Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65744 , 15 pages
10.12677/ACM.2023.1351157

鉴定克罗恩病和溃疡性结肠炎中共同的 免疫相关基因

李迟1,2,吴成1,2*

1安徽医科大学附属省儿童医院,安徽 合肥

2安徽医科大学第五临床医学院,安徽 合肥

收稿日期:2023年4月22日;录用日期:2023年5月15日;发布日期:2023年5月24日

摘要

目的:筛选出UC和CD患者的共有的表达异常的免疫相关基因,并比较UC和CD患者的免疫浸润的异同;方法:从GEO获取2个肠粘膜基因表达矩阵GSE87473和GSE102133,对其进行差异分析,以及WGCNA获取关键基因,并对获得的基因进行GO和KEGG分析,最后用CIBERSORT获取UC和CD患者的免疫浸润情况,并分析免疫相关基因与免疫细胞的相关性。结果:UC和CD患者中共有8个差异表达的免疫相关共同基因,分别是:DUOX2,LCN2,PI3,CXCL1,IDO1,STAT1,CXCL2和PLAUR。UC和CD患者具有相似的免疫细胞浸润结果和轻微的免疫细胞浸润差异。识别的免疫相关共同基因或多或少与同时失调的免疫细胞显著相关。结论:本研究利用生物信息学方法,筛选出8个UC和CD患者共有的表达异常的免疫相关基因,为深入研究IBD患者的发病机制、诊断以及靶向治疗带来了新的思路。

关键词

溃疡性结肠炎,克罗恩病,免疫基因,生物信息学

Identifying Common Immune-Related Genes in Crohn’s Disease and Ulcerative Colitis

Chi Li1,2, Cheng Wu1,2*

1Anhui Provincial Children’s Hospital Affiliated to Anhui Medical University, Hefei Anhui

2The Fifth Clinical Medical College of Anhui Medical University, Hefei Anhui

Received: Apr. 22nd, 2023; accepted: May 15th, 2023; published: May 24th, 2023

ABSTRACT

Objective: To screen for immune-related genes with abnormal expression common to patients with UC and CD and to compare the similarities and differences in immune infiltration in patients with UC and CD. Methods: Two intestinal mucosal gene expression matrices, GSE87473 and GSE102133, were obtained from GEO for differential analysis, as well as WGCNA to obtain essential genes and GO and KEGG analysis of the obtained genes, and finally, CIBERSORT was used to obtain immune infiltration in UC and CD patients and to analyze the correlation between immune-related genes and immune cells. Results: There were eight differentially expressed immune-associated common genes in UC and CD patients: DUOX2, LCN2, PI3, CXCL1, IDO1, STAT1, CXCL2 and PLAUR. UC and CD patients had similar immune cell infiltration results and slight differences in immune cell infiltration. Identified immune-related common genes were more or less significantly associated with concurrently dysregulated immune cells. Conclusion: Using a bioinformatics approach, this study screened for eight immune-related genes with abnormal expression common to UC and CD patients, bringing new ideas for an in-depth study of pathogenesis, diagnosis and targeted therapy in IBD patients.

Keywords:Ulcerative Colitis, Crohn’s Disease, Immune Genes, Bioinformatics

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

炎症性肠病(Inflammatory bowel disease, IBD)是一种易复发的特发性胃肠道慢性炎症。现在该疾病的病因尚未明确确定,该疾病被认为是在遗传易感者中,环境、微生物和免疫介导因素相互作用的失调 [1] 。溃疡性结肠炎(Ulcerative Colitis, UC)和克罗恩病(Crohn’s Disease, CD)是IBD的两种主要类型。UC的炎症病变为连续性分布逆行向近端累及,局限于黏膜和黏膜下层,可导致并发症:严重出血、中毒性巨结肠炎和暴发性结肠炎等 [2] 。相比之下,CD的炎症为节段性分布,可累计肠粘膜全层,炎症可影响消化道的任何部分,可能引发纤维性狭窄、瘘管和脓肿 [3] 。IBD无法治愈,管理既复杂又昂贵,给世界带来了较重的负担。现报道的世界上UC和CD患病率最高的国家,为挪威,UC的发病率为0.5%,德国CD 0.3%。在发达国家和发展中国家,IBD发病率正以惊人的速度上升 [4] 。因此,在分子水平上了解UC和CD的发病机制,可能为UC和CD的诊断和治疗提供额外的方法。

