Advances in Clinical Medicine
Vol. 11  No. 12 ( 2021 ), Article ID: 47228 , 6 pages
10.12677/ACM.2021.1112847

Hippo-YAP/TAZ信号通路在乳腺癌中的 研究进展

吴丽娜1,郭丹2*,张英杰1

1重庆医科大学研究生院,重庆

2重庆医科大学附属第二医院乳腺甲状腺外科,重庆

收稿日期:2021年11月13日;录用日期:2021年12月3日;发布日期:2021年12月14日

摘要

Hippo-YAP/TAZ信号通路已经被证明在调节器官的大小、肿瘤干细胞的功能、组织的生长、肿瘤的发生及发展等方面发挥着重要作用。近年来大量的研究表明,Hippo-YAP/TAZ信号通路与乳腺癌的发生、侵袭、转移、耐药性有着密切的联系,通过抑制该通路可能成为治疗乳腺癌的新方法。本文就Hippo-YAP/TAZ信号通路在乳腺癌中的研究进展进行相关阐述,以期为乳腺癌的治疗提供新的思路。

关键词

Hippo,乳腺癌,YAP,TAZ,自噬,耐药

Research Progress on the Hippo-YAP/TAZ Signaling Pathway in Breast Cancer

Lina Wu1, Dan Guo2*, Yingjie Zhang1

1Graduate School of Chongqing Medical University, Chongqing

2Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Nov. 13th, 2021; accepted: Dec. 3rd, 2021; published: Dec. 14th, 2021

ABSTRACT

Hippo-YAP/TAZ signaling pathway has been proved to play an important role in regulating organ size, tumor stem cell function, tissue growth, tumor occurrence and development, etc. In recent years, a large number of studies have shown that the Hippo-YAP/TAZ signaling pathway is closely related to the occurrence, invasion, metastasis and drug resistance of breast cancer. Inhibition of this pathway may become a new treatment for breast cancer. This article reviews the research progress of Hippo-YAP/TAZ signaling pathway in breast cancer, in order to provide new ideas for the treatment of breast cancer.

Keywords:Hippo, Breast Cancer, YAP, TAZ, Autophagy, Drug Resistance

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

Hippo-YAP/TAZ信号通路最初在果蝇突变体的细胞基因研究中被发现 [1],是一个进化上高度保守的信号通路,它们的激活导致癌症干细胞形成、增殖、转移、侵袭和耐药 [2]。Hippo信号通路上游的组件和核心激酶一般都是发挥抑癌的功能,而下游效应因子YAP/TAZ是乳腺癌中的一种强癌蛋白 [3],YAP/TAZ的过表达被发现可促进乳腺癌的发生,下调YAP/TAZ的表达能够抑制乳腺癌细胞的增殖和侵袭性,相反,则提高它的增殖和侵袭性。越来越多的文献记录了YAP在乳腺癌中的致癌作用,但YAP对乳腺癌的确切作用仍然是复杂的。

乳腺癌近年来发病率逐年上升,已成为全世界女性癌症相关死亡的主要原因 [4]。目前对于乳腺癌的临床治疗已基本达成共识,根据个体情况的不同,以手术治疗为主,辅以化疗、放疗、内分泌治疗、靶向治疗、免疫治疗等多种治疗方法。但乳腺癌的详细发病机制仍不明确,近年来,许多研究表明Hippo信号通路在乳腺癌的发生、侵袭、转移、耐药中扮演着重要的角色,因此针对Hippo信号通路的干预可能会成为乳腺癌防治的新方法。本文主要介绍Hippo信号通路在乳腺癌中的研究进展,以此来探索乳腺癌新的治疗方法。

