Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65765 , 6 pages
10.12677/ACM.2023.1351164

LOX-1与肿瘤的相关性研究进展

倪倩*,孙萍#

青岛大学附属烟台毓璜顶医院肿瘤内科,山东 烟台

收稿日期:2023年4月22日;录用日期:2023年5月15日;发布日期:2023年5月24日

摘要

代谢紊乱和肿瘤发生、发展密切相关,靶向癌症代谢途径成为抗肿瘤治疗的新靶点。凝集素样氧化低密度脂蛋白(LOX-1)是氧化低密度脂蛋白(ox-LDL)的受体,两者通过结合发挥促进动脉粥样硬化形成的作用。LOX-1在多种实体肿瘤中高表达,证实其与肿瘤的发生、发展存在密切关系。在本综述中主要阐明了在前列腺癌、结直肠癌、胰腺癌、肺癌、胃癌和乳腺癌这些不同的实体瘤中,LOX-1通过促进新生血管形成和促上皮–间充质转化等机制实现抗肿瘤作用。在肿瘤的相关性研究进展中,LOX-1有望成为抗肿瘤治疗的新靶点。

关键词

LOX-1,实体肿瘤,动脉粥样硬化

Research Progress on the Correlation between LOX-1 and Tumors

Qian Ni*, Ping Sun#

Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong

Received: Apr. 22nd, 2023; accepted: May 15th, 2023; published: May 24th, 2023

ABSTRACT

Metabolic disorders are closely related to tumorigenesis and development, and targeting cancer metabolic pathway has become a new target for anti-tumor therapy. Lectin-like oxidized low-density lipoprotein (LOX-1) is a receptor for oxidizing low-density lipoprotein (ox-LDL), and the two play a role in promoting atherosclerotic formation by binding. LOX-1 is highly expressed in a variety of solid tumors, which confirms that it is closely related to the occurrence and development of tumors. In this review, LOX-1 achieves anti-tumor effects by promoting neovascularization and promoting epithelial-mesenchymal conversion in different solid tumors of prostate, colorectal, pancreatic, lung, gastric and breast cancers. In the progress of tumor correlation research, LOX-1 is expected to become a new target for anti-tumor therapy.

Keywords:LOX-1, Solid Tumors, Atherosclerosis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

癌症的发病率逐年升高 [1] 。随着对肿瘤发生、发展机制的了解,发现肿瘤新的标志物实现精准化治疗成为当前研究热点。

流行病学和回顾性研究发现,LOX-1在肿瘤的发生、发展中发挥关键作用。在低密度脂蛋白(LDL)、血管紧张素II、TNFα的调控下,编码LOX-1的OLR-1基因主要在内皮细胞和富含血管的器官中表达 [2] 。Moriwaki团队通过体内实验证明,LOX-1是动脉粥样硬化的标志物,其通过促进泡沫细胞形成,细胞黏附,血管平滑肌细胞增殖,血小板聚集,白细胞招募等重要过程促进动脉粥样硬化形成 [3] 。

本综述主要概述了LOX-1在多种实体肿瘤中发挥的促新生血管形成和促上皮–间充质转化的作用,LOX-1有望成为抗肿瘤治疗的新靶点。

2. LOX-1及其剪接变体的结构和功能

LOX-1是52kDa的同型二聚体,在巨噬细胞、内皮细胞、平滑肌细胞、成纤维细胞、血小板和神经元中均有表达 [3] 。LOX-1属于E类清道夫受体,由四个结构域组成,分别是一个短的N端细胞质域、一个跨膜域、一个控制受体寡聚的颈部区域和一个细胞外C型凝集素域(CTLD) [4] 。CTLD是识别LOX-1配体的功能域,C端残基和几个横跨凝集素域的保守正电荷残基是ox-LDL结合的必要条件 [5] 。当LOX-1长期暴露于阿伐他汀类药物时,会出现空间紊乱和功能丧失等情况,所以LOX-1是胆固醇合成酶3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR)的竞争性抑制剂 [6] 。降脂类药物阿伐他汀可以干扰LOX-1对ox-LDL的识别,提高肿瘤细胞对化疗的敏感性 [7] 。

