了近几年报道的与乳腺癌骨转移相关的miRNA,总结它们对乳腺癌骨转移的潜在机制,并利用Kaplan-Meier Plotter (http://kmplot.com/analysis/)数据库 [21] 分析其对乳腺癌患者生存的影响,探讨乳腺癌骨转移潜在的预防以及治疗靶点。

2. miRNAs

2.1. miR-10b

miR-10b已被鉴定为与乳腺癌细胞的转移潜能相关的重要肿瘤miRNA,促进肿瘤细胞迁移和对肺等二级器官的侵袭 [22] 。而在Shi-Bao Xu等人的研究中发现 [23] ,miR-10b在乳腺癌骨转移患者的显著上调。

早在2007年就发现,在乳腺癌转移进展的早期阶段,TWIST1促进的miR-10b抑制转录因子同源盒D10的表达,从而导致癌细胞中促转移因子RHOC的过度表达 [22] 。最近,还证明,在转移性乳腺癌细胞的骨寻求亚群中,TWIST1促进骨转移形成 [24] 。TWIST1的促转移作用主要依赖于CD44-赖氨酸氧化酶(LOX)通路的激活,该通路刺激乳腺癌细胞中TWIST1的转录 [25] 。基于这些发现,应鼓励开发特异性抑制癌细胞TWIST1和miR-10b表达水平的靶向疗法,以降低乳腺癌患者骨转移形成的风险。

2.2. miR-21

miR-21是一种高度保守的癌微小RNA,在许多类型癌症患者的血清中表达,包括肝细胞癌、肺癌和乳腺癌,其显著高于健康对照 [26] [27] [28] 。最近几项研究表明,miR-21参与肿瘤进展和破骨细胞分化 [29] [30] 。例如,miR-21通过直接结合程序性细胞死亡4(PDCD4)促进破骨细胞分化过程中NFATc1的上调,PDCD4对c-Fos反式激活具有抑制作用 [31] 。

高转移性细胞系SCP28细胞分泌的外泌体表现出更高的向骨组织迁移能力。用SCP28细胞分泌的外泌体处理的小鼠表现出严重的骨损失,并在外泌体处理的破骨细胞中进行了相对验证,发现miR-21表达水平绝对高。PDCD4作为破骨细胞的关键调节因子,在乳腺癌细胞来源的外泌体处理的破骨细胞中,PDCD4的表达水平显著降低,表明外泌体miR-21可能通过直接靶向PDCD4调控转移小位的建立。

2.3. miR-7

在近几年的一项研究中,我们发现miR-7过表达抑制TGF-β1信号通路并下调CD44表达 [32] ;CD44对体内肿瘤的发生很重要,主要在转移性乳腺癌细胞中表达。先前的研究结果还表明,在这些转移性乳腺癌细胞系中,CD44的敲除显著抑制了乳腺癌的转移 [33] [34] 。

最近的一项研究探索了miR-7其他相关通路,该研究将含miR-7基因序列的GFP表达质粒转染进入MDA-MB-231乳腺癌细胞,发现转染miR-7的乳腺癌细胞迁移能力明显下降,对应裸鼠的骨转移病灶数显著减少。其机制可能与miR-7通过直接或者间接调控PI3K、AKT-2和CXCR-4的蛋白有关,得出miR-7可能通过靶向沉默PI3K/AKT-2通路途径间接影响CXCR-4/SDF-1轴进而抑制乳腺癌细胞的骨转移的结论 [35] 。

2.4. miRNA-106b

研究报道miR-106b可以通过PI3K/Akt途径抑制PTEN从而起到调节乳腺癌细胞进展的作用 [36] 。此外,高水平的miR-106b决定了TGF-β在乳腺癌中的促肿瘤作用。

在倪小健教授等人的实验 [37] 中发现,在乳腺癌细胞骨转移过程中,miRNA-106b的表达是下调的,从而影响其靶基因MMP-2的表达;与未发生骨转移的乳腺癌患者相比,MMP-2蛋白在乳腺癌骨转移患者原位肿瘤标本中表达较高;miRNA-106b的表达较低,而发生骨转移的患者中与之相反。MMP-2可以促进乳腺癌细胞的迁移和侵袭,在乳腺癌患者血清中MMP-2水平增加与其不良预后相关 [38] ,此外MMP-2表达增高会导致 RANKL/OPG比值增加,使破骨细胞分化增多 [39] 从而诱导破骨细胞的分化最终促进乳腺癌骨转移。