虽然IBD的发病机制尚不明确,但是越来越多的研究证明,免疫的因素在IBD的病因中扮演着重要的角色。免疫相关的基因表达异常可以影响免疫系统和微生物组之间的相互作用,而导致肠粘膜稳态的失调。例如,Toll样受体(Toll-like Receptors, TLRs)作为肠道微生物免疫应答的中枢,可诱发IBD。TLR1,2,4,7,8的信号通路需要依赖MyD88激活NF-κB和丝裂原活化蛋白激酶(Mitogen-Activated Protein Kinase, MAPK)来调控炎症反应 [5] 。免疫相关基因可以影响免疫细胞的代谢,趋化,分化,增殖以及炎症介质的释放。IDO1酶催化色氨酸的代谢来影响巨噬细胞的免疫代谢,进而影响M2型巨噬细胞(M2 Macrophages)极化 [6] 。免疫相关基因还能影响免疫介质的释放。例如,白细胞介素(interleukin, IL)-10是一种重要的抗炎细胞因子,能够维持肠道黏膜微生物和免疫的稳态,其由免疫相关基因编码 [7] 。IL10/IL10R的缺乏可表现为出生后几个月的IBD治疗抵抗和早发 [8] 。因此,免疫相关基因能够直接或间接影响免疫细胞,免疫介质以及肠道微生物等,这些都与IBD的发生密切相关。我们的研究目的在于识别UC和CD共有的免疫相关的功能基因,并探索这些共同基因的共享信号通路。

随着基因组测序技术的进步,越来越多的疾病相关数据集的微阵列分析为我们对疾病的机制和治疗的更深一步探索带来了很大便利。Bing Yu等人的研究表明:免疫相关基因AQP9、CD27和HVCN1可作为帮助CD诊断的辅助指标,AQP9可作为接受抗TNF治疗有效的预测指标 [9] 。Mengmeng Xu等人发现,IL1B,MMP1和MMP10能够作为活动性UC的特征基因 [10] 。基于大范围的基因表达谱数据,我们通过生物信息学分析来识别UC和CD共有的免疫相关基因以及免疫微环境的相似和差异性。

2. 材料与方法

2.1. 数据的提取和处理

我们从NCBI Gene Expression Omnibus public database (GEO, https://www.ncbi.nlm.nih.gov/geo/)获2个肠粘膜基因表达矩阵。基于GPL13158 Affymetrix HT HG-U133+ PM Array Plate 平台的GSE87473包含106名活动性UC的患者和21个健康对照。基于GPL6244 Affymetrix Human Gene 1.0 ST Array平台的GSE102133包括65例CD患者以及12例正常对照。对于数据的处理,我们首先根据平台注释信息将表达矩阵里的探针转换为基因,如果探针未对应基因,则被删去。对一个基因对应多个探针则取平均值。使用R中的affy对原始数据集进行背景校准,归一化和log2转换。我们从The ImmPort获取了2483个免疫相关基因(ImmPort, https://www.immport.org)。

2.2. 识别差异表达基因(Differentially Expressed Genes, DEGs)

在这里我们使用R软件limma包对GSE87473和GSE102133数据集进行基因的差异分析,使用p值< 0.05和|log2 Fold change (FC)| > 1 (Fold Change,差异倍数)的选择标准来识别DEGs,以获得UC和CD患者与其对应的对照组的差异基因的表达。通过R中的“ggplot2”软件包绘制火山图和热图,可视化UC和CD的差异表达基因。

2.3. 基因共表达网络(Weighted Gene Co-Expression Network Analysis, WGCNA)的构建

WGCNA是用来描述不同样品之间基因关联模式的系统生物学方法,可以用来鉴定高度协同变化的基因集 [11] 。我们选择并验证了理想软阈值。然后将矩阵数据转换为邻接矩阵,然后进行聚类,以基于拓扑重叠识别模块。在完成模块主成分基因(Module Eigengenes, ME)的计算并根据模块特征基因合并聚类树中的相似模块后,绘制了层次聚类树状图。模块与表型数据相结合,计算基因显著性(Gene Significance, GS)和模块显著性(Module Significance, MS)。此外,计算每个基因的模块成员(Module Membership, MM)并合并距离小于0.25的模块,值得注意的是grey模块被认为是无法被分配给任何模块的基因集合。WGCNA分析用于识别UC中的重要模块,以及获取关键基因(hub genes)。

2.4. 功能富集分析

我们用R的clusterProfiler包进行了GO和KEGG途径分析。GO由分子功能(Molecular Function, MF)、生物过程(Biological Process, BP)和细胞成分(Cellular Component, CC)组成。p < 0.05为有统计学意义。我们对UC中经WGCNA分析获得的hub genes和DEGs取交集,并对获得后的交集基因与CD的差异表达基因交集后进行富集分析。

2.5. 免疫细胞浸润和免疫基因与免疫细胞相关性分析

CIBERSORT是一种通过输入基因表达谱矩阵来鉴定组织中多种免疫细胞比例的计算方法,用于确定UC、CD和对应的对照中的免疫细胞比例 [12] 。使用“Cibersort”R包进行免疫细胞浸润分析。柱状图用于可视化不同样品中每种类型免疫细胞的比例。小提琴图可视化了UC、CD和对应的对照组之间免疫细胞浸润的差异比较。使用“corrplot”R软件包进行了描述UC和CD中22种类型的浸润免疫细胞以及免疫相关共同基因之间的相关性。使用R包装“boxplot”分别进行UC,CD和对照组之间不同免疫细胞的比例差异的可视化。

