Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 83156 , 9 pages
10.12677/ACM.2024.143834

免疫维持治疗在儿童复发性髓鞘少突胶质细胞糖蛋白抗体相关疾病的研究进展

郭雨慧,李秀娟*

重庆市重庆医科大学附属儿童医院神经内科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病 研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆

收稿日期:2024年2月25日;录用日期:2024年3月19日;发布日期:2024年3月25日

摘要

髓鞘少突胶质细胞糖蛋白抗体相关疾病(MOG-IgG associated disorders, MOGAD)是一种不同于多发性硬化(multiple sclerosis, MS)和视神经脊髓炎谱系疾病(neuromyelitis optica spectrum disorder, NMOSD)的免疫介导的中枢神经系统炎性脱髓鞘疾病。该病儿童多见,且表型多样,可表现为单相或复发病程,约28%~60%的儿童患者复发,多次复发可能导致遗留视觉、认知、癫痫发作、运动障碍等神经功能障碍。控制急性发作、识别及预防复发、改善预后是临床关注的重点。目前急性期免疫治疗方案得到较大共识,而预防复发的免疫维持治疗尚未有比较公认的方案。目前治疗策略主要来自一些小样本、回顾性研究,并借助其他自身免疫性疾病的经验。本文就维持治疗的启动时机及不同方案进行综述以提高认识,为早期治疗、改善预后提供借鉴。

关键词

髓鞘少突胶质细胞糖蛋白抗体相关疾病(MOGAD),儿童,复发,维持治疗,研究进展

Research Progress in Immune Maintenance Therapy for Recurrent Oligodendrocyte Glycoprotein Antibody Related Diseases in Children

Yuhui Guo, Xiujuan Li*

Department of Neurology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Child Development and Disorders, Ministry of Education, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing

Received: Feb. 25th, 2024; accepted: Mar. 19th, 2024; published: Mar. 25th, 2024

ABSTRACT

Myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD) are immune-mediated inflammatory demyelinating diseases of the central nervous system that are distinct from multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). It is common in children with a variety of phenotypes, and can manifest as a monophasic or recurrent course, with recurrence in about 28 to 60 percent of pediatric patients, and multiple recurrences may lead to neurological impairments such as residual vision, cognition, seizures, and movement disorders. Controlling acute exacerbations, identifying and preventing recurrence, and improving prognosis are the focus of clinical attention. At present, there is a great consensus on the immunotherapy regimen in the acute phase, but there is no well-established regimen for immunomaintenance therapy to prevent recurrence. Current treatment strategies are based on small, retrospective studies and experience with other autoimmune diseases. This article reviews the timing of initiation of maintenance therapy and different regimens to raise awareness, and provide reference for early treatment and prognosis.

Keywords:Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorders (MOGAD), Children, Relpse, Maintenance Therapy, Research Progress

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

髓鞘少突胶质细胞糖蛋白(myelin oligodendrocyte glycoprotein, MOG)是中枢神经髓鞘构成蛋白之一,参与髓鞘黏附,维持髓鞘完整性,易于与抗体结合成为自身抗体介导疾病的潜在位点 [1] 。目前已在多种获得性CNS脱髓鞘疾病(ADS)中发现MOG抗体。目前研究认为MOGAD是不同于视神经脊髓炎谱系疾病及多发性硬化的一种获得性脱髓鞘疾病。该病是儿童最常见的中枢神经系统获得性脱髓鞘疾病,随着对疾病的认识发现,有近一半的儿童MOGAD患者复发,治疗失败及复发可导致急剧的神经功能障碍 [2] [3] [4] [5] [6] ,因此部分患者不仅需要急性期治疗,更需要以预防复发为目的的长程免疫维持治疗。Hacohen Y等人发现硫唑嘌呤、吗替麦考酚酯等药物可能不同程度的降低年化复发率。但现有临床数据多为小样本、回顾性研究或个案报道,不能确定药物的确切疗效以及何种药物更为有效。本文就维持治疗的启动时间、不同维持治疗药物的疗效及不良反应进行综述,为临床医生选择维持治疗方案提供思路。

2. 启动维持治疗的时机

临床上MOGAD的治疗策略借鉴于AQP4抗体阳性NMOSD,但仍存在根本差异。在AQP4-NMOSD患者中,几乎所有患儿均会复发,加上疾病严重程度,使得首次发作后必须进行慢性免疫抑制 [7] [8] [9] 。相比之下,儿童MOGAD患者复发的风险似乎较低,但患者的残疾积累被认为与复发密切相关,每次复发均可能导致长期预后不良,因此启动维持治疗的时机上存在较大差异 [5] [10] 。2020年全球医生治疗MOGAD的实践调查中,有53.8%的医生并没有遵循已出版的共识或指南,其中一些差异性大的治疗方案值得大家关注和探讨 [11] 。

对于初次发作的MOGAD是否需要长期免疫治疗目前尚无定论。是否启动维持治疗通常受到几个因素的影响:对初次发作的治疗反应、初次发作的严重程度、短期残疾风险(与第一次发作或累积发作有关)、短期和长期免疫抑制的风险和年龄。

