Advances in Clinical Medicine
Vol. 13  No. 11 ( 2023 ), Article ID: 75736 , 6 pages
10.12677/ACM.2023.13112552

锌与精神分裂症关系研究进展

乌婧1,李浩军2,张宪武3*

1内蒙古医科大学精神卫生学院,内蒙古 呼和浩特

2内蒙古自治区精神卫生中心医务部,内蒙古 呼和浩特

3内蒙古自治区精神卫生中心重性精神疾病治疗中心,内蒙古 呼和浩特

收稿日期:2023年10月23日;录用日期:2023年11月15日;发布日期:2023年11月22日

摘要

精神分裂症是所有重大精神疾病综合征中最难以定义和描述的,临床表现多为症状各异的综合征,可涉及思维、情感、认知行为等多方面,越来越多研究证明,锌离子浓度降低、锌转运蛋白及基因表达异常与精神分裂症患者精神症状成正相关,现就锌与精神分裂症的相关研究进展综述如下。

关键词

精神分裂症,锌,机制

Research Progress on the Relationship between Zinc and Schizophrenia

Jing Wu1, Haojun Li2, Xianwu Zhang3*

1College of Mental Health, Inner Mongolia Medical University, Hohhot Inner Mongolia

2Medical Department, Inner Mongolia Mental Health Center, Hohhot Inner Mongolia

3Severe Mental Illness Treatment Center, Inner Mongolia Mental Health Center, Hohhot Inner Mongolia

Received: Oct. 23rd, 2023; accepted: Nov. 15th, 2023; published: Nov. 22nd, 2023

ABSTRACT

Schizophrenia is the most difficult to define and describe among all the major mental illness syndromes. Most of the clinical manifestations are syndromes with different symptoms, which can involve thinking, emotion, cognitive behavior and other aspects. More and more studies have proved that decreased zinc ion concentration, abnormal zinc transporter protein and gene expression are positively correlated with psychiatric symptoms of schizophrenia patients. The research progress of zinc and schizophrenia is summarized as follows.

Keywords:Schizophrenia, Zinc, Mechanism

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

精神分裂症是一种高复发率且高致残性的慢性疾病,其终身患病率约为1% [1] ,多在青壮年缓慢或亚急性起病,以18~25岁发病率最高 [2] ,男性发病率略高于女性 [3] ,临床上往往表现为症状各异的综合征,涉及感知觉、思维、情感和行为等多方面的障碍以及精神活动的紊乱,同时还伴随高自杀、暴力等风险,造成严重的社会问题 [4] ,对周围人群和自身存在潜在的危害性。有75%的精神分裂症患者病情反复发作并不断恶化,最终导致残疾,同时,精神分裂症患者的失业率为80%~90% [5] ,平均预期寿命较正常人减少10~20岁 [6] ,这使其生活质量受到严重损害。《中国精神分裂症防治指南》(第二版)强调预防伤害,控制异常行为,降低精神病性症状的严重性是精神分裂症急性期的治疗目标,提高临床治愈率,最大限度减少病残率和自杀率,其治疗的关键是彻底缓解临床症状,减少复发风险 [7] 。

精神分裂症是一种遗传性疾病,具有多基因、复杂性的特点,其发病机制尚未完全明确。目前还没有一种学说能够合理地诠释精神分裂症的发病机制。现有研究认为,精神分裂症是一种由遗传和环境因素共同作用引起的疾病,遗传因素决定个体的疾病易感性,遗传因素和环境因素的交互作用决定个体是否发病 [8] [9] 。锌(Zn)作为人体重要的微量元素,对人体多达10%的蛋白质功能至关重要,在几乎所有细胞过程中起着关键作用,包括信号转导、基因表达和细胞凋亡。而锌的浓度又受锌转运蛋白、调节分子和浓度梯度严格控制,锌体内平衡的改变导致锌缺乏或浓度过高具有致病性,一项荟萃分析显示锌转运蛋白的遗传变异可能与精神分裂症的发病机制存在相关性 [10] 。目前,锌与精神分裂症发病机制的相关性尚未完全阐明,因此研究锌及相关锌转运蛋白表达对精神分裂症病因学的探索至关重要,对精神分裂症的临床治疗具有指导意义。