2.5. miR-223

miR-223是髓系细胞特异性表达的miRNA,在破骨细胞分化成熟过程中起重要作用。在单臻李雯等人的研究中 [40] 通过miR-223基因敲除小鼠以及体外细胞实验证实:miR-223缺失可促进破骨细胞形成,促进破骨活动;而过表达miR-223则可以抑制破骨细胞分化成熟,抑制破骨活动。其机制可能是:miR-223过表达可以通过其靶基因NFIA或者直接抑制RNAKL通路,诱导破骨细胞分化成熟,从而抑制骨转。

同时有研究显示,IGF对乳腺癌细胞生长起关键作用,IGF与乳腺癌细胞的IGF-1R结合,从而激活下游的PI3K/Akt等通路,导致肿瘤生长 [41] 。而这项研究则验证了IGF-1R是miR-223的直接作用靶基因 [42] 。而针对IGF-1、PI3K/Akt信号通路的抑制剂,则可有效抑制乳腺癌的生长 [43] 。综上可得出结论:miR-223是骨转移微环境中抑制乳腺癌骨转移发生发展的保护性因子,可通过抑制破骨细胞分化成熟、破骨活动、乳腺癌细胞增殖及促进乳腺癌细胞凋亡来调节乳腺癌骨转移微环境。

2.6. miR-19a

与其他亚型相比,ER+乳腺癌患者骨转移的风险相当高 [44] [45] 。miR-19a位于miR-17-92簇(oncomiR-1)中,其特征是一组哺乳动物microRNA致癌基因 [46] 。miR-19a的促肿瘤作用已在多种类型的癌症中被报道,经实验验证miR-19a,在乳腺癌中是高表达的 [47] 。整合素结合唾液蛋白(IBSP)是骨基质的主要结构蛋白,主要由骨细胞表达 [48] 。

而在Kerui Wu,Jiamei Feng等人的研究中 [49] ,外泌体miR-19a和IBSP的共表达是可以促进乳腺癌的骨转移的。在动物模型中,单一因子的异位表达并不会增加骨损伤。然而,这两个因子的上调共同显著促进了骨中肿瘤的生长和破骨细胞的形成,说明外泌体mIR-19a与IBSP在促进骨溶解性转移中的协同作用。在ER+嗜骨性乳腺癌细胞系以及具有骨转移的ER+乳腺癌患者中外泌体miR-19a和IBSP都显著上调。虽然miR19a在乳腺癌中被发现上调,但其在肿瘤进展中的确切作用尚不清楚 [47] [50] 。在体内模型中,这两种因子的异位表达同样促进了骨转移,验证动物模型的结论。通过在天然化合物文库中筛选能够阻断IBSP和mIR-19a之间的相互作用的抑制剂绿原酸(CGA),阻断了IBSP和miR-19a之间的相互作用,可以抑制癌源性外泌体的促破骨细胞生成作用 [49] 。

2.7. miR-429

miR-429是miR-200家族的一员,该家族由5个miRNA组成,已被证实可抑制上皮细胞向间充质转化(EMT) [51] [52] 。EMT在乳腺癌、胰腺癌等中被广泛认为是促使恶性细胞侵袭并定植远端器官的初始和必要机制之一 [53] 。EMT也被认为是治疗干预的靶点,并可能预防乳腺癌骨转移的发病机制。

在Ye ZB,Ma G等人的研究中 [54] ,证实miR-429表达下调可促进乳腺癌骨转移,推测其下游靶基因CrkL对骨转移的发生至关重要。miR-429通过潜在靶点ZEB1和V-crk肉瘤病毒CT10癌基因同源物样(CrkL)负性调节乳腺癌细胞向骨的转移。而在Xinxin Zhang,Xiying Yu等人的研究中 [55] ,进一步揭示了乳腺癌细胞来源的miR-429在由成骨细胞、破骨细胞、乳腺癌细胞和转移骨中的相关生物分子组成的微环境中发挥作用,从而确定了miR-429/CrkL/MMP-9调控轴的影响。通过ISH和qRT-PCR检测了原发癌和转移性骨组织样本中miR-429的表达,乳腺癌骨转移患者miR-429的表达显著降低;MMP-9被认为是破骨细胞形成和骨溶解的启动子和生物标志物 [56] [57] 。CrkL对MMP-9的阳性调控在肺癌和胶质母细胞瘤中已被确定通过激活ERK信号通路发生 [58] 。所以miR-429和CrkL可能是预测早期乳腺癌患者骨转移的生物标志物,也是治疗晚期乳腺癌的治疗靶点。

