Advances in Applied Mathematics
Vol. 09  No. 05 ( 2020 ), Article ID: 35677 , 10 pages
10.12677/AAM.2020.95088

New Criteria for H -Tensors and Its Application

Dongjian Bai*, Yumei Xu, Nian Wu

College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang Guizhou

Received: May 1st, 2020; accepted: May 14th, 2020; published: May 21st, 2020

ABSTRACT

H -tensors have wide applications in science and engineering, but it is difficult to determine whether a given tensor is an H -tensor or not in practice. In this paper, we give some practical conditions for H -tensors by constructing different positive diagonal matrices and applying some techniques of inequalities. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are given. Advantages of results obtained are illustrated by numerical examples.

Keywords:H -Tensors, Real Symmetric Tensors, Irreducible, Nonzero Elements Chain, Positive Definiteness

H -张量的新判定及其应用

柏冬健*,徐玉梅,吴念

贵州民族大学数据科学与信息工程学院,贵州 贵阳

收稿日期:2020年5月1日;录用日期:2020年5月14日;发布日期:2020年5月21日

摘 要

H -张量在科学和工程实际中具有重要应用,但在实际中要判定 H -张量是比较困难的。通过构造不同的正对角阵,结合不等式的放缩技巧,给出了一些比较实用的新判别条件。作为应用,给出了判定偶数阶实对称张量正定性的条件,相应数值算例说明了新结果的有效性。

关键词 :H -张量,实对称张量,不可约,非零元素链,正定性

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

张量是矩阵的高阶推广,广泛出现在图像处理、自动控制、医疗成像、超图论、高阶统计、弹性材料研究和数据分析等学科和工程中。近年来,很多专家和学者都对其进行了广泛探讨 [1] - [17]。本文在文 [13] 的基础上,继续讨论 H -张量的判定问题,得到了一些新的判定条件。同时,利用新得到的 H -张量的判定条件,给出了偶数阶实对称张量,即偶次齐次多项式正定性的判定方法。最后,给出了一些数值算例来说明新结果的有效性。

2. 预备知识

( ) 为复(实)数域, [ n ] : = { 1 , 2 , , n } 。一个复(实)m阶n维张量 A = ( a i 1 i 2 i m ) n m 个复(实)元素构成 [1] [2] [3] [4] [5],其中

a i 1 i 2 i m ( ) , i j [ n ] , j [ m ] .

显然,2阶张量即为矩阵。此外,张量被称为对称的 [6] [7],若

a i 1 i 2 i m = a π ( i 1 i 2 i m ) , π Π m ,

其中 Π m 为m个指标的置换群。若 a i 1 i 2 i m 0 ,那么称张量 A = ( a i 1 i 2 i m ) 为非负张量。

定义2.1 [8]:张量 被称作单位张量,其中

δ i 1 i 2 i m = { 1 , i 1 = i 2 = = i m 0 ,

定义2.2 [6]:给定一个m阶n维张量 A = ( a i 1 i 2 i m ) ,若存在一个复数 λ 和一个非零复向量 x = ( x 1 , x 2 , , x n ) T n ,满足

A x m 1 = λ x [ m 1 ] ,

那么称为张量 A 的特征值,x为张量 A 的关于特征值 λ 的特征向量,其中 A x m 1 x [ m 1 ] 的第i个分量分别为

( A x m 1 ) i = i 2 , , i m [ n ] a i i 2 i m x i 2 x i n , ( x [ m 1 ] ) i = x i m 1 .

记m阶n次齐次多项式 f ( x )

f ( x ) = i 1 , , i m [ n ] a i 1 i 2 i m x i 1 x i m , (1)

其中 x = ( x 1 , x 2 , , x n ) T n 。当m为偶数时, f ( x ) 是正定的,若

式(1)中的齐次多项式 f ( x ) 可以表示为m阶n维对称张量 A x m 的乘积 [9],如下

f ( x ) = A x m = i 1 , , i m [ n ] a i 1 i 2 i m x i 1 x i m , (2)

f ( x ) 是正定时,对称张量 A 也是正定的。

定义2.3 [10]:设 A = ( a i 1 i 2 i m ) 为m阶n维张量,如果对任意的 i [ n ]

(3)

则称 A 是对角占优张量。若对于任意的 i [ n ]

| a i i i | > i 2 , , i m [ n ] δ i i 2 i m = 0 | a i i 2 i m | , (4)

则称 A 是严格对角占优张量。

定义2.4 [11]:m阶n维张量 A = ( a i 1 i 2 i m ) 与矩阵 X = d i a g ( x 1 , x 2 , , x n ) 的乘积可表示为:

B = ( b i 1 i m ) = A X m 1 , b i 1 i 2 i m = a i 1 i 2 i m x i 2 x i 3 x i m , i j [ n ] , j [ m ] .