2. 锌的分布、吸收与排泄

锌(Zn)是人体内第二必需微量金属元素,其含量仅次于铁,在发育、生理、疾病等多种生物学过程中发挥着重要作用。成年人体内锌的总含量为2~3 g,以二价离子(Zn2+)形式存在,其中60%的锌储存于骨骼肌,30%位于骨骼,5%在肝和皮肤中,其余2%~3%在其他组织器官中 [11] 。血清中锌含量不足人体内总锌的1%,成人血液中正常的锌离子浓度为12~20 μmol/L,80%的血清锌与血清白蛋白结合,20%与a2-巨球蛋白强结合 [12] 。血浆中Zn2+的总周转率相当高,血浆中锌的总更换次数约为150次/天,由于人体没有专门的锌储存区,锌必须通过膳食摄入不断补充,因此,血浆锌池受膳食摄入量和一系列其他因素的显著影响 [13] 。

人体锌的稳态主要受肠道吸收调节 [14] ,锌的转运需要金属硫蛋白,食物中的Zn转换成Zn2+并与小肠配体和螯合物结合,经转运载体进入肠道上皮细胞后在细胞内被利用 [15] ,在缺锌状态下,粪便和尿液中的锌流失迅速减少,当这些机制不能维持需要锌的过程时,血浆锌才会下降,随后是肝脏、睾丸和骨骼等组织中可交换性较差的锌的减少 [16] 。现如今,锌缺乏症仍然是一个有待解决的全球公共卫生问题,根据世界卫生组织(WHO)的数据,全世界有80万人(1.4%)死于缺锌 [17] ,因此适当的补充锌对于预防和治疗由锌引起的某些疾病至关重要。

3. 中枢系统中的锌

在中枢神经系统中,锌以两种形式存在:第一种是与蛋白质紧密结合,第二种是在突触前囊泡中发现的游离的、细胞质的或细胞外的形式。在正常情况下,锌从突触囊泡释放作为兴奋性和抑制性神经传递的调节剂 [18] 。神经元锌只集中在谷氨酸能神经元内,作为n-甲基d-天冬氨酸和其他受体的变结构调节剂,调节兴奋性神经传递和神经可塑性。含锌的神经元在大脑皮层、杏仁核和海马体中形成了广泛的联系通路,辅助情绪调节和认知功能 [19] 。尽管囊泡锌只占大脑中总锌的一小部分,但它几乎构成了大脑中100%的组织化学活性锌 [20] 。同时,锌还是300多种酶的组成部分,参与多种细胞过程的调控,包括细胞分裂和DNA合成 [21] ,现有研究证实,锌失调与一系列神经系统疾病有关,包括神经发育障碍,如自闭症谱系障碍 [22] [23] ,抑郁焦虑 [24] ,以及神经退行性疾病,如阿尔茨海默病和帕金森病 [25] 。

细胞内Zn2+稳态有效地维持在稳定水平,其缓冲和抑制机制涉及Zn2+转运蛋白(ZIP、ZnT)、金属硫蛋白和金属响应转录因 [26] [27] ,正常生理条件下,锌离子流量可以保持动态平衡,即通过转运蛋白摄入胞内的锌离子量基本等于排除出胞外的锌离子量;从细胞质进入细胞器或锌离子结合蛋白的锌离子量基本等于细胞器或锌离子结合蛋白上释放出来的锌离子量。高浓度的Zn2+储存在某些神经元的突触囊泡中,当神经元受到生理刺激激活时,Zn2+可作为细胞间信号分子释放到突触间隙 [28] 。

锌在神经发育过程中起到重要作用。囊泡锌的形成与锌转运体3 (ZnT3)密不可分,敲除ZnT3,则大脑无法检测到囊泡锌 [29] ,Fu等人发现ZnT3敲除的雄性小鼠在出生14天时细胞增殖减少,在出生28天时,ZnT3敲除的雄性小鼠与ZnT3敲除雌性小鼠相比细胞增殖水平更高,这表明囊泡锌在调节海马细胞增殖、存活和神经元分化方面具有潜在作用,并显示出性别和年龄依赖性差异 [30] 。研究发现,通过缺锌饲料喂养的大鼠泛素–蛋白酶体系统和自噬成分改变,神经胶质沉着、内质网应激和细胞凋亡标志物增加,补锌3周后可以部分恢复这些改变,这表明锌浓度降至临界阈值以下可能会触发多种机制,导致脑细胞凋亡 [31] 。在细胞水平上,研究发现妊娠期锌缺乏会影响胎儿大脑的神经发生,导致皮质兴奋/抑制平衡的破坏,这种影响即使在饮食补充后也会持续到成年 [32] ,而出生后缺锌可减少小脑皮层颗粒细胞神经元的数量,延迟浦肯脑细胞的成熟,影响篮状和星状细胞树突分化 [33] [34] [35] 。