2.8. miR-214-3p

转移性乳腺癌细胞通常通过增加破骨细胞介导的骨吸收引起骨溶解性病变,从而引起过度的骨破坏 [11] 。破骨细胞衍生的miR-214-3p有助于乳腺癌骨转移 [59] ,在Liu J,Li D等人的研究中,患有骨转移的乳腺癌患者的病理性骨折标本中miR-214-3p的表达水平高于没有溶骨性骨转移的乳癌患者,与无癌患者的骨折标本中的miR-214-3p水平相比,miR-214-3p的表达水平甚至更高。通过在动物模型中探索潜在机制,miR-214-3p影响乳腺癌骨转移的影响可能通过减弱骨溶解性骨转移瘤的程度有关。其次在Li D,Liu J等人的研究中 [59] [60] 发现,破骨细胞来源的外泌体miR-214-3p可以转移到成骨细胞以抑制骨形成,而肿瘤来源miR-214-3p促进乳腺癌细胞在体内扩散 [61] 。

2.9. miR-506

miR-506是一种众所周知的miRNA,据报道参与了包括乳腺癌在内的多种人类癌症的进展 [62] 。在Wang等人的研究中发现 [63] ,miR-506在乳腺癌中下调,提示该miRNA在乳腺癌中的潜在作用。在研究中,通过构建乳腺癌诱导的骨溶解性骨转移模型,发现miR-506在乳腺癌中下调,同时,miR-506的过表达抑制了乳腺癌细胞的迁移、侵袭和炎症因子的产生。此外,miR-506可能通过调控NFATc1 (活化T细胞细胞质核因子1)抑制乳腺癌诱导的骨转移。NFATc1是RANKL诱导的破骨细胞分化的主要调节因子,在破骨细胞融合中发挥重要作用,NEATc-1通过上调与破骨细胞粘附、迁移和有机骨基质相关的各种靶基因的表达而被激活 [64] 。

Figure 1. Associated miRNA survival curve

图1. 相关miRNA生存曲线图

3. K-M生存分析

随着生物信息学的出现及其发展,我们可以利用生物信息学技术去探讨疾病相关的因素,在这篇综述中,我们利用Kaplan-Meier Plotter (http://kmplot.com/analysis/)数据库 [21] 绘制出以上miRNAs的生存曲线(见图1),发现高表达的miR-10b、214、124、223对于乳腺癌总体生存率是获益的,而其余几个miRNAs的高表达则会降低乳腺癌患者的总体生存率。

4. 讨论

miRNAs是乳腺癌骨转移形成和进展的关键调控因子。miRNAs在转移性乳腺癌细胞内以不同的水平发挥作用,原位调控或在与成骨细胞物理相互作用或远距离相互作用时影响成骨细胞的分化和活性。事实上,特异性miRNAs的表达可以改变骨转移性乳腺癌细胞,增强细胞迁移和增殖特性以及耐药性或干细胞样表型,促进癌细胞在骨中的播种和适应。

此外,乳腺癌来源的循环miRNAs可以远距离作用,改变或重塑骨微环境,使其更易于播散性癌细胞的播种,并且骨中的播散性癌细胞可以与骨细胞发生相互作用,以进一步维持癌细胞的生长。希望在未来的几年里,miRNA研究领域将取得进展,可以成为防治乳腺癌骨转移患者个性化治疗的一部分。

文章引用

蔡艳秋,王淼舟. 乳腺癌骨转移相关miRNAs
miRNAs Associated with Bone Metastases in Breast Cancer[J]. 临床医学进展, 2023, 13(06): 10029-10037. https://doi.org/10.12677/ACM.2023.1361402

参考文献

  1. 1. Siege, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708

  2. 2. Siege, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. https://doi.org/10.3322/caac.21763