对于首次发作(EDSS ≥ 3.0,改良rank量表(mRS) ≥ 3.0,和/或VA ≤ 1/3 (0.3))急性治疗后1~3个月恢复不佳的患者(主要是TM和ON患者),再次疾病打击可能会造成瘫痪或失明等严重后果,应考虑及时开始维持治疗,以防止首次复发。由于ADEM表型的患者在3个月的急性期可能出现波动的临床和/或放射学症状 [12] ,因此需要在发病时开始IVMP治疗后1个月至3个月内考虑“突然恶化”而不是新复发的可能性,此时可能不需要积极启动免疫维持治疗。

研究发现超过半数的MOGAD儿童在发病后一年内出现复发 [13] ,初次发作与首次复发之间间隔较长的患者(>18个月),即使没有维持治疗,部分复发病程的MOGAD患者也具有长期稳定的病程,因此在这些患者是否使用维持治疗应当加以权衡;HACOHEN报道了一些未予以免疫治疗的(68.75%, 22/32) MOGAD儿童患者虽有复发病程(中位复发数为1.0 (1.0~7.0)),但在5年的随访期间恢复良好(最后一次随访时ARR为0,并且没有神经系统后遗症、EDSS评分为0) [10] [14] 。

值得关注的是,很难预测新诊断的患者是否要发展为临床复发,通常需要对初诊的患者进行临床监测,一些无症状的进展可能有提示作用,如MOG抗体滴度持续阳性、MRI影像学进展及光学相干断层扫描(OCT)记录的视神经炎(optic neuritis, ON)亚临床恶化,但是否需要维持治疗尚存在争议。

MOG-IgG在MOGAD中发挥重要作用,是其重要的诊断依据。最近的研究表明,在儿童和成人患者中,初次发作后持续的MOG-IgG1血清阳性与较高的复发率相关,70%~89%的患者在随访中复发 [15] [16] [17] [18] 。在42例连续2年监测抗体滴度的MOGAD儿童患者中,约38%的患者经历复发,他们的MOG-IgG抗体滴度均持续阳性且高于单相患者,在接受免疫调节治疗后,血清抗体转阴并且未在进一步复发 [13] 。一项关于成人及儿童的MOGAD的纵向MOG抗体检测的研究中,复发病程患者的缓解期血清抗体滴度明显高于单相患者,首次缓解期(至少3个月评估)血清抗体的高滴度(1:2560)与后续复发的风险增加相关 [19] 。这似乎支持对MOG抗体滴度持续阳性及抗体滴度较高的患者尽早免疫抑制治疗。但是也有研究表明,在81% (13/16)的单相性MOGAD儿童中可保持MOG抗体持续阳性 [20] ,过早的维持治疗也可能是不合适的。

MOGAD患者的MRI异常可在大脑、视神经和脊髓中检测到,具体取决于临床上受影响的神经系统解剖区域 [21] [22] [23] [24] 。ADEM是儿童MOGAD最常见表型,多数患儿会对头颅MRI进行随访。目前尚不清楚它们是否会随着时间的推移而累积临床上无症状的磁共振成像病变,以及这些病变是否能预测未来复发的风险以及使用慢性免疫疗法。在一项包括儿童及成人MOGAD患者的研究中,在发作期及缓解期对他们进行MRI监测,发现了3.0% (5/167)的缓解期无症状新发脑部病变,从发现新发脑部病变到下一次复发的中位时间为2个月,而在没有任何无症状新发脑部病变的情况下,为73个月,他们认为尽管无症状MRI病变虽然少见,但能预测复发 [25] 。而在加拿大的儿童MOGAD队列中,在10名出现一个或多个无症状脑部病变的患者随访7年后,8人(80%)临床上仍为单相,2例(20%)复发;因此他们认为临床复发性疾病的阳性预测值仅为20%,仅检测无症状病变不需要立即开始慢性免疫治疗 [26] 。Hacohen等人发现了儿童MOGAD的一种不常见MRI模式,表现为广泛、融合且分布大致对称的白质营养不良样改变,该种MRI模式的7名患者均有复发,其中4例接受维持治疗后仍复发,因此对“脑白质营养不良样”表型的MOGAD患者可能需积极进行免疫维持治疗 [27] 。

视神经炎的预后可以通过功能(视力)和结构如轴突损伤和髓鞘损伤(通过光学相干断层扫描及视觉诱发电位等方法推断)来衡量 [28] 。患有MOGAD的患者可能存在亚临床ON事件,视网膜神经纤维层(retinal nerve fiber layer, RNFL)厚度显著降低 [29] 。既往一项研究发现,患有各种复发性脱髓鞘综合征的儿童的长期视力损害与RNFL厚度呈负相关 [30] 。但Havla J等人研究发现,尽管与AQP4抗体阳性视神经炎相比,MOG抗体相关ON存在严重且几乎相同的神经轴索性视网膜萎缩,但儿童MOG抗体相关ON的视力恢复优于成人,与年龄相关的皮质神经可塑性可能是结构变化和功能结果之间巨大差异的原因 [31] 。因此对这类亚临床视神经炎进展的患者进行药物干预仍需进一步前瞻性研究讨论。

3. 维持治疗药物的疗效及安全性研究进展

目前儿童MOGAD的治疗尚缺乏高质量的临床研究证据,维持治疗方案包括多种免疫抑制剂,如硫唑嘌呤(azathioprine, AZA)、吗替麦考吩酯(mycophenolate mofetil, MMF)、利妥昔单抗(rituximab, RTX)、定期输注免疫球蛋白(intravenous immunoglobulins, IVIG)和口服糖皮质激素维持,选择何种药物更好尚无明确定论,以下就目前的药物研究进展进行综述。