2. Hippo-YAP/TAZ信号通路的组成

2.1. Hippo信号通路的组成

Hippo信号通路由一条激酶链和转录共激活子组成。它可以分为三个相互联系的部分:上游调控成分、Hippo核心激酶成分和下游转录机制。上游信号激活MST1/2和它的调节亚基WW45,它们相互结合后促进MST1/2活化并磷酸化LATS1/2和MOB1 [5],LATS1/2和MOB1随后在Ser127位磷酸化YAP,在Ser89位磷酸化TAZ,并将其定位在细胞浆中与14-3-3蛋白相结合随后被泛素化及降解,从而失去了YAP/TAZ进入细胞核中执行转录激活的功能。与此同时,细胞核中的转录因子(Transcriptional Enhanced Associate Domain, TEAD)失去了YAP/TAZ的结合和共激活作用,直接导致下游转录基因表达下调,从而降低细胞增殖速度和迁移能力 [6]。当Hippo激酶级联反应未被激活或者受阻时,其效应分子YAP/TAZ在低磷酸状态下进入细胞核内,行使其转录激活功能,进一步诱导如富含半胱氨酸蛋白61 (CYR61)、结缔组织生长因子(CTGF)等目标基因的表达,从而抑制细胞的凋亡、促进细胞的增殖,进而在肿瘤的发生发展过程中发挥重要的作用 [7]。位于人类染色体11q13区域的YAP基因至少可以转录成4种亚型,异构酶1、2、3和4的残基长度分别为504、450、488和326。除了只有一个WW域的亚型2外,所有亚型中都存在两个连续的WW域,YAP的蛋白分子量约为65 kDa,包括1个TEAD结合域,1个SH3结合模序,2个WW结构域,N端脯氨酸结构域和C端PDZ结合模序。TAZ与YAP同源,它的基因位于染色体3q23-q24,但TAZ只有一个WW结构域,1个TEAD结合域和C端PDZ结合模序 [8]。

2.2. YAP/TAZ的作用

TAZ可促进肿瘤转化、化疗抵抗、上皮间质转化(EMT)、肿瘤干细胞(CSC)自我更新、管腔–基底系转换和远距离传播。YAP则促进肿瘤转化、EMT、锚定独立生长、癌相关成纤维细胞(CAF)表型的保留和转移 [9]。通过实时QRT-PCR、环己酰亚胺CHASE、荧光素酶报告、细胞活力和软琼脂试验,发现PIN1通过在蛋白质水平上稳定YAP/TAZ而增加YAP/TAZ的致瘤和耐药活性 [10]。

3. YAP/TAZ与乳腺癌

3.1. YAP/TAZ与乳腺癌的发生、发展

正常乳腺癌和早期乳腺癌细胞中YAP激活和YAP抑制基因的表达依赖于核辅激活因子(AIB1)。基因表达、序列芯片和芯片序列分析表明,AIB1和YAP在TEAD上聚合,用于转录激活和抑制。ANCO1是一种在乳腺癌进展过程中逐渐失去表达的肿瘤抑制因子。AIB1-YAP抑制是由ANCO1的AIB1依赖性募集介导的,减少ANCO1可逆转AIB1-YAP依赖性抑制,增加细胞大小。AIB1-YAP共激活靶点的表达增加和ANCO1正常抑制的丧失对介导早期乳腺癌恶性进展至关重要 [11]。

YAP的高表达被证实是乳腺癌干细胞相关基因表达的关键,并且与乳腺癌的侵袭性和干细胞样特征相关。YAP的过度表达还会导致多种肿瘤促进功能,如上皮间质转化、肿瘤干细胞生成和化疗抵抗。最新一项研究表明,Beclin 1 (一种参与自噬调控的蛋白)和自噬是乳腺癌干/祖细胞致瘤的必要条件 [12],在营养缺乏(ND)等代谢应激条件下,自噬被诱导为细胞提供生存所需的营养和能量,从而促进供血不足肿瘤区域饥饿肿瘤细胞的存活 [13]。在ND的作用下,YAP则以依赖TEAD的方式增加自溶体降解,从而增加乳腺癌细胞的自噬通量来保护乳腺癌细胞免受ND诱导的凋亡,进而促进乳腺癌细胞的生长 [14]。另一项研究表明,通过缺失哺乳动物细胞自噬的重要调节因子FIP200 (200kda-FAK家族相互作用蛋白)抑制自噬,可抑制乳腺肿瘤的发生 [15]。

在一项最新的研究中,对三阴性乳腺癌(TNBC)细胞株与雌激素受体(ER)阳性乳腺癌细胞株的YAP信号、YAP亚细胞定位、自噬体形成和细胞侵袭性进行分析,结果表明YAP在TNBC中的转录和蛋白表达显著上调。当触发TNBC自噬反应时,YAP转运到细胞核与YAP靶基因ANKYRIN重复结构域1 (ANKRD1)的表达显著增加,促进乳腺癌的进展 [16]。此外,透明质酸介导的运动性受体(RHAMM)是乳腺癌易感基因,在正常组织中表达受到严格控制,但在许多肿瘤中表达升高,导致肿瘤的发生和转移。YAP/TEAD在特定的位点结合RHAMM启动子并控制其转录,从而控制乳腺癌细胞的迁移和侵袭 [17]。另一项研究表明,不受控制的转化生长因子β (TGFβ)信号促进晚期乳腺癌的侵袭性转移,而YAP/TAZ是TGFβ诱导的肿瘤发生的关键介质 [18]。在未转化的乳腺上皮细胞中,YAP/TAZ的定位受细胞致密性/极性调控信号的限制 [19],细胞极性信号的失调是肿瘤进展的一个标志 [20],可导致核YAP/TAZ定位,从而增加乳腺癌的进展。