3. 结果

3.1. UC和CD中的差异表达基因

在UC数据集中,我们总共识别到773个DEGs,450个上调基因,323个下调基因;在CD数据集中,我们总共识别到324个DEGs,192个上调基因,132个下调基因;火山图和热图展示UCDEGs和CDDEGs (图1)。

(A) (B) (C) (D)

Figure 1. Volcano and heat map of DEGs for UC and CD

图1. UC和CD的DEGs的火山图和热图

3.2. 通过WGCNA识别UC的关键枢纽基因

通过WGCNA找出与关注性状相关度最高和样品特异高表达的模块。我们选择β = 7 (无标度R2 = 0.86)作为“软”阈值,根据标度独立性和平均连通性(图2(A))。图2(B)为UC的样本聚类树状图。我们共获取21个模块,其中模块与表型相关热图(图2(C))展示出lightpink4模块与UC的相关性最高,(相关系数 = 0.70,p = 8.6*e−20)。UC的lightpink4模块MM和GS的相关性散点图展示出较高的正相关性(r = 0.80, p = 1.1*e−27) (图2(D))。最后我们从lightpink4模块包含118个基因中,获取了42个hub genes。

(A) (B) (C) (D)

Figure 2. WGCNA diagram of the UC

图2. UC的WGCNA图

3.3. UC和CD共有基因的功能富集分析通路

通过对UC中经WGCNA分析获得的hub genes和DEGs取交集,我们共获得36个交集基因(图3(A))。并对这36个交集基因与CD中筛选出来的DEGs取交集,共获得了16个共同基因(图3(B))。我们对这16个共同基因进行富集分析(图3(C)),KEGG分析显示富集途径,主要包括NOD样受体信号通路、TNF信号通路和坏死性病变。共同基因的GO分析表明:在BP,这些基因主要参与对外界刺激的应答,对刺激的应答调节,对化学物质的应答,免疫应答和免疫系统的处理。而在CC,这些基因主要富集在胞外区和囊泡。而在MF,他们主要富集在辅因子结合和内肽酶活性。富集分析表明,交集基因主要与免疫反应和炎症反应有关,与UC和CD的发病机制相关。通过对16个共同基因与The ImmPort中的2483个免疫相关基因取交集,我们获得了8个共有的免疫相关基因,他们分别是:DUOX2,LCN2,PI3,CXCL1,IDO1,STAT1,CXCL2和PLAUR (图3(D))。

(A) (B) (C) (D)

Figure 3. Venn diagram to obtain UC and CD common genes and perform functional enrichment analysis

图3. 维恩图获取UC与CD共有基因并进行功能富集分析

3.4. UC和CD免疫细胞浸润分析

我们用CIBERSORT评估了UC和CD患者的免疫细胞构成比例。对于UC和CD数据集,每个样品中22种免疫细胞的比例显示在条形图中(图4(A),图4(B))。在UC患者中(图4(C)),活化的CD4+记忆性T细胞(activated CD4+ memory T cells),滤泡辅助性T细胞(T cells follicular helper, Tfhs),γδT cells,M0型巨噬细胞(M0 macrophages),M1型巨噬细胞(M1 macrophages),活化的肥大细胞(activated mast cells),活化的树突细胞(activated dendritic cells (DCs)),中性粒细胞(neutrophils)表达上调;然而,CD8+T细胞,活化的自然杀伤(activated natural killer)细胞,调节T细胞(regulatory T cells, Tregs),M1 macrophages,静息树突细胞(resting dendritic cells),静息肥大细胞(resting mast cells)下调。在CD患者中(图4(D)):浆细胞(plasma cells),静息CD4+记忆性T细胞(resting CD4+ memory T cells),activated dendritic cells,M0 macrophages,M1 macrophages,neutrophils表达上调,M2 macrophages,Tfhs,Tregs,CD8+T cells和单核细胞(monocytes)表达下调。这些免疫细胞比例图谱展示UC和CD相似的免疫细胞浸润结果和轻微的免疫细胞浸润差异。