编码LOX-1的OLR-1基因,为单拷贝基因,位于染色体12的p12.3~13.2区域。LOX-1基因全长7000 bp,由6个外显子和5个内含子组成 [8] 。选择性剪接是指从一个mRNA前体中通过不同的剪接方式(选择不同的剪接位点组合)产生不同的mRNA剪接异构体的过程,使最终的蛋白产物会表现出不同的功能和结构特性。研究表明,选择性剪接可以产生“风险”和“保护”两种剪接变异模式,影响动脉粥样硬化的发病机制 [9] 。当OLR1经历选择性剪接后,可产生OLR1、OLR1D4和LOXIN剪接变体 [10] 。OLR1与ox-LDL结合后具有功能活性。OLR1D4缺少外显子4,因此缺少识别配体的一部分。LOXIN因为终止密码子过早的出现以及随后的终止而缺少第5外显子,失去与ox-LDL的结合能力 [11] 。目前认为OLR1D4和LOXIN对动脉粥样硬化形成、肿瘤的发生具有重要的抑制作用 [12] 。

3. LOX-1与肿瘤的关系

3.1. LOX-1与乳腺癌

乳腺癌的发病率居于女性恶性肿瘤首位。乳腺癌根据雌孕激素受体(ER, PR)和HER-2受体的表达类型可以分为四种:LuminalA/B型、HER-2过表达型、三阴性乳腺癌。四种不同分型的乳腺癌的治疗方法也有所不同。LuminalA型(ER+/PR+,HER-2-,Ki67低表达)主要采取单纯内分泌治疗,化疗酌情选择;LuminalB型(ER+/PR+,HER-2-,Ki67高表达)主要采取内分泌联合化疗治疗;LuminalB型(ER+/PR+,HER-2+,Ki67任意水平)主要采取抗HER-2的靶向治疗联合化疗以及内分泌治疗;HER-2过表达型(ER-,PR-和HER-2+)主要采用化疗联合抗HER-2 (曲妥珠单抗药物)的靶向治疗,而三阴性乳腺癌(ER-,PR-和HER-2-)具有侵袭性、生存率低和缺乏特异性治疗的特点,只能通过化疗、放疗进行治疗 [13] 。

研究证实LOX-1在70%的乳腺癌中过表达,并与肿瘤组织型分期呈正相关。免疫组化显示LOX-1在不同的乳腺肿瘤细胞分型中表达定位不同。在Luminal型肿瘤细胞中,LOX-1主要在细胞核中表达;在HER-2过表达型肿瘤细胞中,LOX-1在细胞质、细胞核中均有表达,且在细胞质中表达更显著 [14] ;而在三阴性乳腺癌肿瘤组织中,LOX-1主要在细胞质中表达。除此之外,LOX-1在HER-2扩增的脂肪酸合成酶(FASN)阳性肿瘤组织细胞中过表达,说明LOX-1与HER-2扩增、FASN之间存在正相关性。过表达LOX-1后,发现细胞增殖率明显提高,细胞凋亡蛋白表达下调 [14] 。这些结果表明,LOX-1可能是代谢和癌症之间的分子媒介,其作为生物标志物和分子治疗的新靶点,为改进当前乳腺癌治疗策略提供了方向。

3.2. LOX-1和胃癌

胃癌发病率居于消化系统恶性肿瘤首位 [15] 。其唯一的根治性治疗方法是手术。晚期胃癌的主要治疗方法是手术、放疗、化疗、分子靶向治疗和免疫治疗等 [15] 。通过免疫组织化学染色测定和癌症相关数据库资料的查阅,发现LOX-1表达在胃癌组织中明显上调,并与胃癌患者的预后呈负相关 [16] 。PI3K/AKT/GSK3β轴激活LOX-1后促进胃肿瘤细胞的迁移 [16] 。LOX-1与ox-LDL结合后,可促进促血管生成因子VEGF的生成 [16] ,其可以促进淋巴管生成和淋巴结转移 [17] [18] 。同时,研究人员发现胃癌患者血浆中ox-LDL水平明显升高,并与VEGF-c的高水平表达和淋巴管生成呈正相关,且该机制通过LOX-1激活NF-Kb信号通路发挥促淋巴结转移的作用 [19] 。因此,LOX-1可以认为是干预胃癌早期淋巴结转移的潜在治疗靶点。

