Journal of Advances in Physical Chemistry
Vol. 13  No. 02 ( 2024 ), Article ID: 88316 , 10 pages
10.12677/japc.2024.132027

二维异质结构的I、II、III能带特性综述

何文海

上海理工大学理学院,上海

收稿日期:2024年4月12日;录用日期:2024年5月24日;发布日期:2024年5月31日

摘要

自从石墨烯的成功剥离以来,二维材料深受电子科技产品的欢迎。随着技术的进步,单一的二维材料的电子性质已不满足现在的需求。随之而来的是通过各种方法来调控材料的电子性质扩展其应用范围。其中构建异质双层结构是一种有效的方法,它可以保留原有材料的优点,甚至产生新的电子性质。构建的异质双层结构所展现的I、II、III型能带特性使得我们在调控其电子性质时可以选择有效的方法。本文对三种能带特性材料以及其电子性质的调控方法进行了综述。

关键词

二维材料,异质结构,能带特性,应力,电场,替位掺杂

A review of Type I, II, and III Energy Band Characteristics of Two-Dimensional Heterostructures

Wenhai He

College of Science, University of Shanghai for Science and Technology, Shanghai

Received: Apr. 12th, 2024; accepted: May 24th, 2024; published: May 31st, 2024

ABSTRACT

Since graphene was successfully stripped, two-dimensional materials have become increasingly popular in electronic technology products. With the progress of technology, the electronic properties of a single two-dimensional material are not enough to meet the current needs. Among them, the construction of heterogeneous bilayer structure is an effective method, which can retain the advantages of the original material and even present new electronic properties. The type I, II and III energy band characteristics of the constructed heterobilayer structure allow us to choose effective methods to modulate their electronic properties. In this paper, three kinds of energy band characteristic materials and the regulation methods of their electronic properties are reviewed.

Keywords:Two-Dimensional Materials, Heterogeneous, Energy Band Characteristics, Strain, Electric Field, Substitutional Doping

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

二维材料的发展日渐增长,半导体器件对更加经济、更加可持续的新型材料的需求大大增加 [1] 。目前,二维材料库中拥有150多类材料,几乎涵盖了元素周期表中的所有元素 [1] [2] 。相比于传统块状材料,二维材料的快速发展源于其几何结构和丰富多样的电子特性(包含金属、半金属、半导体和绝缘体等性质) [3] [4] [5] 。2004年Novoselov和Geim通过机械剥离从块状石墨中剥离出石墨烯,二维材料的研究迅速发展 [6] 。石墨烯是一种sp2杂化零带隙半导体,其中C原子以类似于苯环的方式相互连接,C原子之间形成了强共价键。石墨烯的每一个C原子都有一个游离键,在相互作用下形成了π键 [7] 。随着二维材料的研究发展,类石墨烯材料相继被成功剥离出来。它们与石墨烯的结构相同,但呈现出不一样的电子特性。例如硅烯 [8] [9] 、锗烯 [8] [10] 、磷烯 [11] [12] [13] 、六方氮化硼(h-BN) [14] [15] 和过渡金属二硫族化合物(TMDs) [16] [17] [18] 等。它们具有优异的电学和光学性质 [11] [19] [20] ,备受研究人员的关注。然而,一些二维材料因其能带结构的原因,使得它们不能更好地应用到半导体器件中。例如,单层TMDs的声子迁移率较低 [21] 以及石墨烯的零带隙和低光吸收能力限制了它们在场效应晶体管等电子和光电子器件中的应用 [22] [23] 。h-BN的带隙过大,表现出绝缘性质,这限制了其在光催化领域的应用 [24] 。那么如何去调控材料的能带特性成为了研究工作的重中之重。常用的调控方法有替位掺杂 [25] [26] 、双轴应变 [27] [28] 和电场 [29] [30] 、以及构建异质结构 [25] [31] [32] 等。其中,由多种材料组成的异质结构在各个领域展现出显著的优势 [32] [33] 。异质结构是一种能量稳定的构型 [34] 。异质结构的构建大多保留了原有单层材料的优点,弥补了其缺点 [35] 。它们通过逐层垂直堆叠或横向堆叠,来构造不同的堆叠顺序来产生独特的电子特性 [31] [36] 。这是因为相邻层中原子的电子轨道相互延伸并影响材料的电子能带性质 [37] [38] [39] ,并且构建异质结构的相邻层状材料之间的层间耦合可以从非相互作用调制到强相互作用,从而产生新的物理性质,也更容易产生内部电场,来显著提高其电学性能 [28] [40] [41] [42] 。对于制备异质结构材料的方法也相继被提出,例如机械转移、化学气相沉积(CVD)等方法 [43] [44] [45] 。由于相邻层之间的范德华相互作用较弱,所以构建异质结构需要满足严格的晶格失配要求并且要求其材料晶格结构高度相似。通过这样构建出来的异质结构拓宽了二维材料的应用领域,但是单一的能带调控方法无法满足现阶段的需求。如果在异质结构的基础上再进行替位掺杂、施加应变或电场,对其电子特性进一步调控,那么材料的应用范围将更加广泛。对于相同的材料,不同的调控方法所展现出的效果不一样;同样的方法对不同材料的电子性质调控的效果也不一样。本文将介绍异质双层结构中三种常见的能带类型(I、II、III型能带特性,如图1所示)以及相关的电子性质调控的方法。