紧接着,我们探讨了UC和CD患者中免疫相关共同基因和免疫细胞组分之间的关系(图4(E)和图4(F))。结果显示,在UC和CD患者中,识别的免疫相关共同基因或多或少与同时失调的免疫细胞显著相关。在UC和CD中,M0 macrophages,M1 macrophages,neutrophils都表达上调,CD8+T cells,Tregs和M2 macrophages都表达下调;在UC中上调的M1 macrophages与5个基因(STAT1, PLAUR, IDO1, CXCL2, CXCL1)显著相关,而CD中上调的M1和8个免疫基因都显著正相关。下调的M2 macrophages,在UC中和8个免疫基因都显著负相关,而在CD中与5个基因(PLAUR、LCN2、PI3、DUOX2、CXCL2)显著负相关。下调的Tregs在UC中与CXCL1负相关,DUOX2正相关,在CD中与7个基因(STAT1, PLAUR, LCN2, IDO1, DUOX2, CXCL2, CXCL1)显著负相关。仅在UC中下调的resting mast cells与8个基因都显著负相关。

(A) (B) (C) (D) (E) (F)

Figure 4. Immune cell infiltration of UC and CD

图4. UC和CD免疫细胞浸润情况

4. 讨论

微阵列技术能够帮助人类探索疾病的基因表达水平,进而提高了对复杂疾病相关内在分子机制的理解。UC是一种免疫相关疾病,其发生发展与免疫应答密切相关。据报告,使用基于肠道微生物的免疫疗法进行免疫刺激可缓解溃疡性结肠炎的炎症情况 [13] 。免疫系统异常是CD发病机制和进展的关键因素 [14] 。越来越多的研究证实CD组织通常存在高免疫浸润,免疫细胞和免疫相关基因是调节CD进展的有效靶点 [15] 。在过去的研究中,大家对IBD的基因表达研究,有的是基于单一的UC或CD的微阵列,有的是基于包含UC和CD的IBD微阵列数据。而我们的研究是基于对单纯的UC和CD数据集的比较,来探寻共同的差异表达的免疫相关基因以及免疫浸润的相似性及细微的差异性。

近来,很多研究者证实了DUOX2是炎症性肠病的一种标志物和未来潜在的治疗靶点。DUOX2是一种位于胃肠上皮细胞顶膜的过氧化氢生成剂,在炎症发作前在IBD患者中上调。DUOX2能够调节粘膜相关微生物的氧化还原信号,并限制细菌进入小鼠淋巴组织,从而减少微生物诱导的免疫应答 [16] 。DUOX2的过表达,伴随着粘膜相关变形菌的扩增,是IBD患者肠活检中发现的基因表达变化的标志,即使在没有明显的局部炎症的情况下也是如此 [17] 。Helmut Grasberger等人进行的研究发现有害的DUOX2变异体与微生物群–免疫稳态紊乱相关联 [18] 。Fong-Fong Chu等人发现DUOX2活性缺陷能够缓解GPx1-/-GPx2-/-敲除的小鼠回肠炎。缺乏活性的DUOX2小鼠,在35日龄时不再具有DKO小鼠中表现出的生长迟缓、肠缩短、隐窝上皮脱落、隐窝脓肿和杯状细胞耗竭。而一些IBD的诱因也能引起DUOX2的表达异常,例如:西方饮食能够在IBD易感者中引发肠道细菌的紊乱,进而导致肠道中DUOX2的表达异常 [19] 。越来越多的证据表明LCN2作为IBD的生物标志物的有用性 [20] [21] 在UC和CD患者的缓解期,UC的直肠和CD的回肠粘膜上LCN2的表达保持升高,而过去作为IBD标志物的粪便钙卫蛋白却没有,由此Andreas Zollner等人进一步证明了肠粘膜的LCN2是一个极具吸引力和潜力的IBD诊断标志物 [22] 。LCN2由各种细胞类型产生,包括髓样和肠上皮细胞,当受到IL-1β、IL-22或TLRs等促炎刺激中,被激活,并以高浓度分泌到肠腔中 [23] [24] 。既往的研究表明LCN2在IBD中起到了发挥着保护的作用 [24] 。LCN2是粘膜低铁血症的主要介质,能够限制炎症肠道中铁的可利用性外 [25] 。动物实验表明24p3/LCN2通过促进细胞迁移促进粘膜再生 [26] 。LCN2还对粘膜损伤发挥细胞保护作用 [27] ,增强巨噬细胞的细菌吞噬作用 [28] ,并调节肠道微生物群 [29] 。然而当LCN2与MMP-9结合或者保护MMP9酶的活性时,可能扮演着促炎作用 [30] 。Nesrine Makhezer等人发现TNFα和IL-17共同刺激人上皮细胞时,NOX1产生的ROS促进LCN-2的表达,其机制涉及p38 MAPK-JNK/NOXO 1/IkBζ轴 [31] 。在未来,如果能发挥LCN2的保护肠粘膜的作用,能够是IBD患者的又一福音。趋化因子和细胞因子通过促进中性粒细胞迁移至炎症部位,最终导致组织损伤和破坏,在调节粘膜炎症和免疫系统中发挥关键作用。在人类中,有不少于7种趋化因子(CXCL1、CXCL2、CXCL3、CXCL5、CXCL6、CXCL7和CXCL8)和2种受体(CXCR1和CXCR2)结合介导中性粒细胞功能 [32] 。在CD和UC患者中,STAT1和p-STAT1的水平和活性增加 [33] 。Siri Saterstad等人表明STAT1作为主要组织相容性复合体II呈递的关键转录因子在活动性CD和UC的患者表达均上调 [34] ,这与我们的研究结果几乎是一致的。IDO1是色氨酸分解代谢酶,它和色氨酸双加氧酶催化色氨酸分解代谢成犬尿氨酸的第一个限速步骤 [35] 。而色氨酸是肠道菌群、免疫细胞和肠内壁需要的一种必需的芳香族氨基酸 [27] [36] 而IBD患者显示色氨酸代谢增加,包括较低的血清色氨酸水平和较高的犬尿氨酸水平以及结肠IDO1表达升高 [37] 。较高的IDO1表达诱导树突状细胞中的耐受性,并且导致Foxp3+调节性T细胞的分化 [38] 。此外,较高的IDO1表达与M1/M2巨噬细胞之间有利于M2亚型的转变相关。已知巨噬细胞的M2亚型可释放抗炎细胞因子(如IL10)以缓解炎症 [39] 。所以,它可以有助于抗炎细胞因子的增加,减少促炎因子释放和缓解炎症。大多数先前的研究结果强调IDO1可减轻结肠炎,但Shon等人声称IDO1缺失或其抑制可通过抑制Toll样受体(TLR)/髓样分化初级反应88 (MYD88)/NF-κB通路来降低实验性结肠炎的严重程度 [40] 。我们的研究中发现UC和CD患者IDO1表达增高,而与M1型巨噬细胞正相关,在未来需要进一步的研究。值得注意的是PI3和PLAUR本研究首次发现均在UC和IBD表达上调,并可作为UC和CD的分子标志物。