3.1. 糖皮质激素

MOGAD是一种类固醇敏感的疾病,急性期激素是一线药物,但激素的维持时间尚存在很大分歧。一项国际调查中,59.7%的医生选择在急性期后给予超过3个月的激素口服,也有15.2%的人认为激素的使用可缩短在3个月以内,MARIGNIER等人对MOGAD发表的个人观点中也有一些儿科医生认为类固醇疗程应少于4周 [11] [32] 。一些作者主张在治疗开始后谨慎类固醇激素减量,以最大限度地降低复发风险并减少累积的类固醇激素负担,因为当泼尼松剂量维持在5~10 mg/d和停药后2个月容易复发 [33] [34] 。NOSADINI等人发现在儿童MOGAD中,在第一次疾病事件发生时使用皮质类固醇5周或更长时间与疾病复发病程的几率降低6.7倍独立相关,所以他们认为可以将口服激素减量的疗程控制在5周 [34] 。在英国队列中,<3个月的免疫抑制治疗(多为激素)的复发风险为47%,3~6个月的复发风险为22%,超过6月的复发风险为26% [5] 。HECOHEN报道的儿童口服激素超过6个月的复发率为62.5%,但在一项包括成人及儿童的研究中激素维持治疗失败率仅为5%,ARR从治疗前的2降低为0 [14] [33] 。

借鉴NMOSD等免疫性疾病的诊疗经验,小剂量激素联合其他免疫抑制药物可能使患者受益。在美国,迄今为止最大的一项分析成人及儿童MOG抗体阳性复发患者治疗效果的研究中,观察到口服强的松的失败率非常低(5%) [33] 。然而,几乎所有这些患者都同时接受了AZA、MMF、IVIG或RTX等其他免疫疗法的治疗,这表明这些联合疗法对MOGAD亦具有协同作用。Jarius等报道称应用硫唑嘌呤的41%的患者复发发生在治疗开始的6个月内,且在此期间观察到的大多数(12/14)发作发生在未联合使用口服类固醇的患者身上 [4] 。儿童MOGAD尚无临床研究比较单独使用激素与联合激素的免疫抑制治疗的疗效,但有一项包括成人和儿童MOGAD的研究发现单独口服泼尼松与联合激素的免疫抑制治疗相比复发时间和复发风险无统计学差异,但在24个月的多变量分析中,泼尼松龙组患者的复发风险显著降低,泼尼松组2年的复发风险为23.5%,而联合激素的免疫抑制治疗组为40.9% [35] 。考虑到免疫抑制剂可能带来的感染等并发症,单独使用口服激素似乎是不错的选择。

此外,与长期每日口服皮质类固醇相比,短时间内脉冲高剂量皮质类固醇的严重副作用发生率较低,也有人提出定期IVMP的方案治疗神经免疫性性疾病。每月静脉注射甲泼尼龙在多发性硬化(MS)及慢性炎症性脱髓鞘性多发性神经根神经病(CIDP)中被证实是安全有效的 [36] [37] 。在一项脉冲大剂量地塞米松与标准泼尼松龙治疗CIDP的随机对照视野中两组治疗的缓解率无统计学差异,均比基线高约40%。但接受地塞米松治疗的患者改善速度几乎是其两倍。两组的不良事件发生率相似且均较为轻微,但更多接受泼尼松龙治疗的患者报告失眠和库欣综合征 [38] 。目前MOGAD尚无激素冲击维持治疗的文献报道,但似乎值得尝试借鉴。

3.2. 四种常用药物

3.2.1. 吗替麦考酚酯

一些回顾性研究提到了MMF在MOGAD中的疗效,在这些研究中仅少部分包括了儿童MOGAD。接受MMF一线治疗的病例数3到30例不等,治疗期间的复发率为27%~75%,同时亦降低MOGAD的年复发率(annual recurrence rate, ARR) [6] [14] [33] [39] [40] 。Hacohen及Cobo-Calvo等人研究发现MMF治疗在儿童及成人MOGAD未观察到EDSS评分进展 [14] [40] 。在一项观察MMF在MOGAD中的长期疗效的瞻性研究中仅1例(1.9%, 1/79)患者因不良反应停药,其余也仅个例报道 [14] [33] [41] 。

3.2.2. 硫唑嘌呤

AZA治疗儿童MOGAD病例数较少,治疗后的复发率约50%,患者的ARR可有不同程度的下降,随访中EDSS评分的变化提及较少,仅1项研究中提及治疗后EDSS评分从2.5变为2.6 [6] [14] [39] [40] [42] 。在MOGAD患者中有报道3/7使用AZA因严重恶心停药 [33] 。

3.2.3. 利妥昔单抗

RTX在MOGAD患者中的使用借鉴了NMOSD治疗方案,近来有研究结果提示RTX对MOGAD可能疗效较低,一项MOGAD复发预防疗法的荟萃分析中总结RTX治疗后无复发患者比例为66% (95% CI: 55%~77%) [4] [6] [14] [33] [40] [42] 。但在AQP4阳性NMOSD中,复发主要发生在RTX生物学效应降低时。而在MOGAD中,有报道在B细胞耗竭的情况下仍有22/57 (38.6%)复发 [43] 。RTX最常见的并发症是低丙种球蛋白血症及继发感染,同时可能出现病毒再激活如CMV、乙型肝炎、单纯疱疹病毒 [44] [45] [46] 。在一项免疫抑制治疗MOGAD的疗效和安全性的荟萃分析中,7/149 (4.70%)患者出现输液相关反应,8/149 (5.37%)患者发生白细胞减少,6/149 (4.02%)患者发生低丙种球蛋白血症,2/149 (1.34%)患者发生感染 [47] 。