3.2. YAP/TAZ与乳腺癌的转移

乳腺癌的远处转移是肿瘤致死的主要原因,也是其治疗的主要障碍 [21]。除了编码基因和非编码RNA (miRNAs)外,长非编码RNA (lncRNAs)在肿瘤转移中也起一定的作用。有研究表明乳腺癌中lncRNA-NORAD (DNA损伤激活的长非编码RNA)表达下调,Hippo通路中YAP/TAZ-TEAD复合物对NORAD进行转录抑制,由于NORAD对乳腺癌细胞株的迁移和侵袭具有明显的抑制作用,因此抑制NORAD的表达参与了YAP途径的肿瘤迁移和侵袭刺激作用 [22]。局灶性粘附(FA)、膜重塑、肌动蛋白突起、肌动球蛋白收缩和细胞运动信号通路,在调节肿瘤细胞的运动和侵袭性方面发挥着关键作用 [23]。其中,FA在促进肿瘤细胞侵袭方面起着重要作用,粘着斑激酶(FAK)是促进FA形成的关键调节因子,它的表达和活性的增加常与转移和预后不良相关 [24]。血栓反应蛋白1 (THBS1)是FAK的刺激因子,同时也是Hippo信号的直接转录靶点 [25],它可以增加FAK磷酸化以增强FA动力学。而进一步的研究表明YAP是以TEAD依赖的方式激活THBS1转录来诱导FAK磷酸化并促进FA的形成,从而激活肿瘤细胞的迁移和侵袭性。此外,一项通过对20个样本的基因表达谱进行基因集富集分析,发现YAP的表达和活化与乳腺癌的淋巴结转移呈正相关,提示YAP的过度表达和激活可能是乳腺癌患者生存率低下的一个生物标志物 [24]。

3.3. YAP/TAZ的靶向药物

肿瘤干细胞(CSCs)在乳腺癌形成和恶性进展中起着重要作用,同时也是肿瘤治疗耐药和转移复发的主要因素,YAP/TAZ介导的转录信号可以调节CSCs的转移、自我更新和耐药性 [26]。在肿瘤治疗中利用现有已知药代动力学、药效学和毒性谱的药物,能较快的进行临床试验 [27]。一项研究发现抗精神病药氯丙嗪(CPZ)具有有效抗乳腺癌和抗肿瘤干细胞的能力。CPZ可通过调节Hippo信号和促进YAP的蛋白酶体降解而抑制YAP,从而抑制乳腺癌细胞和肿瘤干细胞中的乳腺球形成、醛脱氢酶(ALDH)活性以及STEMNESS相关基因表达 [28]。维替泊芬是一种光敏剂,临床上主要用于治疗视网膜相关的病变,研究发现维替泊芬可以通过下调MDA-MB-231细胞中的YAP以及靶基因CYR61、CTGF的表达来抑制其生长、迁移和侵袭,提示其可能对治疗乳腺癌有效 [29]。二甲双胍是糖尿病的一线用药,一项最新研究显示二甲双胍降低了对紫杉醇和他莫昔芬耐药的乳腺癌细胞的增殖和存活率,增加了细胞的凋亡率,抑制了对紫杉醇和他莫昔芬耐药乳腺肿瘤的生长和转移 [30]。使得二甲双胍被应用于耐药乳腺癌的治疗成为可能。