假设 Λ 表示 [ n ] 的任意非空子集,令

Λ m 1 : = { i 2 i 3 i m : i j Λ , j = 2 , 3 , , m } ,

[ n ] \ Λ m 1 : = { i 2 i 3 i m : i 2 i 3 i m [ n ] m 1 i 2 i 3 i m Λ m 1 } .

给定一个m阶n维张量 A = ( a i 1 i 2 i m ) ,令

R i ( A ) = i 2 , , i m [ n ] δ i i 2 i m = 0 | a i i 2 i m | = i 2 , , i m [ n ] | a i i 2 i m | | a i i i | ,

Λ 1 : = { i [ n ] : 0 < | a i i i | = R i ( A ) } , Λ 2 = { i [ n ] : 0 < | a i i i | < R i ( A ) } ,

Λ 3 = { i [ n ] : | a i i i | > R i ( A ) } , Λ 0 m 1 = Λ m 1 \ ( Λ 2 m 1 Λ 3 m 1 ) .

引理2.1 [12]:若 A 为严格对角占优张量,则 A H -张量。

引理2.2 [13]:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。若 A 是不可约的,

| a i i i | R i ( A ) , i [ n ] ,

且至少有一个i使得严格不等式成立,则 A H -张量。

引理2.3 [13]:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。如果存在一个正对角矩阵X,使得 H -张量,则 A H -张量。

引理2.4 [14]:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。若

(i) i [ n ]

(ii) Λ 3 = { i [ n ] : | a i i i | > R i ( A ) }

(iii),从i到j存在一个非零元素链使得 j Λ 3

A H -张量。

3. 主要结果

为了叙述方便,引入以下符号:对 i Λ 2 ,记

α i = i 2 i 3 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | , β i = i 2 i 3 i m Λ 3 m 1 | a i i 2 i m | ,

x i = { | a i i i | α i β i , | a i i i | > α i , | a i i i | β i α i , | a i i i | > β i , | a i i i | R i ( A ) , | a i i i | min { α i , β i } . δ = max i Λ 2 ( x i )

再记

r = max i Λ 3 ( δ ( i 2 i 3 i m Λ 0 m 1 | a i i 2 i m | + i 2 i 3 i m Λ 2 m 1 | a i i 2 i m | ) | a i i i | i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) ,

P i , r ( A ) = δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + r i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ( i Λ 3 ) ,

h = max i Λ 3 ( δ ( i 2 , i 3 , , i m Λ 0 m 1 | a i i 2 i m | + i 2 i 3 i m Λ 2 m 1 | a i i 2 i m | ) P i , r ( A ) i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | ) .

易知 0 ≤ r < 1 ,且对任意的 i Λ 3

r | a i i i | δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + r i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | = P i , r ( A ) ,

从而有 0 P i , r ( A ) | a i i i | r < 1 , i Λ 3 。注意到

δ ( i 2 i 3 i m Λ 0 m 1 | a i i 2 i m | + i 2 i 3 i m Λ 2 m 1 | a i i 2 i m | ) P i , r ( A ) i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | = P i , r ( A ) r i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | P i , r ( A ) i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | 1.