3.3. LOX-1和肺癌

肺癌的发病率和死亡率分别居全球恶性肿瘤的第二位和第一位。根据肺癌的分化程度和生物学特点,将其分为两大类:小细胞肺癌和非小细胞肺癌。非小细胞肺癌又分为鳞状细胞癌、腺癌和大细胞肺癌 [20] 。非小细胞肺癌的治疗方法主要包括手术、化疗、放疗、分子靶向治疗和免疫治疗,而小细胞肺癌的治疗方法主要是放疗联合化疗。研究发现,肺腺癌中TGF-β1-C/EBPδ-Slug-LOX-1轴是调节肿瘤细胞转移和脂质代谢的重要中介 [21] 。已知C/EBP家族可调节肿瘤细胞的生长、增殖、运动和凋亡 [22] 。其中,C/EBPδ是调节脂质代谢的关键因子,按照TGF-β1-C/EBPδ-Slug-LOX-1轴介导肿瘤细胞转移 [22] 。此数据为发现治疗肺腺癌的新靶点提供了新的理论依据。

3.4. LOX-1和结直肠癌

结直肠癌发病率居于全球恶性肿瘤第三位。结直肠癌的治疗方法主要是手术、放疗、化疗以及靶向治疗,靶向药物主要为贝伐珠单抗和西妥昔单抗 [23] 。已知结直肠癌的肿瘤标志物主要有癌胚抗原(CEA)、糖类抗原199 (CA199)、糖类抗原242 (CA242)。研究证明,与相同患者的同一部位的健康组织相比,LOX-1在72%的结直肠肿瘤组织中显著增加,在90%的高侵袭性和转移性结直肠肿瘤组织中显著过表达,且其表达与肿瘤组织型分期呈正相关。当shRNA干扰抗体达到抑制LOX-1mRNA表达的目的时,细胞增殖率显著降低 [24] 。有研究报道,在238例结直肠癌患者的血清样本中发现有100例组织样本的LOX-1有高水平表达,且与血清LOX-1水平低的患者比较,血清LOX-1水平高的患者总体生存期较差,预后也较差。在液体活检中,血清LOX-1在总生存率的多变量分析中是一个独立的预后因素 [25] 。此外,在上述实验中,白细胞计数、中性粒细胞/淋巴细胞比值、单核细胞/淋巴细胞比值等炎症因子数值在血清LOX-1水平高的组中显著升高 [25] [26] 。所有数据都证实了LOX-1在抑制肿瘤进展和转移方面有重要作用,可以将其应用到结直肠癌的治疗策略中。

3.5. LOX-1和前列腺癌

前列腺癌发病率居于男性恶性肿瘤的第二位 [27] 。前列腺癌患者初期通常无显著症状,病程缓慢,需要进行积极监测以达到“早诊断、早治疗”的目的 [28] [29] [30] 。现有的前列腺癌的治疗方法包括手术、放疗、激素治疗 [31] 。已熟知的前列腺癌的肿瘤标志物为PSA。而通过流行病学数据发现,冠状动脉疾病与前列腺癌有共同的病原学标记物LOX-1 [32] ,LOX-1的表达与动脉粥样硬化和肥胖等多种疾病有关,且在晚期和转移性前列腺癌中过表达。原发性和转移性前列腺癌中的ox-LDL水平明显升高,表明LOX-1促进前列腺肿瘤细胞的增殖和转移 [33] 。研究发现,OLR1mRNA在前列腺癌的III期和IV期中过度表达 [34] 。LOX-1与oxLDL结合不仅促进前列腺肿瘤细胞增殖和新生血管形成 [33] [34] [35] [36] ,还可以通过促进肌动蛋白细胞骨架重组和提高MMP-2、MMP-9的活性两种机制,诱导前列腺肿瘤细胞的转移 [35] ,实现上皮–间充质转化。这些结果表明LOX-1可以成为前列腺癌进展和预后的标志物。但是,LOX-1在前列腺癌中的作用尚未全面揭开,需要进一步的探索。