Figure 1. Illustration of the energy band properties of type I, II, and III heterogeneous bilayer materials (red and blue colors represent different material layers in the heterogeneous bilayer structure, respectively)

图1. I、II、III型异质双层材料能带性质图示(红色和蓝色分别代表异质双层结构中不同的材料层)

2. I型异质双层材料

I型异质双层材料主要指其电子性质具有I型能带特性,即导带最小值(conduction band minimum)和价带最大值(valence band maximum)是由同一材料层的原子贡献,如图1所示。在I型异质双层结构中,由于导带底和价带顶均来自于同一材料层,电子跃迁时无需向另外一层材料转移。将更加容易形成电子–空穴对,同时也具有很好的电子传输性能。因此这类材料具有较高光电转换效率,可以应用于发光二极管和激光器等光电器件中 [46] 。调控异质双层Ⅰ型能带特性的方法主要有施加应力、施加电场、改变层间距等。因为I型能带中导带最小值和价带最大值由同一材料层中的原子贡献,通过改变原子位置或影响电子跃迁能,从而调控带隙大小和性质。常有的I型异质双层材料有:BN/GaAs异质双层结构 [29] 、BAs/GeC异质双层结构 [47] 、ZnS纳米线/MoTe2纳米管异质结构 [48] 、BAs/MoSe2异质双层结构 [49] 等。

2.1. BN/GaAs异质双层结构

单层GaAs具有屈曲结构,而单层BN具有与石墨烯相似的平面蜂窝状结构。通过将两个单层材料堆叠形成1 × 1 × 1的BN/GaAs异质双层结构(4个Ga原子;4个As原子;9个B原子;9个N原子),优化后的晶格常数a = b = 7.83 Å,c = 8.37 Å,晶格失配比为4.08%。1 × 1 × 1的BN/GaAs异质双层结构是一种带隙值为1.37 eV直接带隙半导体。其能带结构中的导带最小值和价带最大值由GaAs材料层的原子贡献。BN/GaAs异质双层结构具有优异的紫外光吸收能力,再光伏器件中应用更为广泛 [29] 。

Li [29] 等人通过施加电场和应力对BN/GaAs异质双层材料的电子性质进行了有效地调控。结果表明:当施加正电场作用时,带隙值变化先随电场增大而减小,直至0.7 V/Å处时带隙消失;当施加负电场作用时,带隙值随E的增大先增大后减小,当电场E = −0.1 V/Å时,带隙值达到最大,为1.46 eV [29] ;当施加应力时,也会改变其带隙值大小,且导带最低点和价带最高点也会随应力的变化而变化,如图2 [29] 所示。

Figure 2. Variation in the magnitude of band gap values for BN/GaAs heterostructures subjected to (a) electric field (−0.9 to +0.9 V/Å), (b) strain (−5.0 to +6.0%)

图2. BN/GaAs异质双层结构施加(a)电场(−0.9~+0.9 V/Å)、(b)应力(−5.0~+6.0%)的带隙值大小变化 [29]

2.2. BAs/GeC异质双层结构

BAs和GeC单层的晶格参数分别为3.36 Å和3.26 Å,BAs和GeC的结构参数非常接近,晶体结构也非常相似,晶格失配比为3.03%。通过将这两种材料堆叠形成1 × 1 × 1的BAs/GeC异质双层结构,优化后的晶格常数a = b = 3.67 Å,c = 4.11 Å。1 × 1的BAs/GeC异质双层结构是一种带隙值为0.85 eV的直接带隙半导体,其能带结构中导带最小值和价带最大值皆由BAs材料层的原子贡献 [47] 。因此,BAs/GeC异质双层结构是一种I型能带特性半导体。