4. 锌与精神分裂症

最近的荟萃分析显示,精神分裂症患者和健康对照者血清中几种微量元素水平存在显著差异 [36] [37] 。Chen等人研究表明:抗精神病药物治疗后,混合型、急性型及分裂型精神分裂症患者血清锌含量明显降低 [38] 。在一项以人口为基础的青少年出生队列研究中,未吸毒青少年中较低的头发锌水平可能与精神病风险有关,这表明锌与精神病的病理生理有关,不依赖于抗精神病药物 [39] 。

目前尚不清楚有患精神病风险的患者体内锌含量是如何降低的。一种可能的解释是精神分裂症患者锌体内平衡的遗传变异改变他们早期的神经发育。一项东亚地区全基因组关联研究表明,锌稳态基因的单核苷酸多态性与精神分裂症的风险有关 [40] 。此外,在动物模型实验中,有针对性地破坏锌稳态基因(ZnT3和MT3),可观察到精神分裂症样行为障碍,MT-3敲除小鼠表现脉冲前抑制减弱,雌性ZnT3基因敲除小鼠在运动和熟练运动学习方面表现出异常,但似乎消除ZnT3可能存在性别特异性影响 [41] [42] 。

在精神分裂症中,血脑屏障的破坏和免疫反应的加剧被认为是导致疾病进展和认知症状的原因 [43] 。最近一项研究表明,SLC39A8 (ZIP8基因)变异与颅内出血和脑血管疾病有关,这表明SLC39A8可能在血脑屏障中发挥作用 [44] 。Li等人通过在小鼠SLC39A8的第393个氨基酸处引入苏氨酸,与人类SLC39A8的rs13107325相对应,建立敲入小鼠模型发现SLC39A8与血液和大脑中Zn2+水平失调有关,同时也降低了皮质树突棘密度,表明rs13107325这种错义变体可能通过调节锌转运和树突棘密度来增加患精神分裂症风险 [45] 。此外,全基因组关联研究(GWAS)显示ZNF804A是精神分裂症最强的候选基因之一,ZFP804A由神经元表达,主要在兴奋性神经元中表达,但也在抑制性神经元中表达,Huang等人研究数据支持ZFP804A/ZNF804A在认知功能和感觉运动门控中发挥重要作用,其功能障碍可能导致精神分裂症,特别是在女性患者中 [46] 。一项表达微阵列研究显示,精神分裂症患者背外侧前额叶皮层中SLC39A12的mRNA含量更高。Jelen等人验证了编码ZnT3 (SLC30A3)基因的两个变体的一个小等位基因的存在影响精神分裂症患者的脑谷氨酸和认知活动 [47] 。

5. 结论

精神分裂症的发病率高,又是慢性易复发性精神疾病,锌在精神分裂症的发生发展中发挥重要作用,精神分裂症表型的表达可能与产前锌缺乏及存在遗传风险基因有关 [48] ,临床和实验数据显示锌是数百种酶的必要组成部分,并且参与生物体细胞信息传导、蛋白质合成、细胞膜稳定的维持、内分泌及免疫调节作用,体内Zn2+失衡与精神分裂症的发病及症状相关联,同时,锌稳态基因的单核苷酸多态性也与精神分裂症的发病风险有关,现有研究也已证实补充硫酸锌能改善精神分裂症患者的症状,但其副作用也相对明显 [49] ,因此,纠正Zn2+失衡或有可能成为今后治疗精神分裂症的新思路,进一步明确Zn2+与精神分裂症之间的潜在机制是紧急且必要的。

文章引用

乌 婧,李浩军,张宪武. 锌与精神分裂症关系研究进展
Research Progress on the Relationship between Zinc and Schizophrenia[J]. 临床医学进展, 2023, 13(11): 18189-18194. https://doi.org/10.12677/ACM.2023.13112552

参考文献

  1. 1. Tandon, R., Keshavan, M.S. and Nasrallah, H.A. (2008) Schizophrenia, “Just the Facts” What We Know in 2008. 2. Ep-idemiology and Etiology. Schizophrenia Research, 102, 1-18. https://doi.org/10.1016/j.schres.2008.04.011

  2. 2. Insel, T.R. (2010) Rethinking Schizophrenia. Nature, 468, 187-193. https://doi.org/10.1038/nature09552

  3. 3. Jongsma, H.E., Turner, C., Kirkbride, J.B., et al. (2019) Inter-national Incidence of Psychotic Disorders, 2002-17: A Systematic Review and Meta-Analysis. The Lancet Public Health, 4, e229-e244. https://doi.org/10.1016/S2468-2667(19)30056-8

  4. 4. 陆林, 等. 沈渔邨精神病学[M]. 北京: 人民卫生出版社, 2018.