3.6. LOX-1和胰腺癌

胰腺癌发病率居于全球恶性肿瘤第七位。胰腺癌的治疗方法主要包括手术、化疗、放疗和介入治疗 [37] [38] 。手术切除是胰腺癌病人获得治愈机会和长期生存的唯一有效方法。然而,多数胰腺癌病人因早期症状不典型而失去手术机会。现有研究发现,胰腺肿瘤组织中LOX-1的高表达与淋巴结转移、高TNM分期呈正相关,与预后呈负相关 [39] 。除此之外,OLR1-c-Myc-HMGA2轴促进胰腺肿瘤细胞转移的机制已得到验证,这些证据为LOX-1成为胰腺癌治疗的新靶点提供了理论依据 [40] 。

4. 结论与展望

本文主要概述了LOX-1与不同器官(如前列腺、结直肠、胰腺、肺、胃、乳腺)肿瘤发生、发展有密切联系。LOX-1在脂质代谢调节、肿瘤细胞增殖、新生血管形成和促上皮–间充质转化中有重要作用。同时,LOX-1在某些肿瘤组织中的特异性高表达,意味着其可能作为抑制肿瘤发生、发展和转移的分子治疗靶点。

文章引用

倪 倩,孙 萍. LOX-1与肿瘤的相关性研究进展
Research Progress on the Correlation between LOX-1 and Tumors[J]. 临床医学进展, 2023, 13(05): 8319-8324. https://doi.org/10.12677/ACM.2023.1351164

参考文献

  1. 1. Roy, P.S. and Saikia, B.J. (2016) Cancer and Cure: A Critical Analysis. Indian Journal of Cancer, 53, 441-442. https://doi.org/10.4103/0019-509X.200658

  2. 2. Balzan, S. and Lubrano, V. (2018) LOX-1 Receptor: A Potential Link in Atherosclerosis and Cancer. Life Sciences, 198, 79-86. https://doi.org/10.1016/j.lfs.2018.02.024

  3. 3. Mehta, J.L. and Li, D. (2002) Identification, Regulation and Function of a Novel Lectin-Like Oxidized Low-Density Lipoprotein Receptor. Journal of the American College of Cardiology, 39, 1429-1435. https://doi.org/10.1016/S0735-1097(02)01803-X

  4. 4. Cao, W., et al. (2009) Oligomerization Is Required for the Activity of Recombinant Soluble LOX-1. FEBS Journal, 276, 4909-4920. https://doi.org/10.1111/j.1742-4658.2009.07190.x

  5. 5. 魏艳胜, 张永春, 黄陆力, 王学惠, 张俊彪, 刘辉. 谷红注射液有效成分介导eNOS与LOX-1对冠状动脉内皮细胞损伤的影响[J]. 中国循证心血管医学杂志, 2021, 13(8): 959-962.

  6. 6. Ohki, I., et al. (2011) Surface Plasmon Resonance Study on Functional Significance of Clustered Organization of Lectin-Like Oxidized LDL Receptor (LOX-1). Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1814, 345-354. https://doi.org/10.1016/j.bbapap.2010.10.006

  7. 7. Matarazzo, S., et al. (2012) Cho-lesterol-Lowering Drugs Inhibit Lectin-Like Oxidized Low-Density Lipoprotein-1 Receptor Function by Membrane Raft Disruption. Molecular Pharmacology, 82, 246-254. https://doi.org/10.1124/mol.112.078915

  8. 8. Aoyama, T., Sawamura, T., et al. (1999) Structure and Chromosomal Assignment of the Human Lectin-Like Oxidized Low-Density-Lipoprotein Receptor-1 (LOX-1) Gene. Biochemical Journal, 339, 177-184. https://doi.org/10.1042/bj3390177

  9. 9. 蒋玉燕, 郭良堂, 项晓觉, 吴静, 金永喜, 支英豪. 血浆MCP-1、LOX-1及D-二聚体在急性冠状动脉综合征患者诊断、危险分层及预后中的意义[J]. 2021, 33(2): 176-178.