M.R [47] 等人通过对BAs/GeC异质双层结构施加应力,有效地调控了其能带特性。结果表明:当施加的应力大小从−6%增加到6%时,材料的带隙值减小,导带底和价带顶向费米能级偏移。随着带隙值的减小,材料在应变的作用下表现出了光催化活性 [47] 。

2.3. ZnS纳米线/MoTe2纳米管异质结构

Tan [48] 等人对ZnS纳米线/MoTe2纳米管异质结构施加应变,实现了带隙可调。结果表明:ZnS纳米线/MoTe2纳米管异质结构是一种间接带隙半导体,其中导带底和价带顶均由MoTe2中的原子贡献。当施加的应变大小从−5%到5%时,ZnS纳米线/MoTe2纳米管异质结构的带隙值逐渐减小,并且在[3%, 5%]之间时,ZnS/MoTe2异质结构的带隙性质从间接带隙半导体向直接半导体转变 [48] 。

2.4. BAs/MoSe2异质双层结构

BAs/MoSe2异质双层材料是通过将单层BAs和MoSe2以1:1的材料比垂直堆叠构建,其中优化后的晶格常数a = b = 3.35 Å,BAs和MoSe2的晶格失配比为2.34% [49] 。BAs/MoSe2异质双层结构是一种直接带隙半导体,带隙值为1.02 eV。其中价带顶主和导带底均由BAs材料层的原子贡献 [49] 。

Ye [49] 等人通过对BAs/MoSe2异质双层材料施加应变和电场,实现了带隙可调的目的。结果表明:当施加应变(−8%, 8%)时,BAs/MoSe2异质双层材料的带隙值先增后减。其中在应变大小为2%时,达到最大值,在应变大小为8%时,带隙性质由直接带隙半导体向间接带隙半导体过渡。当施加电场(−1.0 V/Å, 1.0 V/Å)时,BAs/MoSe2异质双层材料的带隙值先增后减。其中在电场大小为0.4 V/Å时,带隙值达到最大值 [49] 。因此I型能带特性材料可以通过施加应力或电场来改变其电子性能。

3. II型异质双层材料

在二维异质结材料中,II型异质双层材料指的是其能带结构中的导带最小值(CBM)和价带最大值(VBM)分别由不同材料层的原子贡献,如图1。这种贡献方式使得电子和空穴通常被限制在不同的材料层中,导致电子的跃迁变得困难,使得电子和空穴的再结合受到限制,从而提高了异质结构中电子–空穴对的分离效率。这不仅可以延长载流子的存活时间 [42] [46] [50] ,而且在单极电子器件和光催化方面也具有广阔的应用前景。调控异质双层II型能带特性的方法主要以替位掺杂或原子表面吸附最为明显,因为II型能带中导带最小值和价带最大值分别由不同材料层的原子贡献,那么我们可以通过对这些原子进行替位掺杂或者吸附,来降低或增加这些原子对导带和价带的影响,从而调控带隙大小和性质。常见的II型异质双层材料有:GeC/WS2异质双层结构 [51] 、AsP/GaSe异质双层结构 [52] 、GaS/SnS2异质双层结构 [53] 、SnS2/WSe2异质双层结构 [54] 、C2N/Ge异质双层结构 [55] 等。

3.1. GeC/WS2异质双层结构

单层GeC是与石墨烯原子结构相似的复合材料,而单层WS2是过渡金属二硫化物,原子面两侧无悬挂键,这主要是由于S原子成化学饱和状态。通过将这两种材料堆叠形成1 × 1 × 1的GeC/WS2异质双层结构,晶格失配比为2.45%,优化后的晶格常数a = b = 3.26 Å,c = 6.38 Å,是一种带隙值为0.97 eV的直接带隙半导体。其导带最小值由WS2材料层中W原子和S原子贡献,价带最大值由GeC材料层中的C原子贡献 [51] 。GeC/WS2异质双层结构是一种Ⅱ型能带特性半导体。这一特性使得GeC/WS2异质双层结构可以在光伏器件和光学器件中广泛应用。

Shi [51] 等人通过对GeC/WS2异质双层结构施加电场(−0.9~+0.9 V/Å)和应力(−5~+6%)有效地调控了其能带结构。结果表明:当施加负电场时,其带隙值随电场E的增大先增大后减小,当电场E = −0.5 V/Å时,带隙值达到最大;当施加正电场时,其带隙值随电场E的增大而减小。而给GeC/WS2异质双层结构施加应力时,带隙值会随着应力大小增大而减小,如图3 [51] 所示。