  3. 3. Pediconi, F. and Galati, F. (2020) Breast Cancer Screening Programs: Does One Risk Fit All? Quantitative Imaging in Medicine and Surgery, 10, 886-890. https://doi.org/10.21037/qims.2020.03.14

  4. 4. Scimeca, M., et al. (2021) Breast Cancer Metastasis to Bone: From Epithelial to Mesenchymal Transition to Breast Osteoblast-Like Cells. Seminars in Cancer Biology, 72, 155-164. https://doi.org/10.1016/j.semcancer.2020.01.004

  5. 5. Wang, Z., et al. (2020) Novel Prognostic Nomograms for Female Patients with Breast Cancer and Bone Metastasis at Presentation. Annals of Translational Medicine, 8, 197-197. https://doi.org/10.21037/atm.2020.01.37

  6. 6. Thanopoulou, E., et al. (2020) Therapeutic Strategies for the Man-agement of Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Positive (HR+/HER2+) Breast Cancer: A Review of the Current Literature. Cancers, 12, Article No. 3317. https://doi.org/10.3390/cancers12113317

  7. 7. Invernizzi, M., Kim, J. and Fusco, N. (2020) Editorial: Quality of Life in Breast Cancer Patients and Survivors. Frontiers in Oncology, 10, Article 620574. https://doi.org/10.3389/fonc.2020.620574

  8. 8. Baek, Y.-H., et al. (2019) Incidence of Skeletal-Related Events in Patients with Breast or Prostate Cancer-Induced Bone Metastasis or Multiple Myeloma: A 12-Year Longitudinal Nation-wide Healthcare Database Study. Cancer Epidemiology, 61, 104-110. https://doi.org/10.1016/j.canep.2019.05.013

  9. 9. Lee, Y.S. and Dutta, A. (2009) MicroRNAs in Cancer. Annual Review of Pathology: Mechanisms of Disease, 4, 199-227. https://doi.org/10.1146/annurev.pathol.4.110807.092222

  10. 10. He, B., et al. (2020) MiRNA-Based Biomarkers, Therapies, and Resistance in Cancer. International Journal of Biological Sciences, 16, 2628-2647. https://doi.org/10.7150/ijbs.47203

  11. 11. Puppo, M., Taipaleenmäki, H., Hesse, E. and Clézardin, P. (2021) Non-Coding RNAs in Bone Remodelling and Bone Metastasis: Mechanisms of Action and Translational Relevance. British Journal of Pharmacology, 178, 1936-1954. https://doi.org/10.1111/bph.14836

  12. 12. Puppo, M., Valluru, M.K. and Clézardin, P. (2021) MicroRNAs and Their Roles in Breast Cancer Bone Metastasis. Current Osteoporosis Reports, 19, 256-263. https://doi.org/10.1007/s11914-021-00677-9

  13. 13. Haider, M., Smit, D.J. and Taipaleenmäki, H. (2022) Mi-croRNAs: Emerging Regulators of Metastatic Bone Disease in Breast Cancer. Cancers, 14, Article No. 729. https://doi.org/10.3390/cancers14030729

  14. 14. Anderson, D.M., et al. (1997) A Homologue of the TNF Receptor and Its Ligand Enhance T-Cell Growth and Dendritic-Cell Function. Nature, 390, 175-179. https://doi.org/10.1038/36593

  15. 15. Kong, Y.-Y., et al. (1999) OPGL Is a Key Regulator of Osteoclastogenesis, Lymphocyte Development and Lymph-Node Organogenesis. Nature, 397, 315-323. https://doi.org/10.1038/16852

  16. 16. Udagawa, N., et al. (2021) Osteoclast Differentiation by RANKL and OPG Signaling Pathways. Journal of Bone and Mineral Metabolism, 39, 19-26. https://doi.org/10.1007/s00774-020-01162-6

  17. 17. O’Brien, E.A., Williams, J.H.H. and Marshall, M.J. (2001) Os-teoprotegerin is Produced When Prostaglandin Synthesis Is Inhibited Causing Osteoclasts to Detach from the Surface of Mouse Parietal Bone and Attach to the Endocranial Membrane. Bone, 28, 208-214. https://doi.org/10.1016/S8756-3282(00)00431-2

  18. 18. Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504

  19. 19. Jones, D.H., et al. (2006) Regulation of Cancer Cell Migration and Bone Metastasis by RANKL. Nature, 440, 692-696. https://doi.org/10.1038/nature04524