3.4. YAP/TAZ与乳腺癌的耐药

耐药是乳腺癌治疗的主要障碍之一,常导致癌症复发和死亡。有研究显示YAP/TAZ与经典化疗药物阿霉素和紫杉醇的耐药有关 [26],通过激活细胞周期蛋白依赖性激酶1 (CDK1)来磷酸化YAP,从而进行负调控YAP和TEAD之间的相互作用以及下调抗微管蛋白药物的治疗敏感性 [31]。TAZ介导的紫杉醇耐药可能由于其过度表达活化转录因子TEAD进而上调下游靶向基因结缔组织生长因子(CT-GF)和富含半胱氨酸的蛋白61 (cyr-61) [32]。有研究表明YAP/TAZ以及HER-3和HER2/HER3异源二聚体在曲妥珠单抗耐药细胞系中同步过表达,因此抑制YAP/TAZ的表达可逆转曲妥珠单抗的耐药性 [33]。肿瘤细胞的侵袭、转移和耐药与微环境之间的相互作用是由细胞外基质(ECM)调节的,ECM特性(如空间排列、孔径、基质硬度和不溶性)不仅保证组织的完整性,还能调节细胞对微环境的反应。基质硬度可以通过整合素连接激酶(ILK)介导的YAP激活向细胞内相传递机械信号,从而调节细胞的耐药性 [34]。微环境硬度可以通过YAP/TAZ调节细胞对拉帕替尼的抗性 [35]。有研究表明达沙替尼、他汀类和帕佐帕尼抑制YAP/TAZ的核定位和TEAD依赖性转录,并诱导YAP/TAZ磷酸化。帕佐帕尼还可诱导YAP和TAZ蛋白酶体降解。将这些YAP/TAZ抑制剂与抗癌药物联合应用可增加其药物敏感性,降低化疗药物的耐药性,并抑制乳腺癌细胞生长 [36]。

4. 结语

Hippo-YAP/TAZ信号通路最初在果蝇中被发现,是一个高度保守的信号通路。通过进一步研究发现其在细胞功能调节方面发挥着重要作用,该信号通路的异常表达可以诱导癌症发生,促进癌症侵袭、转移以及耐药性的形成。YAP/TAZ在乳腺癌细胞中高表达,通过抑制Hippo-YAP/TAZ信号通路可以降低乳腺癌细胞的增殖、和转移能力以及增加药物敏感性。目前已经有较多的药物被证明可以用来抑制YAP/TAZ基侵袭因的表达,随着更多研究的深入,相信会为乳腺癌的防治提供新的思路及方法。然而,Hippo通路在乳腺癌中的具体作用及机制仍有许多亟待解决的问题。一些研究表明YAP在某些情况下可以作为乳腺癌中的肿瘤抑制因子,因此YAP的致癌作用尚存有争议。Hippo通路与乳腺癌的关系仍需进一步的实验与研究去探索。

文章引用

吴丽娜,郭 丹,张英杰. Hippo-YAP/TAZ信号通路在乳腺癌中的研究进展
Research Progress on the Hippo-YAP/TAZ Signaling Pathway in Breast Cancer[J]. 临床医学进展, 2021, 11(12): 5729-5734. https://doi.org/10.12677/ACM.2021.1112847

参考文献

  1. 1. Meng, Z., Moroishi, T., Guan, K., et al. (2016) Mechanisms of Hippo Pathway Regulation. Genes & Development, 30, 1-17. https://doi.org/10.1101/gad.274027.115

  2. 2. Zanconato, F., Cordenonsi, M. and Piccolo, S. (2016) YAP/TAZ at the Roots of Cancer. Cancer Cell, 29, 783-803. https://doi.org/10.1016/j.ccell.2016.05.005

  3. 3. Ma, S., Meng, Z., Chen, R., et al. (2019) The Hippo Pathway: Biology and Pathophysiology. Annual Review of Biochemistry, 88, 577-604. https://doi.org/10.1146/annurev-biochem-013118-111829

  4. 4. Harbeck, N. and Gnant, M.L. (2017) Breast Cancer. The Lancet, 389, 1134-1150. https://doi.org/10.1016/S0140-6736(16)31891-8

  5. 5. Chan, E., Nousiainen, M., Chalamalasetty, R., et al. (2005) The Ste20-Like Kinase Mst2 Activates the Human Large Tumor Suppressor Kinase Lats1. Oncogene, 24, 2076-2086. https://doi.org/10.1038/sj.onc.1208445

  6. 6. Varelas, X. (2014) The Hippo Pathway Effectors TAZ and YAP in Development, Homeostasis and Disease. Development, 141, 1614-1626. https://doi.org/10.1242/dev.102376

  7. 7. Yu, F., Zhao, B., Panupinthu, N., et al. (2012) Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling. Cell, 150, 780-791. https://doi.org/10.1016/j.cell.2012.06.037