Figure 3. Variation in the magnitude of band gap values for GeC/WS2 heterostructure imposed with (a) electric field (−0.9 to +0.9 V/Å), (b) stress (−5 to +6%)

图3. GeC/WS2异质双层结构施加(a) 电场(−0.9~+0.9 V/Å),(b) 应力(−5~+6%)的带隙值大小变化 [51]

3.2. AsP/GaSe异质双层结构

AsP/GaSe异质双层材料是通过将单层AsP和GaSe以2: 3 的材料比构建,晶格失配比为4.6%。AsP/GaSe异质双层结构是一种直接带隙半导体,带隙值为1.92 eV。其中导带底由GaSe材料层的原子贡献,价带顶由AsP材料层的原子贡献。AsP/GaSe异质双层材料具有良好的光催化效率,常常应用于光催化剂领域 [52] 。

Wang [52] 等人通过对AsP/GaSe异质双层结构施加应变,有效地调节了其带隙大小和类别。结果表明:当施加应变(−8%~8%)时,其带隙值大小先增后减。其中在−5%~−3%和1%~5%的范围内,AsP/GaSe 异质双层结构由II型能带排列转变为I型能带排列,而在−2%~1%的应变下仍然保持II型能带排列特性 [52] 。

3.3. GaS/SnS2异质双层结构

SnS2是一种无毒、廉价且化学稳定的材料,常常用于可见光驱动光催化剂、高响应光探测器、气体传感器和光电纳米器件等 [30] [53] 。GaS是一种层状半导体材料,属于金属单硫族化合物,具有特殊的四层结构。由于其独特的结构和物理性质,二维GaS单层膜在晶体管、光催化剂和太阳能电池等多个领域有着广泛的应用 [30] [53] 。将这两个单层材料构建成GaS/SnS2异质双层结构,其晶格失配分别为0.6%,优化后的晶格常数为a = b = 3.62 Å,c = 11.14 Å [53] 。GaS/SnS2异质双层结构是一种带隙值为2.42 eV的间接带隙半导体,导带最小值由SnS2贡献,价带最大值由GaS贡献。因此GaS/SnS2异质双层的能带结构具有II型带排列。

Wu [53] 等人通过原子替位掺杂有效地调控了GaS/SnS2异质双层结构的能带结构。结果表明:B、Cl、N、P、Si原子掺杂体系比未掺杂时体系的带隙值小,Al、O原子掺杂体系比未掺杂时体系的带隙值大,如表1 [53] 所示。N原子掺杂不仅减小了体系的带隙值,还显著提高二维GaS/SnS2异质结构的功率转换效率 [53] 。

Table 1. Band gap values of atomic substitution doped GaS/SnS2 heterogeneous bilayer system [53]

表1. 原子替位掺杂GaS/SnS2异质双层体系的带隙值 [53]

注:a:掺杂位置为SnS2材料层中的S原子。

3.4. SnS2/WSe2异质双层结构

Yang等通过化学气相沉积法成功制备出SnS2/WSe2异质结构,其中SnS2和WSe2材料比为1:1 [56] 。因此模拟计算中构建SnS2/WSe2异质双层结构所使用的比例也为1:1,其晶格失配比为9.5%。SnS2/WSe2异质双层结构是一种带隙值为0.269 eV的间接带隙半导体 [30] [50] 。其中导带最小值由SnS2贡献,价带最大值由WSe2贡献。因此SnS2/WSe2异质双层结构是具有II型能带特性。

Ruan等人通过原子替位掺杂的方法对SnS2/WSe2异质双层结构的电子性质进行了有效地调控 [30] [54] 。结果表明:当In/Re、B/Re、N/Mn或N/Re原子共掺杂时,SnS2/WSe2异质双层结构的带隙值增大,当Si/Cr或Si/Mo原子共掺杂时,SnS2/WSe2异质双层结构的带隙值减小,带隙性质转变为直接带隙半导体性质,如表2 [54] 所示。从这里我们可以看出原子的替位掺杂对II型能带特性的材料产生的影响比较明显,所以我们可以通过施加应变和电场、掺杂的方式来调控II型能带特性的材料的电子性质,从而扩展材料的应用范围。

Table 2. Variation of band gap values of atomically substituted doped SnS2/WSe2 heterostructures [54]

表2. 原子替位掺杂SnS2/WSe2异质双层体系的带隙值变化 [54]