  10. 10. Rizzacasa, B., et al. (2017) LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies. International Journal of Molecular Sciences, 2017, Article 18. https://doi.org/10.3390/ijms18020290

  11. 11. Biocca, S., Filesi, I., et al. (2008) The Splice Variant LOXIN Inhibits LOX-1 Receptor Function through Hetero-Oligomerization. Journal of Molecular and Cellular Cardiology, 44, 561-570. https://doi.org/10.1016/j.yjmcc.2007.11.017

  12. 12. Mango, R., et al. (2005) In vivo and in vitro Studies Support That a New Splicing Isoform of OLR1 Gene Is Protective against Acute Myocardial Infarction. Circulation Research, 97, 152-158. https://doi.org/10.1161/01.RES.0000174563.62625.8e

  13. 13. Azrad, M. and Demark-Wahnefried, W. (2014) The Association between Adiposity and Breast Cancer Recurrence and Survival: A Review of the Recent Literature. Current Nutrition Reports, 3, 9-15. https://doi.org/10.1007/s13668-013-0068-9

  14. 14. Pucci, S., et al. (2019) Pro-Oncogenic Action of LOX-1 and Its Splice Variant LOX-1Δ4 in Breast Cancer Phenotypes. Cell Death and Disease, 10, Article No. 53. https://doi.org/10.1038/s41419-018-1279-1

  15. 15. Song, Z.Y., Wu, Y.Y., Yang, J.B., Yang, D.Q. and Fang, X.D. (2017) Progress in the Treatment of Advanced Gastric Cancer. Tumour Biology, 39, No. 7. https://doi.org/10.1177/1010428317714626

  16. 16. Li, C., et al. (2017) Lectin-Like Oxidized Low-Density Lipopro-tein Receptor-1 Facilitates Metastasis of Gastric Cancer through Driving Epithelial-Mesenchymal Transition and PI3K/Akt/GSK3β Activation. Scientific Reports, 7, Article No. 45275. https://doi.org/10.1038/srep45275

  17. 17. Kapoor, P. and Deshmukh, R. (2012) VEGF: A Critical Driver for Angio-genesis and Subsequent Tumor Growth: An IHC Study. Journal of Oral and Maxillofacial Pathology, 16, 330-337. https://doi.org/10.4103/0973-029X.102478

  18. 18. Hoeben, A., Landuyt, B., et al. (2004) Vascular Endothelial Growth Factor and Angiogenesis. Pharmacological Reviews, 56, 549-580. https://doi.org/10.1124/pr.56.4.3

  19. 19. Ma, C., et al. (2019) OxLDL Promotes Lymphangiogenesis and Lymphatic Metastasis in Gastric Cancer by Upregulating VEGF‑C Expression and Secretion. International Journal of Oncology, 54, 572-584. https://doi.org/10.3892/ijo.2018.4648

  20. 20. The Cancer Genome Atlas Research Network (2014) Comprehensive Molecular Profiling of Lung Adenocarcinoma. Nature, 511, 543-550. https://doi.org/10.1038/nature13385

  21. 21. Siegel, R.L., Miller, K.D. and Jemal, A. (2016) Cancer Statistics, 2016. CA: A Cancer Journal for Clinicians, 66, 7-30. https://doi.org/10.3322/caac.21332

  22. 22. Jiang, L., et al. (2015) Combination of Body Mass Index and Oxidized Low Density Lipoprotein Receptor 1 in Prognosis Prediction of Patients with Squamous Non-Small Cell Lung Cancer. Oncotarget, 6, 22072-22080. https://doi.org/10.18632/oncotarget.4299

  23. 23. Mattiuzzi, C., Sanchis-Gomar, F. and Lippi, G. (2019) Concise Up-date on Colorectal Cancer Epidemiology. Annals of Translational Medicine, 7, Article 609. https://doi.org/10.21037/atm.2019.07.91

  24. 24. Murdocca, M., et al. (2016) The Lectin-Like Oxidized LDL Recep-tor-1: A New Potential Molecular Target in Colorectal Cancer. Oncotarget, 7, 14765-14780. https://doi.org/10.18632/oncotarget.7430

  25. 25. Murdocca, M., et al. (2019) Targeting LOX-1 Inhibits Colorectal Cancer Metastasis in an Animal Model. Frontiers in Oncology, 9, Article 927. https://doi.org/10.3389/fonc.2019.00927