  8. 8. Hong, W. and Guan, K. (2012) The YAP and TAZ Transcription Co-Activators: Key Downstream Effectors of the Mammalian Hippo Pathway. Seminars in Cell & Developmental Biology, 23, 785-793. https://doi.org/10.1016/j.semcdb.2012.05.004

  9. 9. Vici, P., Ercolani, C., Di Benedetto, A., et al. (2016) Topographic Expression of the Hippo Transducers TAZ and YAP in Triple-Negative Breast Cancer Treated with Neoadjuvant Chemotherapy. Journal of Experimental & Clinical Cancer Research, 35, Article No. 62. https://doi.org/10.1186/s13046-016-0338-7

  10. 10. Khanal, P., Yeung, B., Zhao, Y., et al. (2019) Identification of Prolyl Isomerase Pin1 as a Novel Positive Regulator of YAP/TAZ in Breast Cancer Cells. Scientific Reports, 9, Article No. 6394. https://doi.org/10.1038/s41598-019-42767-w

  11. 11. Kushner, M., Ory, V., Graham, G., et al. (2020) Loss of ANCO1 Repression at AIB1/YAP Targets Drives Breast Cancer Progression. EMBO Reports, 21, e48741. https://doi.org/10.15252/embr.201948741

  12. 12. Gong, C., Bauvy, C., Tonelli, G., et al. (2013) Beclin 1 and Autophagy Are Required for the Tumorigenicity of Breast Cancer Stem-Like/Progenitor Cells. Oncogene, 32, 2261-72, 72e.1-11. https://doi.org/10.1038/onc.2012.252

  13. 13. Mathew, R. and White, E. (2011) Autophagy in Tumorigenesis and Energy Metabolism: Friend by Day, Foe by Night. Current Opinion in Genetics and Development, 21, 113-119. https://doi.org/10.1016/j.gde.2010.12.008

  14. 14. Song, Q., Mao, B., Cheng, J., et al. (2015) YAP Enhances Autophagic Flux to Promote Breast Cancer Cell Survival in Response to Nutrient Deprivation. PLoS ONE, 10, e0120790. https://doi.org/10.1371/journal.pone.0120790

  15. 15. Wei, H., Wei, S., Gan, B., et al. (2011) Suppression of Autophagy by FIP200 Deletion Inhibits Mammary Tumorigenesis. Genes & Development, 25, 1510-1527. https://doi.org/10.1101/gad.2051011

  16. 16. Chen, W., Bai, Y., Patel, C., et al. (2019) Autophagy Promotes Triple Negative Breast Cancer Metastasis via YAP Nuclear Localization. Biochemical and Biophysical Research Communications, 520, 263-268. https://doi.org/10.1016/j.bbrc.2019.09.133

  17. 17. Wang, Z., Wu, Y., Wang, H., et al. (2014) Interplay of Mevalonate and Hippo Pathways Regulates RHAMM Transcription via YAP to Modulate Breast Cancer Cell Motility. Proceedings of the National Academy of Sciences of the United States of America, 111, E89-E98. https://doi.org/10.1073/pnas.1319190110

  18. 18. Hiemer, S., Szymaniak, A. and Varelas, X. (2014) The Transcriptional Regulators TAZ and YAP Direct Transforming Growth Factor β-Induced Tumorigenic Phenotypes in Breast Cancer Cells. Journal of Biological Chemistry, 289, 13461-13474. https://doi.org/10.1074/jbc.M113.529115

  19. 19. Zhao, B., Wei, X., Li, W., et al. (2007) Inactivation of YAP Oncoprotein by the Hippo Pathway Is Involved in Cell Contact Inhibition and Tissue Growth Control. Genes & Development, 21, 2747-2761. https://doi.org/10.1101/gad.1602907

  20. 20. Hanahan, D. and Weinberg, R. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013

  21. 21. Weigelt, B., Peterse, J. and Van’t Veer, L. (2005) Breast Cancer Metastasis: Markers and Models. Nature Reviews. Cancer, 5, 591-602. https://doi.org/10.1038/nrc1670

  22. 22. Tan, B., Yang, M., Singh, S., et al. (2019) LncRNA NORAD Is Repressed by the YAP Pathway and Suppresses Lung and Breast Cancer Metastasis by Sequestering S100P. Oncogene, 38, 5612-5626. https://doi.org/10.1038/s41388-019-0812-8