  5. 5. Marwahas, J. (2004) Schizophrenia and Employment—A Review. Social Psychiatry and Psychiatric Epide-miology, 38, 337-349. https://doi.org/10.1007/s00127-004-0762-4

  6. 6. Chesney, E., Goodwin, G.M., Fazel, S., et al. (2014) Risks of All-Cause and Suicide Mortality in Mental Disorders: A Meta-Review. World Psychiatry, 13, 153-160. https://doi.org/10.1002/wps.20128

  7. 7. 赵靖平. 中国精神分裂症防治指南[M]. 第二版. 北京: 中华医学电子音像出版社, 2015.

  8. 8. Cleynen, I., Engchuan, W., Hestand, M.S., et al. (2020) Genetic Contributors to Risk of Schizophrenia in the Presence of a 22q11.2 Deletion. Molecular Psychiatry, 26, 4496-4510.

  9. 9. Stilo, S.A. and Murray, R.M. (2019) Non-Genetic Factors in Schizophrenia. Current Psychiatry Reports, 21, Article No. 100. https://doi.org/10.1007/s11920-019-1091-3

  10. 10. Joe, P., Petrilli, M., Malaspina, D. and Weissman, J. (2018) Zinc in Schizophrenia: A Meta-Analysis. General Hospital Psychiatry, 53, 19-24. https://doi.org/10.1016/j.genhosppsych.2018.04.004

  11. 11. Kambe, T., Tsuji, T., Hashimoto, A., et al. (2015) The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiolog-ical Reviews, 95, 749-784. https://doi.org/10.1152/physrev.00035.2014

  12. 12. Barnett, J.P., Blindauer, C.A., Kassaar, O., et al. (2013) Alloster-ic Modulation of Zinc Speciation by Fatty Acids. Biochimica et Biophysica Acta, 1830, 5456-5464. https://doi.org/10.1016/j.bbagen.2013.05.028

  13. 13. King, J.C. (2011) Zinc: An Essential But Elusive Nutrient. The American Journal of Clinical Nutrition, 94, 679S-684S. https://doi.org/10.3945/ajcn.110.005744

  14. 14. Krebs, N.F. (2000) Overview of Zinc Absorption and Excretion in the Human Gastrointestinal Tract. The Journal of Nutrition, 130, 1374S-1377S. https://doi.org/10.1093/jn/130.5.1374S

  15. 15. 张波, 孙得发. 锌的生物学功能、吸收转运及最新研究进展[J]. 广东饲料, 2015, 24(12): 29-31.

  16. 16. Maares, M. and Haase, H. (2020) A Guide to Human Zinc Absorption: General Overview and Recent Advances of in Vitro Intestinal Models. Nutrients, 12, 762. https://doi.org/10.3390/nu12030762

  17. 17. World Health Organization (2013) Zinc Supplementation and Growth in Children: Biological, Behavioural and Contextual Rationale.

  18. 18. Smart, T.G., Hosie, A.M. and Miller, P.S. (2004) Zn2+ Ions: Modulators of Excitatory and Inhibitory Synaptic Activity. Neuroscientist, 10, 432-442. https://doi.org/10.1177/1073858404263463

  19. 19. Szewczyk, B. (2013) Zinc Homeostasis and Neurodegenerative Disorders. Frontiers in Aging Neuroscience, 5, Article No. 33. https://doi.org/10.3389/fnagi.2013.00033

  20. 20. (2000) Zinc and Health: Current Status and Future Directions. Pro-ceedings of a workshop. Bethesda, Maryland, USA. November 4-5, 1998. The Journal of Nutrition, 130, 1341S-1519S.