0 h 1 ,进而由h的定义可知,对于任意 i Λ 3 ,有

h P i , r ( A ) δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | . (5)

定理3.1:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。若对任意的 i Λ 2 A 满足

| a i i i | x i > δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | , (6)

且对 i Λ 1 ,存在 i 2 i 3 i m Λ 3 m 1 ,使得,则 A H -张量。

证明:由(6)式知,对对任意的 i Λ 2 ,

T i | a i i i | x i δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | i 2 i m Λ 3 m 1 | a i i 2 i m | . (7)

i 2 i m Λ 3 m 1 | a i i 2 i m | = 0 时,记 T i = + 。由(7)式知 T i > 0 ( i Λ 2 ) ,且

0 h P j , r ( A ) | a j j j | < 1 ( j Λ 3 ) ,

从而必有充分小的正数 ε ,使 0 < ε < min i Λ 2 T i + ,且 max j Λ 3 { h P j , r ( A ) | a j j j | + ε } < 1

构造正对角矩阵 D = d i a g ( d 1 , d 2 , , d n ) ,记,其中

d i = { ( δ ) 1 m 1 , i Λ 1 , ( x i ) 1 m 1 , i Λ 2 , ( h P i , r ( A ) | a i i i | + ε ) 1 m 1 , i Λ 3 .

(a) 对 i Λ 1 ,存在 i 2 i 3 i m Λ 3 m 1 ,使得 a i i 2 i m 0 ,且对任意 j Λ 3 ,总可以取到充分小的正数,使得 0 < h P j , r ( A ) | a j j j | + ε r < δ < 1 ,则

R i ( B ) δ ( i 2 i m Λ 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 | a i i 2 i m | ( ε + max j { i 2 i 3 i m } h P j , r ( A ) | a j j j | ) < δ ( i 2 i m Λ 0 m 1 δ i i 2 i m = 0 | a i i 2 i m | + i 2 , , i m Λ 2 m 1 | a i i 2 i m | + i 2 , , i m Λ 3 m 1 | a i i 2 i m | ) = δ R i ( A ) = | a i i i | δ = | b i i i | .

(b) 对 i Λ 2 ,由 (7)式知

R i ( B ) δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 | a i i 2 i m | ( ε + max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | ) = ε i 2 i m Λ 3 m 1 | a i i 2 i m | + δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + h i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | < T i i 2 i m Λ 3 m 1 | a i i 2 i m | + μ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + h i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | = | a i i i | x i = | b i i i | .

(c) 对 i Λ 3 ,由(5)式知

R i ( B ) δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | ( ε + max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | ) = ε i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | + δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 | a i i 2 i m | ) + h i 2 i m Λ 3 m 1 δ i i 2 i m = 0 max j { i 2 , i 3 , , i m } P j , r ( A ) | a j j j | | a i i 2 i m | ε i 2 i m Λ 3 m 1 δ i i 2 i m = 0 | a i i 2 i m | + h P i , r ( A ) < ε | a i i i | + h P i , r ( A ) = | b i i i | .

综上所述,,即 B 是严格对角占优的。由引理2.1知 B H -张量,进而由引理2.3知 A H -张量。

定理3.2:设 A = ( a i 1 i 2 i m ) 为m阶n维张量, A 不可约,若对任意的 i Λ 2

| a i i i | x i δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | , (8)

且(8)中至少有一个严格不等式成立,则 A H -张量。

证明:类似定理3.1的证明方法。由于 A 是不可约的,则

δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) 0 , i Λ 3 .

构造正对角矩阵 D = d i a g ( d 1 , d 2 , , d n ) ,其中

d i = { ( δ ) 1 m 1 , i Λ 1 , ( x i ) 1 m 1 , i Λ 2 , ( h P i , r ( A ) | a i i i | + ε ) 1 m 1 , i Λ 3 .

,则 B 不可约。类似于定理3.1的证明,可得 | b i i i | R i ( B ) ( i [ n ] ) ,且对 i Λ 2 ,(8)中至少有一个严格不等式成立,即存在一个 i 0 Λ 2 ,使得 | b i 0 i 0 i 0 | > R i 0 ( B ) 。由引理2.2知 B H -张量,进而由引理2.3知 A 也是 H -张量。

定理3.3:设 A = ( a i 1 i 2 i m ) 为m阶n维张量。若对任意的 i Λ 2

| a i i i | x i δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | ,

K ( A ) = [ i Λ 2 : | a i i i | x i > δ ( i 2 i m Λ 0 m 1 | a i i 2 i m | + i 2 i m Λ 2 m 1 δ i i 2 i m = 0 | a i i 2 i m | ) + i 2 i m Λ 3 m 1 max j { i 2 , i 3 , , i m } h P j , r ( A ) | a j j j | | a i i 2 i m | ] ,

且对 i [ n ] \ K ,存在从i到j的非零元素链使得 ,则 A H -张量。

证明:构造正对角矩阵 D = d i a g ( d 1 , d 2 , , d n ) ,记,其中

d i = { ( δ ) 1 m 1 , i Λ 1 , ( x i ) 1 m 1 , i Λ 2 , ( h P i , r ( A ) | a i i i | ) 1 m 1 , i Λ 3 .