3.2.4. 免疫球蛋白

免疫球蛋白制剂是献血者的血浆中提取的,含有针对多种病原体的抗体,以及许多外来和自身抗原,通过静脉滴注,即所谓的静脉免疫球蛋白,被用作缺乏免疫球蛋白的患者的替代疗法。大剂量IVIG的免疫调节和抗炎作用使得IVIG在各种炎性疾病中广泛应用。来自对照临床试验的证据已确定IVIG是吉兰–巴雷综合征、慢性炎症性脱髓鞘性多发性神经病和多灶性运动神经病的一线疗法,并被证明是治疗越来越多的神经系统疾病的有效抗炎和免疫调节疗法,静脉注射免疫球蛋白是唯一不诱导免疫抑制的治疗方法 [48] 。多项研究均表明定期IVIG可降低MOGAD患者的年复发率,Hacohen等人还发现定期IVIG除减少复发外,EDSS评分也有所改善(从2.2到1.2,P = 0.01),在其他方案如AZA、MMF中并未发现EDSS明显改善,同时考虑到IVIG副作用少,目前认为在儿童MOGAD中,IVIG优于其他方案 [14] [33] [39] 。鉴于IVIG费用较高,探索有效、更经济的使用方案很有必要,现有研究仅限于使用静脉注射丙种球蛋白(IVIG)。与IVIG相比,皮下注射Ig (SCIG)可能表现出多种优势,包括自行给药和较少的全身不良反应,同时SOTIRCHOS等人报告了6例接受皮下注射Ig (SCIG)治疗的MOGAD患者,耐受性良好,随访期间无任何复发 [49] 。

3.3. 其他新的药物

了解自身抗体的病理机制可以导致治疗成功,如NMOSD的特征是星形胶质细胞蛋白AQP4的致病性自身抗体 [50] 。基于病理学、转移实验和详细的体外分析,已经提出了补体介导的抗AQP4抗体的致病作用 [51] [52] [53] 。基于这些发现,靶向补体因子C5的依库珠单抗已在NMOSD患者中进行了测试,并取得了临床效果 [54] 。基于B细胞耗竭疗法对其他脱髓鞘疾病的疗效,以及包括儿童和成人在内的多项研究中也显示出RTX对MOGAD的疗效,奥法妥尤单抗作为一种新型的全人源化抗CD20单克隆抗体,已有病案报道皮下注射奥法妥尤单抗治疗MOGAD的病例,并且成功预防复发 [55] [56] 。这种皮下注射途径对患者来说更方便,可能为临床选择药物带来新的可能。IL-6是一种促炎细胞因子,在诱导实验性自身免疫性脑炎(EAE)中起关键作用 [57] ,MOGAD患者急性发作期间脑脊液IL-6升高 [58] [59] 。托珠单抗是一种靶向IL-6受体的人源化单克隆抗体。最近发表了几份病例报告,描述了静脉注射和皮下注射托珠单抗用于其他免疫治疗失败的复发性MOGAD成年患者,最终患者均未在复发 [60] [61] [62] [63] 。最新的一项基于小鼠的基础研究显示MOG-Abs通过补体激活和FcγR激活介导脱髓鞘,选择性靶向新生儿Fc受体治疗可能是MOGAD的一种治疗方法 [64] [65] 。

4. 总结

综上所述,MOGAD多数呈单向型病程,预后良好,但少部分会出现一次或者多次复发,临床表型复杂多样,在随访期间表型可能会发生变化,复发次数较多、不恰当治疗可能遗留不同程度的后遗症,一些亚临床指标可能预测复发,有必要考虑预防复发的免疫抑制治疗。监测MOG抗体滴度、MRI、OCT等亚临床状态,可能帮助指导但不能决定治疗决策。目前治疗方案包括急性期治疗和复发维持治疗,但目前复发维持治疗方案主要基于回顾性和观察性研究以及专家共识的方案,在实践中仍存在较大争议。激素在儿童MOGAD中的应用值得探究,如疗程、不同给药方式等。AZA、MMF、RTX等免疫抑制剂维持治疗MOGAD均有效且安全性良好,而儿童MOGAD中定期IVIG优于其他方案。一些新兴的生物制剂如托珠单抗、奥法妥尤单抗等及原有药物的不同给药方式的疗效及安全性均需研究证实。未来大样本、多中心、前瞻性的研究将有助于为MOGAD治疗提供新的思路和新的方法。

作者贡献

郭雨慧负责文章的设计、构思和文献的收集、整理及论文写作;李秀娟负责文章的修订、质量控制及审校并对文章整体负责。

文章引用

郭雨慧,李秀娟. 免疫维持治疗在儿童复发性髓鞘少突胶质细胞糖蛋白抗体相关疾病的研究进展
Research Progress in Immune Maintenance Therapy for Recurrent Oligodendrocyte Gly-coprotein Antibody Related Diseases in Chil-dren[J]. 临床医学进展, 2024, 14(03): 1240-1248. https://doi.org/10.12677/ACM.2024.143834