  21. 21. MacDonald, R.S. (2000) The Role of Zinc in Growth and Cell Proliferation. The Journal of Nutri-tion, 130, 1500S-1508S. https://doi.org/10.1093/jn/130.5.1500S

  22. 22. Yoo, M.H., Kim, T.Y., Yoon, Y.H. and Koh, J.Y. (2016) Autism Phenotypes in ZnT3 Null Mice: Involvement of Zinc Dyshomeostasis, MMP-9 Activation and BDNF Upregulation. Scientific Reports, 6, Article No. 28548. https://doi.org/10.1038/srep28548

  23. 23. Grabrucker, S., Jannetti, L., Eckert, M., et al. (2014) Zinc Deficiency Dysregulates the Synaptic ProSAP/Shank Scaffold and Might Contribute to Autism Spectrum Disorders. Brain, 137, 137-152. https://doi.org/10.1093/brain/awt303

  24. 24. Nakamura, M., Miura, A., Nagahata, T., Shibata, Y., Okada, E. and Ojima, T. (2019) Low Zinc, Copper, and Manganese Intake Is Associated with Depression and Anxiety Symptoms in the Japanese Working Population: Findings from the Eating Habit and Well-Being Study. Nutrients, 11, Article No. 847. https://doi.org/10.3390/nu11040847

  25. 25. Kozlowski, H., Luczkowski, M., Remelli, M. and Valensin, D. (2012) Copper, Zinc and Iron in Neurodegenerative Diseases (Alzheimer’s, Parkinson’s and Prion Diseases). Coordina-tion Chemistry Reviews, 256, 2129-2141. https://doi.org/10.1016/j.ccr.2012.03.013

  26. 26. Colvin, R.A., Holmes, W.R., Fontaine, C.P. and Maret, W. (2010) Cytosolic Zinc Buffering and Muffling: Their Role in Intracellular Zinc Homeostasis. Metallomics, 2, 306-317. https://doi.org/10.1039/b926662c

  27. 27. Colvin, R.A., Fontaine, C.P., Laskowski, M. and Thomas, D. (2003) Zn2+ Transporters and Zn2+ Homeostasis in Neurons. European Journal of Pharmacology, 479, 171-185. https://doi.org/10.1016/j.ejphar.2003.08.067

  28. 28. Hara, T., Takeda, T.A., Takagishi, T., Fukue, K., Kambe, T. and Fukada, T. (2017) Physiological Roles of Zinc Transporters: Molecular and Genetic Importance in Zinc Homeostasis. The Journal of Physiological Sciences, 67, 283-301. https://doi.org/10.1007/s12576-017-0521-4

  29. 29. Cole, T.B., Wenzel, H.J., Kafer, K.E., Schwartzkroin, P.A. and Palmiter, R.D. (1999) Elimination of Zinc from Synaptic Vesicles in the Intact Mouse Brain by Disruption of the ZnT3 Gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 1716-1721. https://doi.org/10.1073/pnas.96.4.1716

  30. 30. Fu, S., Cho, A.T., Spanswick, S.C. and Dyck, R.H. (2023) Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus. Cells, 12, Article No. 880. https://doi.org/10.3390/cells12060880

  31. 31. Savitikadi, P., Palika, R., Pullakhandam, R., Reddy, G.B. and Reddy, S.S. (2023) Dietary Zinc Inadequacy Affects Neurotrophic Factors and Proteostasis in the Rat Brain. Nutrition Research, 116, 80-88. https://doi.org/10.1016/j.nutres.2023.06.002

  32. 32. Adamo, A.M., Liu, X., Mathieu, P., Nuttall, J.R., Supasai, S. and Oteiza, P.I. (2019) Early Developmental Marginal Zinc Deficiency Affects Neurogenesis Decreasing Neuronal Number and Altering Neuronal Specification in the Adult Rat Brain. Frontiers in Cellular Neuroscience, 13, Article No. 62. https://doi.org/10.3389/fncel.2019.00062

  33. 33. Dvergsten, C.L., Fosmire, G.J., Ollerich, D.A. and Sandstead, H.H. (1983) Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. I. Impaired Acquisition of Granule Cells. Brain Research, 271, 217-226. https://doi.org/10.1016/0006-8993(83)90284-6

  34. 34. Dvergsten, C.L., Fosmire, G.J., Ollerich, D.A. and Sandstead, H.H. (1984) Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. II. Impaired Mat-uration of Purkinje Cells. Brain Research, 318, 11-20. https://doi.org/10.1016/0165-3806(84)90057-9

  35. 35. Dvergsten, C.L., Johnson, L.A. and Sandstead, H.H. (1984) Alterations in the Postnatal Development of the Cerebellar Cortex Due to Zinc Deficiency. III. Impaired Dendritic Dif-ferentiation of Basket and Stellate Cells. Brain Research, 318, 21-26. https://doi.org/10.1016/0165-3806(84)90058-0