根据功能分析结果,我们进一步进行免疫浸润分析。现有证据表明,先天性和适应性免疫途径失调均导致IBD患者肠道炎症反应异常。固有免疫系统是我们抵御病原体的第一把关员。和先前的研究相似,我们发现CD和UC组织中存在多种固有免疫细胞亚群的过度活化。例如,activated DC,M0,M1 macrophages,neutrophils [41] 。Macrophages和neutrophils是维持肠道免疫稳态和防御外来病原体的最重要的守门员。M1 macrophages被认为是一种促炎细胞亚型,可刺激炎症、Th1/Th17免疫应答,产生组织损伤并加重上皮损伤 [6] 。然而neutrophils在UC和CD的致病原因却不相同。在UC中neutrophils活化不受限制可能导致显著的组织损伤,进而导致慢性炎症,而在CD中,缺陷性neutrophils可能无法限制微生物的侵袭,导致随后无法控制的炎症反应 [42] 。M2macrophages,CD8+T cells,Tregs在UC和CD患者中表达下降。M2细胞拮能抗炎症、促进组织修复或促进Th2免疫应答 [6] 。目前,生物制剂如肿瘤坏死因子(TNF)阻滞剂用于治疗IBD,但TNF阻滞剂对一些IBD患者仍然无效 [43] 。这是因为TNF阻滞剂对IBD的反应需要M2 macrophages的参与 [44] 。因此,靶向巨噬细胞极化可能为IBD的治疗带来巨大的希望 [45] 。近些年来,CD8+T细胞在IBD中的作用一直存在争议,一些报告表明具有抗结肠炎特性 [46] ,另一些报告表明其有助于组织炎症 [47] 。越来越多的人认为,驱动肠道炎症和自身免疫的病理过程是继发于Tregs的性质或数量的缺陷而所致的免疫失衡 [48] 。有些研究表明,将Tregs转移到小鼠体内导致结肠炎的临床和组织学改善 [49] 。然而我们的研究发现,UC和CD患者的免疫浸润也有差异,比如:activated CD4+ memory T cells在UC中上调,resting CD4+ memory T cells在CD中上调,Tfhs在UC和CD患者相对于正常人,表现出数量变化的相反。

本研究利用生物信息学方法,筛选出8个UC和CD患者共有的表达异常的免疫相关基因,利用功能富集分析注释其相关通路,并分析了UC和CD患者免疫浸润的异同,为深入研究IBD患者的发病机制、诊断以及靶向治疗带来了新的思路。

文章引用

李迟,吴成. 鉴定克罗恩病和溃疡性结肠炎中共同的免疫相关基因
Identifying Common Immune-Related Genes in Crohn’s Disease and Ulcerative Colitis[J]. 临床医学进展, 2023, 13(05): 8267-8281. https://doi.org/10.12677/ACM.2023.1351157

参考文献

  1. 1. Matsuoka, K. and Kanai, T. (2015) The Gut Microbiota and Inflammatory Bowel Disease. Seminars in Immunopatholo-gy, 37, 47-55. https://doi.org/10.1007/s00281-014-0454-4