4. III型异质双层材料

在二维异质结材料中,III型异质双层材料的能带指的是CBMA > VBMA > CBMB > VBMB [46] ,如图1。其中A、B指的是构成异质双层结构的两种单层材料。由于能带结构的特殊性,具有III型能带特性的异质结构比较稀少,且表现为金属性质。其带隙结构可以通过应变或化学修饰等外部条件的方法对其能带结构进行调控。例如WTe2/HfS2异质双层结构 [57] 、WTe2/HfSe2异质双层结构 [46] 、TiS3/HfS2异质双层结构 [46] 、TiS3/HfSe2异质双层结构 [46] 。WTe2/HfS2异质双层结构一种III型能带特性材料,具有断裂间隙,拓宽了其在隧道场效应晶体管的应用 [57] 。此外,WTe2/HfS2异质双层结构可以通过外部应变和电场进行调节,使其从III型能带特性向II型能带特性转换,在设计多功能器件方面具有巨大潜力 [57] 。

5. 小结

任何层状的二维材料都可以通过堆叠的方式构建范德华异质结构,这种定制电子性质的方法已经广泛使用。对范德华异质双层结构的能带结构进行分析,可以将其分为三种能带特性,I型能带特性的范德华异质双层结构更加容易形成电子–空穴对,有利于电子传输性能。II型能带特性的范德华异质双层结构有效地限制了电子–空穴对的形成,提高了电子空穴分离效率。III型能带特性的范德华异质双层结构由于其能带的特殊性,可以通过外部条件调控其电子性质,能够应用于多功能器件中。从调控材料性质可以发现,施加应力和电场能够有效地对I、II、III型能带特性的材料进行带隙调控;原子替位掺杂能够有效地对II型能带特性的材料进行带隙调控;当然对材料电子性质的调控方法很多,这里只举例其中几种效果较好的方法。

文章引用

何文海. 二维异质结构的I、II、III能带特性综述
A review of Type I, II, and III Energy Band Characteristics of Two-Dimensional Heterostructures[J]. 物理化学进展, 2024, 13(02): 225-234. https://doi.org/10.12677/japc.2024.132027

参考文献

  1. 1. Khan, K., Tareen, A.K., Aslam, M., et al. (2020) Recent Developments in Emerging Two-Dimensional Materials and Their Applications. Journal of Materials Chemistry C, 8, 387-440. https://doi.org/10.1039/C9TC04187G

  2. 2. Miro, P., Audiffred, M. and Heine, T. (2014) An Atlas of Two-Dimensional Materials. Chemical Society Reviews, 43, 6537-6554. https://doi.org/10.1039/C4CS00102H

  3. 3. Jin, Z., Hu, C., Lan, Y., et al. (2020) Epitaxial Growth of PbS Nanocrystals from PbI2 Nanosheet Templates and Its Application in Fast Near-Infrared Photodetectors. Advanced Optical Materials, 8, Article 2001319. https://doi.org/10.1002/adom.202001319

  4. 4. Xia, F., Wang, H., Xiao, D., et al. (2014) Two-Dimensional Material Nanophotonics. Nature Photonics, 8, 899-907. https://doi.org/10.1038/nphoton.2014.271

  5. 5. Yoo, C., Ko, T.-J., Kaium, M.G., et al. (2022) A Minireview on 2D Materials-Enabled Optoelectronic Artificial Synaptic Devices. APL Materials, 10, Article 070702. https://doi.org/10.1063/5.0096053

  6. 6. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896

  7. 7. Liu, L., Zhang, J., Gao, H., et al. (2016) Tailoring Physical Properties of Graphene: Effects of Hydrogenation, Oxidation, and Grain Boundaries by Atomistic Simulations. Computational Materials Science, 112, 527-546. https://doi.org/10.1016/j.commatsci.2015.06.032

  8. 8. Liu, C.-C., Feng, W. and Yao, Y. (2011) Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Physical Review Letters, 107, Article 076802. https://doi.org/10.1103/PhysRevLett.107.076802

  9. 9. Wei, W., Dai, Y., Huang, B., et al. (2013) Many-Body Effects in Silicene, Silicane, Germanene and Germanane. Physical Chemistry Chemical Physics, 15, 8789-8794. https://doi.org/10.1039/c3cp51078f

  10. 10. Ozcelik, V.O., Durgun, E. and Ciraci, S. (2014) New Phases of Germanene. Journal of Physical Chemistry Letters, 5, 2694-2699. https://doi.org/10.1021/jz500977v