  36. 36. Saghazadeh, A., Mahmoudi, M., Shahrokhi, S., et al. (2020) Trace Elements in Schizophrenia: A Systematic Review and Meta-Analysis of 39 Studies (N = 5151 Participants). Nutri-tion Reviews, 78, 278-303. https://doi.org/10.1093/nutrit/nuz059

  37. 37. Baj, J., Forma, A., Sitarz, E., et al. (2020) Beyond the Mind-Serum Trace Element Levels in Schizophrenic Patients: A Systematic Review. International Journal of Molecular Sciences, 21, Article No. 9566. https://doi.org/10.3390/ijms21249566

  38. 38. Chen, X., Li, Y., Zhang, T., Yao, Y., Shen, C. and Xue, Y. (2018) As-sociation of Serum Trace Elements with Schizophrenia and Effects of Antipsychotic Treatment. Biological Trace Element Research, 181, 22-30. https://doi.org/10.1007/s12011-017-1039-6

  39. 39. Tabata, K., Miyashita, M., Yamasaki, S., et al. (2022) Hair Zinc Levels and Psychosis Risk among Adolescents. Schizophrenia (Heidelb), 8, Article No. 107. https://doi.org/10.1038/s41537-022-00307-y

  40. 40. Lam, M., Chen, C.Y., Li, Z., et al. (2019) Comparative Genetic Architectures of Schizophrenia in East Asian and European Populations. Nature Genetics, 51, 1670-1678. https://doi.org/10.1038/s41588-019-0512-x

  41. 41. Koumura, A., Kakefuda, K., Honda, A., et al. (2009) Metallothi-onein-3 Deficient Mice Exhibit Abnormalities of Psychological Behaviors. Neuroscience Letters, 467, 11-14. https://doi.org/10.1016/j.neulet.2009.09.051

  42. 42. Thackray, S.E., McAllister, B.B. and Dyck, R.H. (2017) Behav-ioral Characterization of Female Zinc Transporter 3 (ZnT3) Knockout Mice. Behavioural Brain Research, 321, 36-49. https://doi.org/10.1016/j.bbr.2016.12.028

  43. 43. Najjar, S., Pahlajani, S., De Sanctis, V., Stern, J.N.H., Najjar, A. and Chong, D. (2017) Neurovascular Unit Dysfunction and Blood-Brain Barrier Hyperpermeability Contribute to Schiz-ophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Frontiers in Psychiatry, 8, Ar-ticle No. 83. https://doi.org/10.3389/fpsyt.2017.00083

  44. 44. McCoy, T.H., Pellegrini, A.M. and Perlis, R.H. (2019) Using Phe-nome-Wide Association to Investigate the Function of a Schizophrenia Risk Locus at SLC39A8. Translational Psychia-try, 9, Article No. 45. https://doi.org/10.1038/s41398-019-0386-9

  45. 45. Li, S., Ma, C., Li, Y., et al. (2022) The Schizophrenia-Associated Missense Variant rs13107325 Regulates Dendritic Spine Density. Translational Psychiatry, 12, Article No. 361. https://doi.org/10.1038/s41398-022-02137-z

  46. 46. Huang, Y., Huang, J., Zhou, Q.X., et al. (2021) ZFP804A Mu-tant Mice Display Sex-Dependent Schizophrenia-Like Behaviors. Molecular Psychiatry, 26, 2514-2532. https://doi.org/10.1038/s41380-020-00972-4

  47. 47. Jelen, L.A., Green, M.S., King, S., et al. (2022) Variants in the Zinc Transporter-3 Encoding Gene (SLC30A3) in Schizophrenia and Bipolar Disorder: Effects on Brain Glutamate—A Pilot Study. Frontiers in Psychiatry, 13, Article ID: 929306. https://doi.org/10.3389/fpsyt.2022.929306

  48. 48. Petrilli, M.A., Kranz, T.M., Kleinhaus, K., et al. (2017) The Emerging Role for Zinc in Depression and Psychosis. Frontiers in Pharmacology, 8, Article No. 414. https://doi.org/10.3389/fphar.2017.00414

  49. 49. Behrouzian, F., Nazarinasab, M., Sadegh, A.M., Abdi, L. and Sabzevarizadeh, M. (2022) Effects of Zinc Sulfate on Schizophrenia Symptoms in Patients Undergoing Atypical Antipsychotic Pharmacotherapy. Journal of Family Medicine and Primary Care, 11, 7795-7799. https://doi.org/10.4103/jfmpc.jfmpc_1034_22

  50. NOTES

    *通讯作者。

期刊菜单