类似于的定理3.1的证明,可得 | b i i i | R i ( B ) ( i [ n ] ) ,至少存在一个 i Λ 2 ,使得 | b i i i | > R i ( B ) 。另外,如果 | b i i i | = R i ( B ) ,那么 i [ n ] \ K 。假设 A 中存在一个从i到j非零元素链使得 k K ,那么中也存在从i到j的非零元素链使得k满足 | b k k k | > R k ( B ) 。因此, B 满足引理2.4的条件,所以H -张量,进而由引理2.3知 A H -张量。

例3.1:给定,其中

A ( 1 , : , : ) = ( 12 1 0 1 6 0 1 0 12 ) , A ( 2 , : , : ) = ( 1 0 0 0 10 2 0 2 2 ) , A ( 3 , : , : ) = ( 0 0 0 1 1 0 0 0 8 ) .

由张量 A 的元素得到

| a 111 | = 12 , R 1 = 21 , | a 222 | = 10 , R 2 = 7 , | a 333 | = 8 , R 3 = 2 ,

所以 Λ 1 = , Λ 2 = { 1 } , Λ 3 = { 2 , 3 } 。计算得

α 1 = 3 + 0 = 3 , β 1 = 12 + 6 = 18 ,

x 1 = 12 3 18 = 1 2 , δ = 1 2 , r i = 2 = 1 2 ( 0 + 1 ) 10 6 = 1 8 , r i = 3 = 1 2 ( 1 + 0 ) 8 1 = 1 14 ,

P 2 , r ( A ) = 1 2 ( 0 + 1 ) + 1 8 × 6 = 5 4 , P 3 , r ( A ) = 1 2 ( 1 + 0 ) + 1 8 × 1 = 5 8 ,

P 2 , r ( A ) | a 222 | = 5 4 10 = 1 8 , P 3 , r ( A ) | a 333 | = 5 8 8 = 5 64 , h i = 2 = 1 2 ( 0 + 1 ) 5 4 1 8 × 6 = 1 , h i = 3 = 1 2 ( 1 + 0 ) 5 8 1 8 × 1 = 1.

i = 1 时,有

δ ( k l Λ 0 2 | a 1 k l | + k l Λ 2 2 δ 1 k l = 0 | a 1 k l | ) + h k l Λ 3 2 max j { k , l } P j , r ( A ) | a j j j | | a 1 k l | = 1 2 ( 3 + 0 ) + 1 × 1 8 × ( 12 + 6 ) = 15 4 < 6 = 12 × 1 2 = | a 111 | x 1 .

所以张量 A 满足本文定理3.1的条件,故 A H -张量。但

k l [ n ] 2 \ Λ 3 2 δ 1 k l = 0 | a 1 k l | + k l Λ 3 2 max j { k , l } R j ( A ) | a j j j | | a 1 k l | = 3 + 7 10 × ( 12 + 6 ) = 78 5 > 12 = | a 111 | .

因此,不满足 [15] 中定理1.1的条件。

4. 应用

在这一节中,基于 H -张量的准则,我们提出了偶数阶实对称张量正定的一些新条件(多元形式的正定)。首先,我们给出以下引理:

引理4.1 [13]:设m阶n维张量 A = ( a i 1 i 2 i m ) 为偶数阶实对称张量,对任意的 i [ n ] 都满足 a i i i > 0

如果 A H -张量,则 A 是正定的。

根据引理4.1,定理3.1~3.3,得到以下结果:

定理4.1:设m阶n维张量 A = ( a i 1 i 2 i m ) 为偶数阶实对称张量,对任意的 i [ n ] 都满足 a i i i > 0

如果 A 满足下列条件之一:

i) 定理3.1的所有条件;

ii) 定理3.2的所有条件;

iii) 定理3.3的所有条件;