  11. 11. Wang, X. and Lan, S. (2016) Optical Properties of Black Phosphorus. Advances in Optics and Photonics, 8, 618-655. https://doi.org/10.1364/AOP.8.000618

  12. 12. Xia, F., Wang, H., Hwang, J.C.M., et al. (2019) Black Phosphorus and Its Isoelectronic Materials. Nature Reviews Physics, 1, 306-317. https://doi.org/10.1038/s42254-019-0043-5

  13. 13. Eswaraiah, V., Zeng, Q., Long, Y., et al. (2016) Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small, 12, 3480-3502. https://doi.org/10.1002/smll.201600032

  14. 14. Sahin, H., Cahangirov, S., Topsakal, M., et al. (2009) Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations. Physical Review B, 80, Article 155453. https://doi.org/10.1103/PhysRevB.80.155453

  15. 15. Zhang, L., Gu, J. and Chen, Z. (2021) Structures and Functions of Two-Dimensional Materials: From Theoretical Prediction to Experimental Realization. Chinese Science Bulletin-Chinese, 66, 563-579. https://doi.org/10.1360/TB-2020-1046

  16. 16. Vu, Q.A. and Yu, W.J. (2018) Electronics and Optoelectronics Based on Two-Dimensional Materials. Journal of the Korean Physical Society, 73, 1-15. https://doi.org/10.3938/jkps.73.1

  17. 17. Huang, H.H., Fan, X., Singh, D.J., et al. (2020) Recent Progress of TMD Nanomaterials: Phase Transitions and Applications. Nanoscale, 12, 1247-1268. https://doi.org/10.1039/C9NR08313H

  18. 18. Prabhu, P., Jose, V. and Lee, J.-M. (2020) Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter, 2, 526-553. https://doi.org/10.1016/j.matt.2020.01.001

  19. 19. Mohebpour, M.A., Mozvashi, S.M., Vishkayi, S.I., et al. (2020) Prediction of Hydrogenated Group IV-V Hexagonal Binary Monolayers. Scientific Reports, 10, Article No. 14963. https://doi.org/10.1038/s41598-020-71766-5

  20. 20. Liu, N., Bo, G., Liu, Y., et al. (2019) Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small, 15, Article 1805147. https://doi.org/10.1002/smll.201805147

  21. 21. Liang, M., Han, C., Zheliuk, O., et al. (2021) A Flip-Over Plasmonic Structure for Photoluminescence Enhancement of Encapsulated WS2 Monolayers. Advanced Optical Materials, 9, Article 2100397. https://doi.org/10.1002/adom.202100397

  22. 22. Berashevich, J. and Chakraborty, T. (2009) Tunable Band Gap and Magnetic Ordering by Adsorption of Molecules on Graphene. Physical Review B, 80, Article 033404. https://doi.org/10.1103/PhysRevB.80.033404

  23. 23. Wu, E., Wu, D., Jia, C., et al. (2019) In Situ Fabrication of 2D WS2/Si Type-II Heterojunction for Self-Powered Broadband Photodetector with Response Up to Mid-Infrared. ACS Photonics, 6, 565-572. https://doi.org/10.1021/acsphotonics.8b01675

  24. 24. Zhuo, Q., Liu, X., Ou, J., et al. (2022) Theoretical Study on S/Fe-Doped Hexagonal Boron Nitride (h-BN) Sheet: Electronic and Optical Properties. Applied Surface Science, 598, Article 153719. https://doi.org/10.1016/j.apsusc.2022.153719

  25. 25. Wang, Y., Wang, L., Zhang, X., et al. (2021) Two-Dimensional Nanomaterials with Engineered Bandgap: Synthesis, Properties, Applications. Nano Today, 37, Article 101059. https://doi.org/10.1016/j.nantod.2020.101059

  26. 26. Bai, Y., Zhang, Q., Xu, N., et al. (2018) Efficient Carrier Separation and Band Structure Tuning of Two-Dimensional C2N/GaTe van der Waals Heterostructure. Journal of Physical Chemistry C, 122, 15892-15902. https://doi.org/10.1021/acs.jpcc.8b04440

  27. 27. Yang, S., Chen, Y. and Jiang, C. (2021) Strain Engineering of Two-Dimensional Materials: Methods, Properties, and Applications. Infomat, 3, 397-420. https://doi.org/10.1002/inf2.12177

  28. 28. Zhao, H., Xie, F., Liu, Y., et al. (2021) Van der Waals heterostructures of Janus XSeTe (X=Mo, W) and Arsenene Monolayers: A First Principles Study. Materials Science in Semiconductor Processing, 123, Article 105588. https://doi.org/10.1016/j.mssp.2020.105588