  23. 23. He, X., Lee, B., Jiang, Y., et al. (2016) Cell-ECM Interactions in Tumor Invasion. Advances in Experimental Medicine and Biology, 936, 73-91. https://doi.org/10.1007/978-3-319-42023-3_4

  24. 24. Shen, J., Cao, B., Wang, Y., et al. (2018) Hippo Component YAP Promotes Focal Adhesion and Tumour Aggressiveness via Transcriptionally Activating THBS1/FAK Signalling in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 37, 175. https://doi.org/10.1186/s13046-018-0850-z

  25. 25. Hu, C., Wen, J., Gong, L., et al. (2017) Thrombospondin-1 Promotes Cell Migration, Invasion and Lung Metastasis of Osteosarcoma through FAK Dependent Pathway. Oncotarget, 8, 75881-75892. https://doi.org/10.18632/oncotarget.17427

  26. 26. Bartucci, M., Dattilo, R., Moriconi, C., et al. (2015) TAZ Is Required for Metastatic Activity and Chemoresistance of Breast Cancer Stem Cells. Oncogene, 34, 681-690. https://doi.org/10.1038/onc.2014.5

  27. 27. Li, Y. and Jones, S. (2012) Drug Repositioning for Personalized Medicine. Genome Medicine, 4, 27. https://doi.org/10.1186/gm326

  28. 28. Yang, C., Lee, W., Cheng, H., et al. (2019) The Antipsychotic Chlorpromazine Suppresses YAP Signaling, Stemness Properties, and Drug Resistance in Breast Cancer Cells. Chemico-Biological Interactions, 302, 28-35. https://doi.org/10.1016/j.cbi.2019.01.033

  29. 29. 蒋玉林, 刘一锋, 张志乾, 等. 维替泊芬通过下调Yes相关蛋白表达抑制MDA-MB-231乳腺癌细胞增殖及侵袭和迁移[J]. 细胞与分子免疫学杂志, 2017, 33(9): 1223-1227.

  30. 30. Liu, J., Li, J., Chen, H., et al. (2020) Metformin Suppresses Proliferation and Invasion of Drug-Resistant Breast Cancer Cells by Activation of the Hippo Pathway. Journal of Cellular and Molecular Medicine, 24, 5786-5796. https://doi.org/10.1111/jcmm.15241

  31. 31. Zhao, Y., Khanal, P., Savage, P., et al. (2014) YAP-Induced Resistance of Cancer Cells to Antitubulin Drugs Is Modulated by a Hippo-Independent Pathway. Cancer Research, 74, 4493-4503. https://doi.org/10.1158/0008-5472.CAN-13-2712

  32. 32. Lai, D., Ho, K., Hao, Y., et al. (2011) Taxol Resistance in Breast Cancer Cells Is Mediated by the Hippo Pathway Component TAZ and Its Downstream Transcriptional Targets Cyr61 and CTGF. Cancer Research, 71, 2728-2738. https://doi.org/10.1158/0008-5472.CAN-10-2711

  33. 33. Yuan, J., Ding, N. and Xiao, Z. (2020) The Hippo Transducer YAP/TAZ as a Biomarker of Therapeutic Response and Prognosis in Trastuzumab-Based Neoadjuvant Therapy Treated HER2-Positive Breast Cancer Patients. Frontiers in Pharmacology, 11, Article ID: 537265. https://doi.org/10.3389/fphar.2020.537265

  34. 34. Qin, X., Lv, X., Li, P., et al. (2020) Matrix Stiffness Modulates ILK-Mediated YAP Activation to Control the Drug Resistance of Breast Cancer Cells. BBA Molecular Basis of Disease, 1866, Article ID: 165625. https://doi.org/10.1016/j.bbadis.2019.165625

  35. 35. Lin, C., Pelissier, F., Zhang, H., et al. (2015) Microenvironment Rigidity Modulates Responses to the HER2 Receptor Tyrosine Kinase Inhibitor Lapatinib via YAP and TAZ Transcription Factors. Molecular Biology of the Cell, 26, 3946-3953. https://doi.org/10.1091/mbc.E15-07-0456

  36. 36. Oku, Y., Nishiya, N., Shito, T., et al. (2015) Small Molecules Inhibiting the Nuclear Localization of YAP/TAZ for Chemotherapeutics and Chemosensitizers against Breast Cancers. FEBS Open Bio, 5, 542-549. https://doi.org/10.1016/j.fob.2015.06.007

  37. NOTES

    *通讯作者。

期刊菜单