A 是正定的。

例4.1:设四次齐次多项式

f ( x ) = A x 4 = 15 x 1 4 + 23 x 2 4 + 26 x 3 4 + 18 x 4 4 + 12 x 1 2 x 2 x 3 12 x 2 x 3 2 x 4 24 x 1 x 2 x 3 x 4 ,

其中 A = ( a i 1 i 2 i m ) 是一个4阶4维的实对称张量,且

a 1111 = 15 , a 2222 = 23 , a 3333 = 26 , a 4444 = 18 ,

a 2113 = a 2131 = a 2311 = a 3112 = a 3121 = a 3211 = 1 ,

a 2334 = a 2343 = a 2433 = a 4233 = a 4323 = a 4332 = 1 ,

a 3234 = a 3243 = a 3324 = a 3342 = a 3423 = a 3432 = 1 ,

a 2134 = a 2143 = a 2314 = a 2341 = a 2413 = a 2431 = 1 ,

a 3124 = a 3142 = a 3214 = a 3241 = a 3412 = a 3421 = 1 ,

a 4123 = a 4132 = a 4213 = a 4231 = a 4312 = a 4321 = 1 ,

其余的 a i 1 i 2 i 3 i 4 = 0 。计算得

a 1111 = 15 < 18 = R 1 ( A ) ,

a 4444 ( a 1111 R 1 ( A ) + | a 1444 | ) = 54 < 0 = R 4 ( A ) | a 1444 | .

因此, A 既不是严格对角占优张量也不是拟双严格对角占优张量,所以不能用 [16] 的定理3和 [17] 的定理4来判定 A 的正定性。但是,可以证明 A 满足本文定理3.1的条件。因为

所以 Λ 1 = , Λ 2 = { 1 } , Λ 3 = { 2 , 3 , 4 } 。计算得

α 1 = 6 + 0 = 6 , β 1 = 6 , x 1 = 10 6 6 = 2 3 , δ = 2 3 ,

r i = 2 = 2 3 ( 9 + 0 ) 23 3 = 3 10 , r i = 3 = 2 3 ( 9 + 0 ) 26 6 = 3 10 , r i = 4 = 2 3 ( 6 + 0 ) 18 3 = 4 15 , r = 3 10 ,

P 2 , r ( A ) = 2 3 ( 9 + 0 ) + 3 10 × 3 = 69 10 , P 3 , r ( A ) = 2 3 ( 9 + 0 ) + 3 10 × 6 = 39 5 ,

P 4 , r ( A ) = 2 3 ( 6 + 0 ) + 3 10 × 3 = 49 10 , P 2 , r ( A ) | a 2222 | = 69 10 23 = 3 10 ,

P 3 , r ( A ) | a 3333 | = 39 5 26 = 3 10 , P 4 , r ( A ) | a 4444 | = 49 10 18 = 49 180 ,

h i = 2 = 2 3 ( 9 + 0 ) 69 10 3 10 × 3 = 1 , h i = 3 = 2 3 ( 9 + 0 ) 39 5 3 10 × 6 = 1 , h i = 4 = 2 3 ( 6 + 0 ) 49 10 3 10 × 3 = 1.

所以可得,当 i = 1 时,

δ ( j k o Λ 0 3 | a 1 j k o | + j k o Λ 2 3 δ 1 j k o = 0 | a 1 j k o | ) + h j k o Λ 3 3 max l { j , k , o } P l , r ( A ) | a l l l l | | a 1 j k o | = 2 3 ( 6 + 0 ) + 1 × 3 10 × 6 = 29 5 < 20 3 = 10 × 2 3 = | a 1111 | x 1 .

根据定理4.1,张量 A 是正定的,即 f ( x ) 是正定的。

5. 结论

本文讨论了 H -张量的判定问题,得到了几个新的判定不等式,并给出了其在偶数阶实对称张量,即偶次齐次多项式正定性判定中的应用。数值算例表明了本文所得结论的有效性。

致谢

感谢审稿老师和编辑老师提出了宝贵意见。

基金项目

贵州省科学技术基金(20181079, 20191161),贵州民族大学自然科学基金(GZMU[2019]YB08)。

文章引用

柏冬健,徐玉梅,吴 念. H-张量的新判定及其应用
New Criteria for H-Tensors and Its Application[J]. 应用数学进展, 2020, 09(05): 742-751. https://doi.org/10.12677/AAM.2020.95088