参考文献

  1. 1. See, J., Zhang, X., Eraydin, N., et al. (2004) Oligodendrocyte Maturation Is Inhibited by Bone Morphogenetic Protein. Molecular and Cellular Neurosciences, 26, 481-492. https://doi.org/10.1016/j.mcn.2004.04.004

  2. 2. Armangue, T., Olivé-Cirera, G., Martínez-Hernandez, E., et al. (2020) Associations of Paediatric Demyelinating and Encephalitic Syn-dromes with Myelin Oligodendrocyte Glycoprotein Antibodies: A Multicentre Observational Study. The Lancet Neurol-ogy, 19, 234-246. https://doi.org/10.1016/S1474-4422(19)30488-0

  3. 3. Boesen, M.S., Jensen, P.E.H., Born, A.P., et al. (2019) Incidence of Pediatric Neuromyelitis Optica Spectrum Disorder and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease in Denmark 2008-2018: A Nationwide, Population-Based Cohort Study. Multiple Sclero-sis and Related Disorders, 33, 162-167. https://doi.org/10.1016/j.msard.2019.06.002

  4. 4. Jarius, S., Ruprecht, K., Kleiter, I., et al. (2016) MOG-IgG in NMO and Related Disorders: A Multicenter Study of 50 Patients. Part 2: Epidemiology, Clinical Presentation, Radiolog-ical and Laboratory Features, Treatment Responses, and Long-Term Outcome. Journal of Neuroinflammation, 13, Article No. 280. https://doi.org/10.1186/s12974-016-0718-0

  5. 5. Jurynczyk, M., Messina, S., Woodhall, M.R., et al. (2017) Clinical Presentation and Prognosis in MOG-Antibody Disease: A UK Study. Brain, 140, 3128-3138. https://doi.org/10.1093/brain/awx276

  6. 6. Mao, L., Yang, L., Kessi, M., et al. (2019) Myelin Oligodendrocyte Glycoprotein (MOG) Antibody Diseases in Children in Central South China: Clinical Features, Treatments, Influencing Factors, and Outcomes. Frontiers in Neurology, 10, Article No. 868. https://doi.org/10.3389/fneur.2019.00868

  7. 7. Weinshenker, B.G. and Wingerchuk, D.M. (2017) Neuromyelitis Spectrum Disorders. Mayo Clinic Proceedings, 92, 663-679. https://doi.org/10.1016/j.mayocp.2016.12.014

  8. 8. Akaishi, T., Takahashi, T., Misu, T., et al. (2020) Progressive Patterns of Neurological Disability in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Scientific Reports, 10, Article No. 13890. https://doi.org/10.1038/s41598-020-70919-w

  9. 9. Jarius, S., Aktas, O., Ayzenberg, I., et al. (2023) Update on the Diagnosis and Treatment of Neuromyelits Optica Spectrum Disorders (NMOSD)—Revised Recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and Differential Diagnosis. Journal of Neurology, 270, 3341-3368. https://doi.org/10.1007/s00415-023-11634-0

  10. 10. Bruijstens, A.L., Wendel, E.M., Lechner, C., et al. (2020) E.U. Paediatric MOG Consortium Consensus: Part 5. Treatment of Paediatric Myelin Oligodendrocyte Glycoprotein Anti-body-Associated Disorders. European Journal of Paediatric Neurology: EJPN: Official Journal of the European Paedi-atric Neurology Society, 29, 41-53. https://doi.org/10.1016/j.ejpn.2020.10.005

  11. 11. Whittam, D.H., Karthikeayan, V., Gibbons, E., et al. (2020) Treat-ment of MOG Antibody Associated Disorders: Results of an International Survey. Journal of Neurology, 267, 3565-3577. https://doi.org/10.1007/s00415-020-10026-y

  12. 12. Bruijstens, A.L., Lechner, C., Flet-Berliac, L., et al. (2020) E.U. Paediatric MOG Consortium Consensus: Part 1. Classification of Clinical Phenotypes of Paediatric Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorders. European Journal of Paediatric Neurology: EJPN: Offi-cial Journal of the European Paediatric Neurology Society, 29, 2-13. https://doi.org/10.1016/j.ejpn.2020.10.006

  13. 13. Wendel, E.M., Thonke, H.S., Bertolini, A., et al. (2022) Temporal Dynamics of MOG Antibodies in Children with Acquired Demyelinating Syndrome. Neurology Neuroimmunology & Neuroinflammation, 9, e200035.

  14. 14. Hacohen, Y., Wong, Y.Y., Lechner, C., et al. (2018) Disease Course and Treat-ment Responses in Children with Relapsing Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. JAMA Neurology, 75, 478-487. https://doi.org/10.1001/jamaneurol.2017.4601

  15. 15. Oliveira, L.M., Apóstolos-Pereira, S.L., Pitombeira, M.S., et al. (2019) Persistent MOG-IgG Positivity Is a Predictor of Recurrence in MOG-IgG-Associated Optic Neuritis, Encephalitis and Myelitis. Multiple Sclerosis (Houndmills, Basingstoke, England), 25, 1907-1914. https://doi.org/10.1177/1352458518811597

  16. 16. Hennes, E.M., Baumann, M., Schanda, K., et al. (2017) Prognos-tic Relevance of MOG Antibodies in Children with an Acquired Demyelinating Syndrome. Neurology, 89, 900-908. https://doi.org/10.1212/WNL.0000000000004312