  20. 20. Tsubaki, M., et al. (2013) Activation of NF-κB by the RANKL/RANK System Up-Regulates Snail and Twist Expressions and Induces Epithelial-to-Mesenchymal Transition in Mammary Tu-mor Cell Lines. Journal of Experimental & Clinical Cancer Research, 32, Article No. 62. https://doi.org/10.1186/1756-9966-32-62

  21. 21. Lánczky, A., et al. (2016) MiRpower: A Web-Tool to Validate Sur-vival-Associated miRNAs Utilizing Expression Data from 2178 Breast Cancer Patients. Breast Cancer Research and Treatment, 160, 439-446. https://doi.org/10.1007/s10549-016-4013-7

  22. 22. Ma, L., Teruya-Feldstein, J. and Weinberg, R.A. (2007) Tumour Invasion and Metastasis Initiated by microRNA-10b in Breast Cancer. Nature, 449, 682-688. https://doi.org/10.1038/nature06174

  23. 23. Xu, S.-B., Fan, R.-H., Qin, X. and Han, R.-M. (2021) MicroRNA Prog-nostic Signature for Postoperative Success of Metastatic Orthopedic Cancers: Implications for Precision Microsurgery. Frontiers in Cell and Developmental Biology, 9, Article 704505. https://doi.org/10.3389/fcell.2021.704505

  24. 24. Croset, M., et al. (2014) TWIST1 Expression in Breast Cancer Cells Facilitates Bone Metastasis Formation. Journal of Bone and Mineral Research, 29, 1886-1899. https://doi.org/10.1002/jbmr.2215

  25. 25. El-Haibi, C.P., et al. (2012) Critical Role for Lysyl Oxidase in Mesenchy-mal Stem Cell-Driven Breast Cancer Malignancy. Proceedings of the National Academy of Sciences of the United States of America, 109, 17460-17465. https://doi.org/10.1073/pnas.1206653109

  26. 26. Qian, B., et al. (2009) High miR-21 Expression in Breast Cancer Associated with Poor Disease-Free Survival in Early Stage Disease and High TGF-β1. Breast Cancer Research and Treatment, 117, 131-140. https://doi.org/10.1007/s10549-008-0219-7

  27. 27. Tili, E., Michaille, J.J. and Croce, C.M. (2013) MicroRNAs Play a Central Role in Molecular Dysfunctions Linking Inflammation with Cancer. Immunological Reviews, 253, 167-184. https://doi.org/10.1111/imr.12050

  28. 28. Shi, C., et al. (2016) Novel Evidence for an Oncogenic Role of mi-croRNA-21 in Colitis-Associated Colorectal Cancer. Gut, 65, 1470-1481. https://doi.org/10.1136/gutjnl-2014-308455

  29. 29. Krichevsky, A.M. and Gabriely, G. (2009) MiR-21: A Small Multi-Faceted RNA. Journal of Cellular and Molecular Medicine, 13, 39-53. https://doi.org/10.1111/j.1582-4934.2008.00556.x

  30. 30. Zhao, Q., et al. 2020) Lung Cancer Cells Derived Circulat-ing miR-21 Promotes Differentiation of Monocytes into Osteoclasts. OncoTargets and Therapy, 13, 2643-2656. https://doi.org/10.2147/OTT.S232876

  31. 31. Sugatani, T., Vacher, J. and Hruska, K.A. (2011) A microRNA Ex-pression Signature of Osteoclastogenesis. Blood, 117, 3648-3657. https://doi.org/10.1182/blood-2010-10-311415

  32. 32. Pan, M., et al. (2021) Knockdown of ALDH1A3 Reduces Breast Cancer Stem Cell Marker CD44 via the miR-7- TGFBR2-Smad3-CD44 Regulatory Axis. Experimental and Therapeutic Medicine, 22, Article No. 1093. https://doi.org/10.3892/etm.2021.10527

  33. 33. Zhao, P., et al. (2016) The CD44s Splice Isoform Is a Central Media-tor for Invadopodia Activity. Journal of Cell Science, 129, 1355-1365. https://doi.org/10.1242/jcs.171959

  34. 34. Zhang, H., et al. (2019) CD44 Splice Isoform Switching Determines Breast Cancer Stem Cell State. Genes & Development, 33, 166-179. https://doi.org/10.1101/gad.319889.118

  35. 35. 崔立群, 等. miR-7对乳腺癌细胞骨转移的影响[J]. 广东医学, 2015, 36(7): 993-996.