  2. 2. Ungaro, R., Mehandru, S., Allen, P.B., et al. (2017) Ulcerative Colitis. The Lancet, 389, 1756-1770. https://doi.org/10.1016/S0140-6736(16)32126-2

  3. 3. Roda, G., Chien Ng, S., Kotze, P.G., et al. (2020) Crohn’s Disease. Nature Reviews Disease Primers, 6, Article No. 22. https://doi.org/10.1038/s41572-020-0156-2

  4. 4. Ng, S.C., Shi, H.Y., Hamidi, N., et al. (2017) Worldwide Inci-dence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. The Lancet, 390, 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0

  5. 5. Lu, Y., Li, X., Liu, S., et al. (2018) Toll-Like Receptors and Inflammatory Bowel Disease. Frontiers in Immunology, 9, Article No. 72. https://doi.org/10.3389/fimmu.2018.00072

  6. 6. Pan, X., Zhu, Q., Pan, L.-L., et al. (2022) Macrophage Im-munometabolism in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Pharmacology & Therapeutics, 238, Article ID: 108176. https://doi.org/10.1016/j.pharmthera.2022.108176

  7. 7. Neumann, C., Scheffold, A. and Rutz, S. (2019) Functions and Regulation of T Cell-Derived Interleukin-10. Seminars in Immunology, 44, Article ID: 101344. https://doi.org/10.1016/j.smim.2019.101344

  8. 8. Sharifinejad, N., Zaki-Dizaji, M., Sepahvandi, R., et al. (2022) The Clinical, Molecular, and Therapeutic Features of Patients with IL10/IL10R Deficiency: A Systematic Review. Clini-cal & Experimental Immunology, 208, 281-291. https://doi.org/10.1093/cei/uxac040

  9. 9. Yu, B., Yin, Y.-X., Tang, Y.-P., et al. (2021) Diagnostic and Predictive Value of Immune-Related Genes in Crohn’s Disease. Frontiers in Immunology, 12, Article ID: 643036. https://doi.org/10.3389/fimmu.2021.643036

  10. 10. Xu, M., Kong, Y., Chen, N., et al. (2022) Identification of Im-mune-Related Gene Signature and Prediction of CeRNA Network in Active Ulcerative Colitis. Frontiers in Immunology, 13, Article ID: 855645. https://doi.org/10.3389/fimmu.2022.855645

  11. 11. Langfelder, P. and Horvath, S. (2008) WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinformatics, 9, Article No. 559. https://doi.org/10.1186/1471-2105-9-559

  12. 12. Newman, A.M., Liu, C.L., Green, M.R., et al. (2015) Robust Enu-meration of Cell Subsets from Tissue Expression Profiles. Nature Methods, 12, 453-457. https://doi.org/10.1038/nmeth.3337

  13. 13. Sham, H.P., Bazett, M., Bosiljcic, M., et al. (2018) Immune Stimulation Using a Gut Microbe-Based Immunotherapy Reduces Disease Pathology and Improves Barrier Function in Ulcerative Colitis. Frontiers in Immunology, 9, Article No. 2211. https://doi.org/10.3389/fimmu.2018.02211

  14. 14. Di Jiang, C. and Raine, T. (2020) IBD Considerations in Spondyloarthritis. Therapeutic Advances in Musculoskeletal Disease, 12. https://doi.org/10.1177/1759720X20939410

  15. 15. Malik, T. and Mannon, P. (2012) Inflammatory Bowel Diseases: Emerging Therapies and Promising Molecular Targets. Frontiers in Bioscience (Scholar Edition), 4, 1172-1189. https://doi.org/10.2741/s324

  16. 16. Grasberger, H., Gao, J., Nagao-Kitamoto, H., et al. (2015) Increased Expression of DUOX2 Is an Epithelial Response to Mucosal Dysbiosis Required for Immune Homeostasis in Mouse Intestine. Gastroenterology, 149, 1849-1859. https://doi.org/10.1053/j.gastro.2015.07.062

  17. 17. Haberman, Y., Tickle, T.L., Dexheimer, P.J., et al. (2014) Pediat-ric Crohn Disease Patients Exhibit Specific Ileal Transcriptome and Microbiome Signature. Journal of Clinical Investiga-tion, 124, 3617-3633. https://doi.org/10.1172/JCI75436

  18. 18. Grasberger, H., Magis, A.T., Sheng, E., et al. (2021) DUOX2 Variants Associate with Preclinical Disturbances in Microbiota-Immune Homeostasis and Increased Inflammatory Bowel Disease Risk. Journal of Clinical Investigation, 131, e141676. https://doi.org/10.1172/JCI141676

  19. 19. He, P., Yu, L., Tian, F., et al. (2022) Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Advances in Nutrition, 13, 1628-1651. https://doi.org/10.1093/advances/nmac029