  17. 17. Cobo-Calvo, A., Ruiz, A., Rollot, F., et al. (2021) Clinical Features and Risk of Relapse in Children and Adults with Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Annals of Neurology, 89, 30-41. https://doi.org/10.1002/ana.25909

  18. 18. López-Chiriboga, A.S., Majed, M., Fryer, J., et al. (2018) Association of MOG-IgG Serostatus with Relapse after Acute Disseminated Encephalomyelitis and Proposed Diagnostic Criteria for MOG-IgG-Associated Disorders. JAMA Neurology, 75, 1355-1363. https://doi.org/10.1001/jamaneurol.2018.1814

  19. 19. Gastaldi, M., Foiadelli, T., Greco, G., et al. (2023) Prognostic Relevance of Quantitative and Longitudinal MOG Antibody Testing in Patients with MOGAD: A Multicentre Retrospec-tive Study. Journal of Neurology, Neurosurgery, and Psychiatry, 94, 201-210. https://doi.org/10.1136/jnnp-2022-330237

  20. 20. Duignan, S., Wright, S., Rossor, T., et al. (2018) Myelin Oli-godendrocyte Glycoprotein and Aquaporin-4 Antibodies Are Highly Specific in Children with Acquired Demyelinating Syndromes. Developmental Medicine and Child Neurology, 60, 958-962. https://doi.org/10.1111/dmcn.13703

  21. 21. Mariano, R., Messina, S., Roca-Fernandez, A., et al. (2021) Quantitative Spinal Cord MRI in MOG-Antibody Disease, Neuromyelitis Optica and Multiple Sclerosis. Brain, 144, 198-212. https://doi.org/10.1093/brain/awaa347

  22. 22. Cortese, R., Battaglini, M., Prados, F., et al. (2023) Clinical and MRI Measures to Identify Non-Acute MOG-Antibody Disease in Adults. Brain, 146, 2489-2501. https://doi.org/10.1093/brain/awaa347

  23. 23. Fernandez-Carbonell, C., Vargas-Lowy, D., Musallam, A., et al. (2016) Clinical and MRI Phenotype of Children with MOG Antibodies. Multiple Sclerosis (Houndmills, Basingstoke, England), 22, 174-184. https://doi.org/10.1177/1352458515587751

  24. 24. Solomon, A.J., Arrambide, G., Brownlee, W.J., et al. (2023) Dif-ferential Diagnosis of Suspected Multiple Sclerosis: An Updated Consensus Approach. The Lancet Neurology, 22, 750-768. https://doi.org/10.1016/S1474-4422(23)00148-5

  25. 25. Camera, V., Holm-Mercer, L., Ali, A.A.H., et al. (2021) Frequency of New Silent MRI Lesions in Myelin Oligodendrocyte Glycoprotein Antibody Disease and Aquaporin-4 Antibody Neuromyelitis Optica Spectrum Disorder. JAMA Network Open, 4, E2137833. https://doi.org/10.1001/jamanetworkopen.2021.37833

  26. 26. Fadda, G., Banwell, B., Waters, P., et al. (2021) Silent New Brain MRI Lesions in Children with MOG-Antibody Associated Disease. Annals of Neurology, 89, 408-413. https://doi.org/10.1002/ana.25957

  27. 27. Hacohen, Y., Rossor, T., Mankad, K., et al. (2018) “Leukodystrophy-Like” Phenotype in Children with Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Developmental Medi-cine and Child Neurology, 60, 417-423. https://doi.org/10.1111/dmcn.13649

  28. 28. Bennett, J.L., Nickerson, M., Costello, F., et al. (2015) Re-Evaluating the Treatment of Acute Optic Neuritis. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 799-808. https://doi.org/10.1136/jnnp-2014-308185

  29. 29. Oertel, F.C., Outteryck, O., Knier, B., et al. (2019) Optical Coher-ence Tomography in Myelin-Oligodendrocyte-Gly- coprotein Antibody-Seropositive Patients: A Longitudinal Study. Journal of Neuroinflammation, 16, Article No. 154. https://doi.org/10.1186/s12974-019-1521-5

  30. 30. Eyre, M., Hameed, A., Wright, S., et al. (2018) Retinal Nerve Fibre Layer Thinning Is Associated with Worse Visual Outcome af-ter Optic Neuritis in Children with a Relapsing Demyelinating Syndrome. Developmental Medicine and Child Neurology, 60, 1244-1250. https://doi.org/10.1111/dmcn.13757

  31. 31. Havla, J., Pakeerathan, T., Schwake, C., et al. (2021) Age-Dependent Favorable Visual Recovery despite Significant Retinal Atrophy in Pediatric MOGAD: How Much Reti-na Do You Really Need to See Well? Journal of Neuroinflammation, 18, Article No 121. https://doi.org/10.1186/s12974-021-02160-9

  32. 32. Marignier, R., Hacohen, Y., Cobo-Calvo, A., et al. (2021) Mye-lin-Oligodendrocyte Glycoprotein Antibody-Associated Disease. The Lancet Neurology, 20, 762-772. https://doi.org/10.1016/S1474-4422(21)00218-0

  33. 33. Ramanathan, S., Mohammad, S., Tantsis, E., et al. (2018) Clinical Course, Therapeutic Responses and Outcomes in Relapsing MOG Antibody-Associated Demyelination. Journal of Neurology, Neurosurgery, and Psychiatry, 89, 127-137. https://doi.org/10.1136/jnnp-2017-316880