  36. 36. Li, N., et al. (2017) MiR-106b and miR-93 Regulate Cell Progression by Suppression of PTEN via PI3K/Akt Pathway in Breast Cancer. Cell Death & Dis-ease, 8, e2796. https://doi.org/10.1038/cddis.2017.119

  37. 37. 倪小健, 张宏伟, 朱玮. miRNA-106b失活可通过上调MMP2表达参与乳腺癌骨转移[J]. 中国临床医学, 2017, 24(5): 673-680.

  38. 38. Ławicki, S., Zajkowska, M., Głażewska, E.K., Będkowska, G.E. and Szmitkowski, M. (2017) Plasma Levels and Diagnostic Utility of VEGF, MMP-2 and TIMP-2 in the Diagnostics of Breast Cancer Patients. Biomarkers, 22, 157-164. https://doi.org/10.1080/1354750X.2016.1252955

  39. 39. Martin, T.J. and Sims, N.A. (2015) RANKL/OPG; Critical Role in Bone Physiology. Reviews in Endocrine and Metabolic Disorders, 16, 131-139. https://doi.org/10.1007/s11154-014-9308-6

  40. 40. 单臻, 等. miR-223通过IGF-1R及NFIA调控乳腺癌细胞及破骨细胞功能的研究[J]. 中华普通外科学文献(电子版), 2020, 14(6): 406-410.

  41. 41. Ayub, A., Yip, W.K. and Seow, H.F. (2015) Dual Treatments Targeting IGF-1R, PI3K, mTORC or MEK Synergize to Inhibit Cell Growth, Induce Apoptosis, and Arrest Cell Cycle at G1 Phase in MDA-MB-231 Cell Line. Biomedicine & Pharmacotherapy, 75, 40-50. https://doi.org/10.1016/j.biopha.2015.08.031

  42. 42. Shan, Z., et al. (2015) An Endocrine Genetic Signal between Blood Cells and Vascular Smooth Muscle Cells: Role of MicroRNA-223 in Smooth Muscle Function and Atherogenesis. Journal of the American College of Cardiology, 65, 2526-2537. https://doi.org/10.1016/j.jacc.2015.03.570

  43. 43. Costa, R., Han, H.S. and Gradishar, W.J. (2018) Targeting the PI3K/AKT/mTOR Pathway in Triple-Negative Breast Cancer: A Review. Breast Cancer Research and Treatment, 169, 397-406. https://doi.org/10.1007/s10549-018-4697-y

  44. 44. Savci-Heijink, C.D., et al. (2015) Retrospective Analy-sis of Metastatic Behaviour of Breast Cancer Subtypes. Breast Cancer Research and Treatment, 150, 547-557. https://doi.org/10.1007/s10549-015-3352-0

  45. 45. Han, H.H., et al. (2016) Estrogen Receptor Status Predicts Late-Onset Skeletal Recurrence in Breast Cancer Patients. Medicine, 95, e2909. https://doi.org/10.1097/MD.0000000000002909

  46. 46. Kort, E.J., et al. (2008) The E2F3-Oncomir-1 Axis Is Acti-vated in Wilms’ Tumor. Cancer Research, 68, 4034-4038. https://doi.org/10.1158/0008-5472.CAN-08-0592

  47. 47. Ouchida, M., et al. (2012) Novel Direct Targets of miR-19a Identified in Breast Cancer Cells by A Quantitative Proteomic Approach. PLOS ONE, 7, e44095. https://doi.org/10.1371/journal.pone.0044095

  48. 48. Bianco, P., Fisher, L.W., Young, M.F., Termine, J.D. and Robey, P.G. (1991) Expression of Bone Sialoprotein (BSP) in Developing Human Tissues. Calcified Tissue Internation-al, 49, 421-426. https://doi.org/10.1007/BF02555854

  49. 49. Wu, K., et al. (2021) Exosomal miR-19a and IBSP Co-operate to Induce Osteolytic Bone Metastasis of Estrogen Receptor-Positive Breast Cancer. Nature Communications, 12, Article No. 5196. https://doi.org/10.1038/s41467-021-25473-y