参考文献

  1. 1. Chang, K.C., Pearson, K. and Zhang, T. (2008) Perron-Frobenius Theorem for Nonnegative Tensors. Communications in Mathematical Sciences, 6, 507-520. https://doi.org/10.4310/CMS.2008.v6.n2.a12

  2. 2. Lathauwer, L.D., Moor, B.D. and Vandewalle, J. (2000) On the Best Rank-1 and Rank-(R1,R2,RN) Approximation of Higher-Order Tensors. SIAM Journal on Matrix Analysis and Applications, 21, 1324-1342. https://doi.org/10.1137/S0895479898346995

  3. 3. Liu, Y.J., Zhou, G.L. and Ibrahim, N.F. (2010) An Always Convergent Algorithm for the Largest Eigenvalue of an Irreducible Nonnegative Tensor. Journal of Computational and Applied Mathematics, 235, 286-292. https://doi.org/10.1016/j.cam.2010.06.002

  4. 4. Ng, M., Qi, L.Q. and Zhou, G.L. (2010) Finding the Largest Eigenvalue of a Nonnegative Tensor. SIAM Journal on Matrix Analysis and Applications, 31, 1090-1099. https://doi.org/10.1137/09074838X

  5. 5. Zhang, T. and Golub, G.H. (2001) Rank-One Approximation to Higher-Order Tensors. SIAM Journal on Matrix Analysis and Applications, 23, 534-550. https://doi.org/10.1137/S0895479899352045

  6. 6. Qi L. (2005) Eigenvalues of a Real Supersymetric Tensor. Journal of Symbolic Computation, 40, 1302-1324. https://doi.org/10.1016/j.jsc.2005.05.007

  7. 7. Kofidis, E. and Regalia, P.A. (2002) On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors. SIAM Journal on Matrix Analysis and Applications, 23, 863-884. https://doi.org/10.1137/S0895479801387413

  8. 8. Yang, Y.N. and Yang, Q.Z. (2011) Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II. SIAM Journal on Matrix Analysis and Applications, 32,1236-1250. https://doi.org/10.1137/100813671

  9. 9. Ni, Q., Qi, L. and Wang, F. (2008) An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form. IEEE Transactions on Automatic Control, 53, 1096-1107. https://doi.org/10.1109/TAC.2008.923679

  10. 10. Zhang, L.P., Qi, L.Q. and Zhou, G.L. (2014) M-Tensors and Some Applications. SIAM Journal on Matrix Analysis and Applications, 35, 437-542. https://doi.org/10.1137/130915339

  11. 11. Kannana, M.R., Mondererb, N.S. and Bermana, A. (2015) Some Properties of Strong H-Tensors and General H-Tensors. Linear Algebra & Its Applications, 476, 42-55. https://doi.org/10.1016/j.laa.2015.02.034

  12. 12. Ding, W., Qi, L.Q. and Wei, Y.M. (2013) M-tensors and Nonsingular M-Tensors. Linear Algebra and Its Applications, 439, 3264-3278. https://doi.org/10.1016/j.laa.2013.08.038

  13. 13. Li, C.Q., Wang, F., Zhao, J.X., et al. (2014) Criterions for the Positive Definiteness of Real Supersymmetric Tensors. Journal of Computational and Applied Mathematics, 255, 1-14. https://doi.org/10.1016/j.cam.2013.04.022

  14. 14. , F. and Sun, D.S. (2016) New Criteria for H-Tensors and an Application. Journal of Inequalities and Applications, 96, 1-12. https://doi.org/10.1186/s13660-016-1041-0

  15. 15. Li, Y.T., Liu, Q.L. and Qi, L.Q. (2017) Programmable Criteria for Strong H-Tensors. Numerical Algorithms, 74, 199-221. https://doi.org/10.1007/s11075-016-0145-4

  16. 16. Qi, L.Q. and Song, Y.S. (2014) An Even Order Symmetric B-Tensor Is Positive Definite. Linear Algebra and Its Applications, 457, 303-312. https://doi.org/10.1016/j.laa.2014.05.026

  17. 17. Li, C.Q. and Li, Y.T. (2015) Double B-Tensors and Quasi-Double B-Tensors. Linear Algebra and Its Applications, 466, 343-356. https://doi.org/10.1016/j.laa.2014.10.027

期刊菜单