  20. 20. Thorsvik, S., Damås, J.K., Granlund, A.V., et al. (2017) Fecal Neutrophil Gelatinase-Associated Lipocalin as a Biomarker for Inflammatory Bowel Disease. Journal of Gastroenterology and Hepatology, 32, 128-135. https://doi.org/10.1111/jgh.13598

  21. 21. Thorsvik, S., Bakke, I., van Beelen Granlund, A., et al. (2018) Expression of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in the Gut in Crohn’s Disease. Cell and Tissue Research, 374, 339-348. https://doi.org/10.1007/s00441-018-2860-8

  22. 22. Zollner, A., Schmiderer, A., Reider, S.J., et al. (2021) Faecal Bi-omarkers in Inflammatory Bowel Diseases: Calprotectin versus Lipocalin-2—A Comparative Study. Journal of Crohn’s and Colitis, 15, 43-54. https://doi.org/10.1093/ecco-jcc/jjaa124

  23. 23. Chakraborty, S., Kaur, S., Guha, S., et al. (2012) The Multifaceted Roles of Neutrophil Gelatinase Associated Lipocalin (NGAL) in Inflammation and Cancer. Biochimica et Biophysica Ac-ta, 1826, 129-169. https://doi.org/10.1016/j.bbcan.2012.03.008

  24. 24. Behnsen, J., Jellbauer, S., Wong, C.P., et al. (2014) The Cytokine IL-22 Promotes Pathogen Colonization by Suppressing Related Commensal Bacteria. Immunity, 40, 262-273. https://doi.org/10.1016/j.immuni.2014.01.003

  25. 25. Xiao, X., Yeoh, B.S. and Vijay-Kumar, M. (2017) Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation. Annual Review of Nutrition, 37, 103-130. https://doi.org/10.1146/annurev-nutr-071816-064559

  26. 26. Kortman, G.A.M., Mulder, M.L.M., Richters, T.J.W., et al. (2015) Low Dietary Iron Intake Restrains the Intestinal Inflammatory Response and Pathology of Enteric Infection by Food-Borne Bacterial Pathogens. European Journal of Immunology, 45, 2553-2567. https://doi.org/10.1002/eji.201545642

  27. 27. Playford, R.J., Belo, A., Poulsom, R., et al. (2006) Effects of Mouse and Human Lipocalin Homologues 24p3/lcn2 and Neutrophil Gelatinase-Associated Lipocalin on Gastrointestinal Mu-cosal Integrity and Repair. Gastroenterology, 131, 809-817. https://doi.org/10.1053/j.gastro.2006.05.051

  28. 28. Toyonaga, T., Matsuura, M., Mori, K., et al. (2016) Lipocalin 2 Prevents Intestinal Inflammation by Enhancing Phagocytic Bacterial Clearance in Macrophages. Scientific Reports, 6, Ar-ticle No. 35014. https://doi.org/10.1038/srep35014

  29. 29. Mori, K., Suzuki, T., Minamishima, S., et al. (2016) Neutrophil Gelati-nase-Associated Lipocalin Regulates Gut Microbiota of Mice. Journal of Gastroenterology and Hepatology, 31, 145-154. https://doi.org/10.1111/jgh.13042

  30. 30. Yan, L., Borregaard, N., Kjeldsen, L., et al. (2001) The High Molecular Weight Urinary Matrix Metalloproteinase (MMP) Activity Is a Complex of Gelatinase B/MMP-9 and Neutrophil Gelati-nase-Associated Lipocalin (NGAL). Modulation of MMP-9 Activity by NGAL. Journal of Biological Chemistry, 276, 37258-3765. https://doi.org/10.1074/jbc.M106089200

  31. 31. Makhezer, N., Ben Khemis, M., Liu, D., et al. (2019) NOX1-Derived ROS Drive the Expression of Lipocalin-2 in Colonic Epithelial Cells in Inflammatory Conditions. Mu-cosal Immunology, 12, 117-131. https://doi.org/10.1038/s41385-018-0086-4

  32. 32. Rajarathnam, K., Schnoor, M., Richardson, R.M., et al. (2019) How Do Chemokines Navigate Neutrophils to the Target Site: Dissecting the Structural Mechanisms and Signaling Pathways. Cell Signal, 54, 69-80. https://doi.org/10.1016/j.cellsig.2018.11.004

  33. 33. Relton, C.L. and Davey Smith, G. (2010) Epigenetic Epidemiol-ogy of Common Complex Disease: Prospects for Prediction, Prevention, and Treatment. PLOS Medicine, 7, e1000356. https://doi.org/10.1371/journal.pmed.1000356

  34. 34. Sæterstad, S., Østvik, A.E., Røyset, E.S., et al. (2022) Pro-found Gene Expression Changes in the Epithelial Monolayer of Active Ulcerative Colitis and Crohn’s Disease. PLOS ONE, 17, e0265189. https://doi.org/10.1371/journal.pone.0265189