  50. 50. Peng, Y., Huang, D., Ma, K., Deng, X. and Shao, Z. (2019) MiR-19a as a Prognostic Indicator for Cancer Patients: A Meta-Analysis. Bioscience Reports, 39, Article ID: BSR20182370. https://doi.org/10.1042/BSR20182370

  51. 51. Wellner, U., et al. (2009) The EMT-Activator ZEB1 Promotes Tumorigenicity by Repressing Stemness-Inhibiting microRNAs. Nature Cell Biology, 11, 1487-1495. https://doi.org/10.1038/ncb1998

  52. 52. Watson, K.L., Jones, R.A., Bruce, A. and Moorehead, R.A. (2018) The miR-200b/200a/429 Cluster Prevents Metastasis and Induces Dormancy in a Murine Claudin-Low Mammary Tumor Cell Line. Experimental Cell Research, 369, 17-26. https://doi.org/10.1016/j.yexcr.2018.04.024

  53. 53. Ye, X., et al. (2015) Distinct EMT Programs Control Normal Mammary Stem Cells and Tumour-Initiating Cells. Nature, 525, 256-260. https://doi.org/10.1038/nature14897

  54. 54. Ye, Z.-B., et al. (2015) MiR-429 Inhibits Migration and Invasion of Breast Cancer Cells in Vitro. International Journal of Oncology, 46, 531-538. https://doi.org/10.3892/ijo.2014.2759

  55. 55. Zhang, X., et al. (2020) MicroRNA-429 Inhibits Bone Metastasis in Breast Cancer by Regulating CrkL and MMP-9. Bone, 130, Article ID: 115139. https://doi.org/10.1016/j.bone.2019.115139

  56. 56. Kim, K., et al. (2016) MMP-9 Facilitates Selective Proteolysis of the Histone H3 Tail at Genes Necessary for Proficient Osteoclastogenesis. Genes & Development, 30, 208-219. https://doi.org/10.1101/gad.268714.115

  57. 57. Gu, J.-H., et al. (2014) Regulation of Matrix Metalloproteinase-9 Protein Expression by 1α,25-(OH)2D3 during Osteoclast Differentiation. Journal of Veterinary Science, 15, 133-140. https://doi.org/10.4142/jvs.2014.15.1.133

  58. 58. Lin, F., et al. (2015) CRKL Promotes Lung Cancer Cell Invasion through ERK-MMP9 Pathway. Molecular Carcinogenesis, 54, E35-E44. https://doi.org/10.1002/mc.22148

  59. 59. Liu, J., et al. (2017) Osteoclastic miR-214 Targets TRAF3 to Contribute to Osteolytic Bone Metastasis of Breast Cancer. Scientific Reports, 7, Article No. 40487. https://doi.org/10.1038/srep40487

  60. 60. Li, D., et al. (2016) Osteoclast-Derived Exosomal miR-214-3p Inhibits Os-teoblastic Bone Formation. Nature Communications, 7, Article No. 10872. https://doi.org/10.1038/ncomms10872

  61. 61. Orso, F., et al. (2016) MiR-214 and miR-148b Targeting Inhibits Dis-semination of Melanoma and Breast Cancer. Cancer Research, 76, 5151-5162. https://doi.org/10.1158/0008-5472.CAN-15-1322

  62. 62. Sun, G., Liu, Y., Wang, K. and Xu, Z. (2015) MiR-506 Regulates Breast Cancer Cell Metastasis by Targeting IQGAP1. International Journal of Oncology, 47, 1963-1970. https://doi.org/10.3892/ijo.2015.3161

  63. 63. Wang, X.-X., et al. (2018) MiR-506 Attenuates Methylation of lncRNA MEG3 to Inhibit Migration and Invasion of Breast Cancer Cell Lines via Targeting SP1 and SP3. Cancer Cell Interna-tional, 18, Article No. 171. https://doi.org/10.1186/s12935-018-0642-8

  64. 64. Yao, Z., Getting, S.J. and Locke, I.C. (2021) Regulation of TNF-Induced Osteoclast Differentiation. Cells, 11, Article No. 132. https://doi.org/10.3390/cells11010132

  65. NOTES

    *通讯作者。

期刊菜单