  29. 29. Li, X., Cao, H., Guo, Y., et al. (2020) Effect of Interface Distance on the Electronic Properties and Optical Properties of GaAs/BN Novel Two-Dimensional Materials: First-Principle Calculation. Materials Chemistry and Physics, 242, Article 122554. https://doi.org/10.1016/j.matchemphys.2019.122554

  30. 30. Guan, Y., Li, X., Hu, T., et al. (2021) Tunable Electronic Properties of SnS2/WSe2 Hetero-Structure: A First Principle Study. Superlattices and Microstructures, 150, Article 106806. https://doi.org/10.1016/j.spmi.2021.106806

  31. 31. Zhang, R., Li, M., Li, L., et al. (2021) The More, the Better-Recent Advances in Construction of 2D Multi-Heterostructures. Advanced Functional Materials, 31, Article 2102049. https://doi.org/10.1002/adfm.202102049

  32. 32. Yang, C.-H. and Chang, S.-T. (2022) First-Principles Study of the Optical Properties of TMDC/Graphene Heterostructures. Photonics, 9, Article 387. https://doi.org/10.3390/photonics9060387

  33. 33. Ren, D., Li, Y. and Xiong, W. (2021) Vertically Stacked GaN/WX2 (X=S, Se, Te) Heterostructures for Photocatalysts and Photoelectronic Devices. RSC Advances, 11, 35954-35959. https://doi.org/10.1039/D1RA07308G

  34. 34. Glukhova, O.E., Slepchenkov, M.M., Kolosov, D.A., et al. (2020) Vertical Heterostructures Based Monolayers of Dielectric and Semiconductor Graphene-Like 2D Materials: Atomic Structure, Energy Stability and Electronic Properties. Proceedings of the Saratov Fall Meeting (SFM) on Laser Physics, Photonic Technologies, and Molecular Modeling, Saratov, 23-27 September 2020, 114580Z. https://doi.org/10.1117/12.2564505

  35. 35. Feng, W., Wen, X., Wang, Y., et al. (2023) Interfacial Coupling SnSe2/SnSe Heterostructures as Long Cyclic Anodes of Lithium-Ion Battery. Advanced Science, 10, Article 2204671. https://doi.org/10.1002/advs.202204671

  36. 36. Torres-Rojas, R.M., Contreras-Solorio, D.A., Hernandez, L., et al. (2022) Band Gap Variation in Bi, Tri and Few-Layered 2D Graphene/hBN Heterostructures. Solid State Communications, 341, Article 114553. https://doi.org/10.1016/j.ssc.2021.114553

  37. 37. Jariwala, D., Marks, T.J. and Hersam, M.C. (2017) Mixed-Dimensional van der Waals Heterostructures. Nature Materials, 16, 170-181. https://doi.org/10.1038/nmat4703

  38. 38. Tan, C. and Zhang, H. (2015) Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 137, 12162-12174. https://doi.org/10.1021/jacs.5b03590

  39. 39. Lau, S.P., Li, L.-J. and Chai, Y. (2017) Advances in Two-Dimensional Layered Materials. Advanced Functional Materials, 27, Article 1701403. https://doi.org/10.1002/adfm.201701403

  40. 40. He, X., Tang, A., Li, Y., et al. (2021) Theoretical Studies of SiC van der Waals Heterostructures as Anodes of Li-Ion Batteries. Applied Surface Science, 563, Article 150269. https://doi.org/10.1016/j.apsusc.2021.150269

  41. 41. Zhang, J.-X. and Zhao, Z.-Y. (2023) Comparative Analysis of the Interfacial Structure and Properties of BiOX/BiOY (X, Y=F, Cl, Br, and I) Heterostructures through DFT Calculations. Inorganic Chemistry, 62, 8397-8406. https://doi.org/10.1021/acs.inorgchem.3c01037

  42. 42. Ren, K., Sun, M., Luo, Y., et al. (2019) First-Principle Study of Electronic and Optical Properties of Two-Dimensional Materials-Based Heterostructures Based on Transition Metal Dichalcogenides and Boron Phosphide. Applied Surface Science, 476, 70-75. https://doi.org/10.1016/j.apsusc.2019.01.005

  43. 43. Huang, C., Wu, S., Sanchez, A.M., et al. (2014) Lateral Heterojunctions within Monolayer MoSe2-WSe2 Semiconductors. Nature Materials, 13, 1096-1101. https://doi.org/10.1038/nmat4064