  34. 34. Nosadini, M., Eyre, M., Giacomini, T., et al. (2023) Early Immu-notherapy and Longer Corticosteroid Treatment Are Associated with Lower Risk of Relapsing Disease Course in Pediat-ric MOGAD. Neurology(R) Neuroimmunology & Neuroinflammation, 10, e200065. https://doi.org/10.1212/NXI.0000000000200065

  35. 35. Satukijchai, C., Mariano, R., Messina, S., et al. (2022) Fac-tors Associated with Relapse and Treatment of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease in the United Kingdom. JAMA Network Open, 5, E2142780. https://doi.org/10.1001/jamanetworkopen.2021.42780

  36. 36. Eftimov, F., Vermeulen, M., Van Doorn, P.A., et al. (2012) Long-Term Remission of CIDP after Pulsed Dexamethasone or Short-Term Prednisolone Treatment. Neurology, 78, 1079-1084. https://doi.org/10.1212/WNL.0b013e31824e8f84

  37. 37. Ratzer, R., Iversen, P., Börnsen, L., et al. (2016) Monthly Oral Methylprednisolone Pulse Treatment in Progressive Multiple Sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 22, 926-934. https://doi.org/10.1177/1352458515605908

  38. 38. Van Schaik, I.N., Eftimov, F., Van Doorn, P.A., et al. (2010) Pulsed High-Dose Dexamethasone versus Standard Prednisolone Treatment for Chronic Inflammatory Demyelinating Polyradiculoneuropathy (PREDICT Study): A Double-Blind, Randomised, Controlled Trial. The Lancet Neurology, 9, 245-253. https://doi.org/10.1016/S1474-4422(10)70021-1

  39. 39. Chen, J.J., Flanagan, E.P., Bhatti, M.T., et al. (2020) Steroid-Sparing Maintenance Immunotherapy for MOG-IgG Associated Disorder. Neurology, 95, E111-E120. https://doi.org/10.1212/WNL.0000000000009758

  40. 40. Cobo-Calvo, A., Sepúlveda, M., Rollot, F., et al. (2019) Evaluation of Treatment Response in Adults with Relapsing MOG-Ab-Associated Disease. Journal of Neuroinflamma-tion, 16, Article No. 134. https://doi.org/10.1186/s12974-019-1525-1

  41. 41. Li, S., Ren, H., Xu, Y., et al. (2020) Long-Term Efficacy of My-cophenolate Mofetil in Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disorders: A Prospective Study. Neurology(R) Neuroimmunology & Neuroinflammation, 7, e705. https://doi.org/10.1212/NXI.0000000000000705

  42. 42. Zhou, J., Lu, X., Zhang, Y., et al. (2019) Follow-Up Study on Chinese Children with Relapsing MOG-IgG-Associated Central Nervous System Demyelination. Multiple Sclerosis and Related Disorders, 28, 4-10. https://doi.org/10.1016/j.msard.2018.12.001

  43. 43. Whittam, D.H., Cobo-Calvo, A., Lopez-Chiriboga, A.S., et al. (2020) Treatment of MOG-IgG-Associated Disorder with Rituximab: An International Study of 121 Patients. Multiple Sclerosis and Related Disorders, 44, Article ID: 102251. https://doi.org/10.1016/j.msard.2020.102251

  44. 44. Albassam, F., Longoni, G., Yea, C., et al. (2020) Rituximab in Children with Myelin Oligodendrocyte Glycoprotein Antibody and Relapsing Neuroinflammatory Disease. Develop-mental Medicine and Child Neurology, 62, 390-395. https://doi.org/10.1016/j.msard.2020.102251

  45. 45. Dale, R.C., Brilot, F., Duffy, L.V., et al. (2014) Utility and Safety of Rituximab in Pediatric Autoimmune and Inflammatory CNS Disease. Neurology, 83, 142-150. https://doi.org/10.1212/WNL.0000000000000570

  46. 46. Avouac, A., Maarouf, A., Stellmann, J.P., et al. (2021) Rituximab-Induced Hypogammaglobulinemia and Infections in AQP4 and MOG Antibody-Associated Diseases. Neu-rology(R) Neuroimmunology & Neuroinflammation, 8, e1179. https://doi.org/10.1212/NXI.0000000000000977

  47. 47. Lai, Q.L., Zhang, Y.X., Cai, M.T., et al. (2021) Efficacy and Safety of Immunosuppressive Therapy in Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: A Sys-tematic Review and Meta-Analysis. Therapeutic Advances in Neurological Disorders, 14. https://doi.org/10.1177/17562864211054157

  48. 48. Lünemann, J.D., Nimmerjahn, F. and Dalakas, M.C. (2015) In-travenous Immunoglobulin in Neurology—Mode of Action and Clinical Efficacy. Nature Reviews Neurology, 11, 80-89. https://doi.org/10.1038/nrneurol.2014.253

  49. 49. Sotirchos, E.S., Vasileiou, E.S., Salky, R., et al. (2022) Treatment of Myelin Oligodendrocyte Glycoprotein Antibody Associated Disease with Subcutaneous Immune Globulin. Multiple Sclerosis and Related Disorders, 57, Article ID: 103462. https://doi.org/10.1016/j.msard.2021.103462