  35. 35. Ball, H.J., Jusof, F.F., Bakmiwewa, S.M., et al. (2014) Trypto-phan-Catabolizing Enzymes—Party of Three. Frontiers in Immunology, 5, Article No. 485. https://doi.org/10.3389/fimmu.2014.00485

  36. 36. Mellor, A.L. and Munn, D.H. (2004) IDO Expression by Dendrit-ic Cells: Tolerance and Tryptophan Catabolism. Nature Reviews Immunology, 4, 762-774. https://doi.org/10.1038/nri1457

  37. 37. Nikolaus, S., Schulte, B., Al-Massad, N., et al. (2017) Increased Tryptophan Metabolism Is Associated with Activity of Inflammatory Bowel Diseases. Gastroenterology, 153, 1504-1516.e2. https://doi.org/10.1053/j.gastro.2017.08.028

  38. 38. Chen, W., Liang, X., Peterson, A.J., et al. (2008) The Indoleam-ine 2,3-Dioxygenase Pathway Is Essential for Human Plasmacytoid Dendritic Cell-Induced Adaptive T Regulatory Cell Generation. The Journal of Immunology, 181, 5396-5404. https://doi.org/10.4049/jimmunol.181.8.5396

  39. 39. Lin, Y., Yang, X., Yue, W., et al. (2014) Chemerin Aggravates DSS-Induced Colitis by Suppressing M2 Macrophage Polar-ization. Cellular & Molecular Immunology, 11, 355-366. https://doi.org/10.1038/cmi.2014.15

  40. 40. Shon, W.-J., Lee, Y.-K., Shin, J.H., et al. (2015) Severity of DSS-Induced Colitis Is Reduced in Ido1-Deficient Mice with Down-Regulation of TLR-MyD88-NF-κB Transcriptional Networks. Scientific Reports, 5, Article No. 17305. https://doi.org/10.1038/srep17305

  41. 41. Bai, X., Liu, W., Chen, H., et al. (2022) Immune Cell Landscaping Reveals Distinct Immune Signatures of Inflammatory Bowel Disease. Frontiers in Immunology, 13, Article ID: 861790. https://doi.org/10.3389/fimmu.2022.861790

  42. 42. Wéra, O., Lancellotti, P. and Oury, C. (2016) The Dual Role of Neutrophils in Inflammatory Bowel Diseases. Journal of Clinical Medicine, 5, Article No. 118. https://doi.org/10.3390/jcm5120118

  43. 43. Roda, G., Jharap, B., Neeraj, N., et al. (2016) Loss of Response to An-ti-TNFs: Definition, Epidemiology, and Management. Clinical and Translational Gastroenterology, 7, e135. https://doi.org/10.1038/ctg.2015.63

  44. 44. Vos, A.C.W., Wildenberg, M.E., Arijs, I., et al. (2012) Regulatory Mac-rophages Induced by Infliximab Are Involved in Healing in Vivo and in Vitro. Inflammatory Bowel Diseases, 18, 401-408. https://doi.org/10.1002/ibd.21818

  45. 45. Du, Y., Rong, L., Cong, Y., et al. (2021) Macrophage Polarization: An Effective Approach to Targeted Therapy of Inflammatory Bowel Disease. Expert Opinion on Therapeutic Targets, 25, 191-209. https://doi.org/10.1080/14728222.2021.1901079

  46. 46. Endharti, A.T., Okuno, Y., Shi, Z., et al. (2011) CD8+CD122+ Regulatory T Cells (Tregs) and CD4+ Tregs Cooperatively Prevent and Cure CD4+ Cell-Induced Colitis. The Journal of Immunology, 186, 41-52. https://doi.org/10.4049/jimmunol.1000800

  47. 47. Rabe, H., Malmquist, M., Barkman, C., et al. (2019) Distinct Pat-terns of Naive, Activated and Memory T and B Cells in Blood of Patients with Ulcerative Colitis or Crohn’s Disease. Clinical & Experimental Immunology, 197, 111-129. https://doi.org/10.1111/cei.13294

  48. 48. Clough, J.N., Omer, O.S., Tasker, S., et al. (2020) Regulatory T-Cell Ther-apy in Crohn’s Disease: Challenges and Advances. Gut, 69, 942-952. https://doi.org/10.1136/gutjnl-2019-319850

  49. 49. Mottet, C., Uhlig, H.H. and Powrie, F. (2003) Cutting Edge: Cure of Colitis by CD4+CD25+ Regulatory T Cells. The Journal of Immunology, 170, 3939-3943. https://doi.org/10.4049/jimmunol.170.8.3939

  50. NOTES

    *通讯作者Email: wucheng0706@126.com

期刊菜单