  44. 44. Britnell, L., Ribeiro, R.M., Eckmann, A., et al. (2013) Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science, 340, 1311-1314. https://doi.org/10.1126/science.1235547

  45. 45. Xing, Z., Xiaozong, H., Jing, Y., et al. (2023) 2D Layered Material-Based van der Waals Heterostructures for Optoelectronics. Advanced Functional Materials, 33, Article 2302474. https://doi.org/10.1002/adfm.202302474

  46. 46. Ozcelik, V.O., Azadani, J.G., Yang, C., et al. (2016) Band Alignment of Two-Dimensional Semiconductors for Designing Heterostructures with Momentum Space Matching. Physical Review B, 94, Article 035125. https://doi.org/10.1103/PhysRevB.94.035125

  47. 47. Islam, M.R., Islam, M.S., Zamil, M.Y., et al. (2023) Two-Dimensional BAs/GeC van der Waals Heterostructures: A Widely Tunable Photocatalyst for Water Splitting and Hydrogen Production. Journal of Physics and Chemistry of Solids, 176, Article 111263. https://doi.org/10.1016/j.jpcs.2023.111263

  48. 48. Tan, X., Xu, B., Jiang, Y., et al. (2022) Robust Type-I Band Alignment in ZnS Nanowire/MoTe2 Nanotube van der Waals Heterostructures. Chemical Physics Letters, 791, Article 139370. https://doi.org/10.1016/j.cplett.2022.139370

  49. 49. Ye, H., Sheng, H., Bai, D., et al. (2020) Strain and Electric Field Tuned Electronic Properties of BAs/MoSe2 van der Waals Heterostructures for Alternative Electrodes and Photovoltaic Cell in Photocatalysis. Physica E-Low-Dimensional Systems & Nanostructures, 120, Article 114055. https://doi.org/10.1016/j.physe.2020.114055

  50. 50. Zribi, J., Khalil, L., Zheng, B., et al. (2019) Strong Interlayer Hybridization in the Aligned SnS2/WSe2 Hetero-Bilayer Structure. NPJ 2D Materials and Applications, 3, Article No. 27. https://doi.org/10.1038/s41699-019-0109-3

  51. 51. Shi, J., Ou, Y., Mighorato, M.A., et al. (2019) Tuning the Electronic Structure of GeC/WS2 van der Waals Heterostructure by Electric Field and Strain: A First Principles Study. Computational Materials Science, 160, 301-308. https://doi.org/10.1016/j.commatsci.2019.01.010

  52. 52. Wang, Z., Wei, X., Huang, Y., et al. (2023) High Solar-to-Hydrogen Efficiency in AsP/GaSe Heterojunction for Photocatalytic Water Splitting: A DFT Study. Materials Science in Semiconductor Processing, 159, Article 107393. https://doi.org/10.1016/j.mssp.2023.107393

  53. 53. Wu, H.-Y., Yang, K., Si, Y., et al. (2019) Two-Dimensional GaX/SnS2(X=S, Se) van der Waals Heterostructures for Photovoltaic Application: Heteroatom Doping Strategy to Boost Power Conversion Efficiency. physica Status Solidi (RRL)-Rapid Research Letters, 13, Article 1800565. https://doi.org/10.1002/pssr.201800565

  54. 54. Ruan, S., Li, X., Li, S., et al. (2023) Structural and Electronic Properties of Substitutionally Doped SnS2/WSe2 Hetero-Bilayer. Solid State Communications, 370, Article 115230. https://doi.org/10.1016/j.ssc.2023.115230

  55. 55. Tan, X., Luo, J., Liu, L., et al. (2020) Tunable Electronic Structures of C2N/Germanane van der Waals Heterostructures Using an External Electric Field and Normal Strain. Physica E-Low-Dimensional Systems & Nanostructures, 124, Article 114334. https://doi.org/10.1016/j.physe.2020.114334

  56. 56. Yang, T., Zheng, B., Wang, Z., et al. (2017) Van der Waals Epitaxial Growth and Optoelectronics of Large-Scale WSe2/SnS2 Vertical Bilayer p-n Junctions. Nature Communications, 8, Article No. 1906. https://doi.org/10.1038/s41467-017-02093-z

  57. 57. Lei, C., Ma, Y., Xu, X., et al. (2019) Broken-Gap Type-III Band Alignment in WTe2/HfS2 van der Waals Heterostructure. Journal of Physical Chemistry C, 123, 23089-23095. https://doi.org/10.1021/acs.jpcc.9b07862

期刊菜单