  50. 50. Lennon, V.A., Kryzer, T.J., Pittock, S.J., et al. (2005) IgG Marker of Optic-Spinal Multiple Sclerosis Binds to the Aquaporin-4 Water Channel. The Journal of Experimental Medi-cine, 202, 473-477. https://doi.org/10.1084/jem.20050304

  51. 51. Phuan, P.W., Ratelade, J., Rossi, A., et al. (2012) Complement-Dependent Cytotoxicity in Neuromyelitis Optica Requires Aquaporin-4 Protein Assembly in Orthogonal Arrays. The Journal of Biological Chemistry, 287, 13829-13839. https://doi.org/10.1074/jbc.M112.344325

  52. 52. Soltys, J., Liu, Y., Ritchie, A., et al. (2019) Membrane Assembly of Aquaporin-4 Autoantibodies Regulates Classical Complement Activation in Neuromyelitis Optica. The Journal of Clini-cal Investigation, 129, 2000-2013. https://doi.org/10.1172/JCI122942

  53. 53. Takai, Y., Misu, T., Suzuki, H., et al. (2021) Staging of Astrocytopathy and Complement Activation in Neuromyelitis Optica Spectrum Disorders. Brain, 144, 2401-2415. https://doi.org/10.1093/brain/awab102

  54. 54. Stathopoulos, P. and Dalakas, M.C. (2022) The Role of Complement and Complement Therapeutics in Neuromyelitis Optica Spectrum Disorders. Expert Review of Clinical Immunology, 18, 933-945. https://doi.org/10.1080/1744666X.2022.2105205

  55. 55. Hiya, S., Yoshimura, H. and Kawamoto, M. (2023) Suc-cessful Treatment with Subcutaneous Ofatumumab in an Adolescent Patient with Refractory Myelin Oligodendrocyte Glycoprotein-Immunoglobulin G-Associated Disease (MOGAD). eNeurologicalSci, 31, Article ID: 100461. https://doi.org/10.1016/j.ensci.2023.100461

  56. 56. Zhang, R., Wang, L., Tao, Y., et al. (2023) The Case Report of MOG and NMDAR IgG Double Positive Encephalitis Treated with Subcutaneous Ofatumumab. Frontiers in Immunol-ogy, 14, Article ID: 1183488. https://doi.org/10.3389/fimmu.2023.1183488

  57. 57. Okuda, Y., Sakoda, S., Fujimura, H., et al. (1999) IL-6 Plays A Crucial Role in the Induction Phase of Myelin Oligodendrocyte Glucoprotein 35-55 Induced Experimental Autoimmune Encephalomyelitis. Journal of Neuroimmunology, 101, 188-196. https://doi.org/10.1016/S0165-5728(99)00139-3

  58. 58. Kaneko, K., Sato, D.K., Nakashima, I., et al. (2018) CSF Cytokine Profile in MOG-IgG+ Neurological Disease Is Similar to AQP4-IgG+ NMOSD but Distinct from MS: A Cross-Sectional Study and Potential Therapeutic Implications. Journal of Neurology, Neurosurgery, and Psychiatry, 89, 927-936. https://doi.org/10.1136/jnnp-2018-317969

  59. 59. Kothur, K., Wienholt, L., Tantsis, E.M., et al. (2016) B Cell, Th17, and Neutrophil Related Cerebrospinal Fluid Cytokine/Chemokines Are Elevated in MOG Antibody Associ-ated Demyelination. PLOS ONE, 11, e0149411. https://doi.org/10.1371/journal.pone.0149411

  60. 60. Novi, G., Gastaldi, M., Franciotta, D., et al. (2019) Tocilizumab in MOG-Antibody Spectrum Disorder: A Case Report. Multiple Sclerosis and Related Disorders, 27, 312-314. https://doi.org/10.1016/j.msard.2018.11.012

  61. 61. Hayward-Koennecke, H., Reindl, M., Martin, R., et al. (2019) Tocilizumab Treatment in Severe Recurrent Anti-MOG- Associated Optic Neuritis. Neurology, 92, 765-767. https://doi.org/10.1212/WNL.0000000000007312

  62. 62. Elsbernd, P.M., Hoffman, W.R., Carter, J.L., et al. (2021) Interleukin-6 Inhibition with Tocilizumab for Relapsing MOG-IgG Associated Disorder (MOGAD): A Case-Series and Review. Multiple Sclerosis and Related Disorders, 48, Article ID: 102696. https://doi.org/10.1016/j.msard.2020.102696

  63. 63. Rigal, J., Pugnet, G., Ciron, J., et al. (2020) Off-Label Use of Tocilizumab in Neuromyelitis Optica Spectrum Disorders and MOG-Antibody-Associated Diseases: A Case-Series. Multiple Sclerosis and Related Disorders, 46, Article ID: 102483. https://doi.org/10.1016/j.msard.2020.102483

  64. 64. Mader, S., Ho, S., Wong, H.K., et al. (2023) Dissection of Complement and Fc-Receptor-Mediated Pathomechanisms of Autoantibodies to Myelin Oligodendrocyte Glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 120, E2300648120. https://doi.org/10.1073/pnas.2300648120

  65. 65. Ruck, T., Nimmerjahn, F., Wiendl, H., et al. (2022) Next-Generation Antibody-Based Therapies in Neurology. Brain, 145, 1229-1241. https://doi.org/10.1093/brain/awab465

  66. NOTES

    *通讯作者。

期刊菜单