  26. 26. Nakashima-Nakasuga, C., et al. (2020) Serum LOX-1 Is a Novel Prognostic Biomarker of Colorectal Cancer. International Journal of Clinical Oncology, 25, 1308-1317. https://doi.org/10.1007/s10147-020-01673-2

  27. 27. Khaidakov, M., et al. (2011) Oxidized LDL Receptor 1 (OLR1) as a Possible Link between Obesity, Dyslipidemia and Cancer. PLOS ONE, 6, e20277. https://doi.org/10.1371/journal.pone.0020277

  28. 28. Draude, G., Hrboticky, N. and Lorenz, R.L. (1999) The Expres-sion of the Lectin-Like Oxidized Low-Density Lipoprotein Receptor (LOX-1) on Human Vascular Smooth Muscle Cells and Monocytes and Its Down-Regulation by Lovastatin. Biochemical Pharmacology, 57, 383-386. https://doi.org/10.1016/S0006-2952(98)00313-X

  29. 29. Cominacini, L., et al. (2001) The Binding of Oxidized Low Density Lipoprotein (ox-LDL) to ox-LDL Receptor-1 Reduces the Intracellular Concentration of Nitric Oxide in Endo-thelial Cells through an Increased Production of Superoxide. Journal of Biological Chemistry, 276, 13750-13755. https://doi.org/10.1074/jbc.M010612200

  30. 30. Cominacini, L., et al. (2000) Oxidized Low Density Lipoprotein (ox-LDL) Binding to ox-LDL Receptor-1 in Endothelial Cells Induces the Activation of NF-κB through an Increased Production of Intracellular Reactive Oxygen Species. Journal of Biological Chemistry, 275, 12633-12638. https://doi.org/10.1074/jbc.275.17.12633

  31. 31. Hirsch, H.A., et al. (2010) A Transcriptional Signature and Common Gene Networks Link Cancer with Lipid Metabolism and Diverse Human Diseases. Cancer Cell, 17, 348-361. https://doi.org/10.1016/j.ccr.2010.01.022

  32. 32. Rawla, P. (2019) Epidemiology of Prostate Cancer. World Journal of Oncology, 10, 63-89. https://doi.org/10.14740/wjon1191

  33. 33. Wan, F., et al. (2015) Oxidized Low-Density Lipoprotein Is Associated with Advanced-Stage Prostate Cancer. Tumor Biology, 36, 3573-3582. https://doi.org/10.1007/s13277-014-2994-6

  34. 34. Kumar, B., Koul, S., Khandrika, L., Meacham, R.B. and Koul, H.K. (2008) Oxidative Stress Is Inherent in Prostate Cancer Cells and Is Required for Aggressive Phenotype. Cancer Research, 68, 1777-1785. https://doi.org/10.1158/0008-5472.CAN-07-5259

  35. 35. González-Chavarría, I., et al. (2018) LOX-1 Activation by oxLDL Triggers an Epithelial Mesenchymal Transition and Promotes Tumorigenic Potential in Prostate Cancer Cells. Cancer Letters, 414, 34-43. https://doi.org/10.1016/j.canlet.2017.10.035

  36. 36. González-Chavarría, I., et al. (2014) Lectin-Like Oxidized LDL Receptor-1 Is an Enhancer of Tumor Angiogenesis in Human Prostate Cancer Cells. PLOS ONE, 9, e106219. https://doi.org/10.1371/journal.pone.0106219

  37. 37. Lambert, A., et al. (2019) An Update on Treatment Options for Pancreatic Adenocarcinoma. Therapeutic Advances in Medical Oncology, 11. https://doi.org/10.1177/1758835919875568

  38. 38. Rawla, P., Sunkara, T. and Gaduputi, V. (2019) Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World Journal of Oncology, 10, 10-27. https://doi.org/10.14740/wjon1166

  39. 39. Zhang, J., et al. (2018) LOX-1 Is a Poor Prognostic Indicator and Induces Epithelial-Mesenchymal Transition and Metastasis in Pancreatic Cancer Patients. Cellular Oncology, 41, 73-84. https://doi.org/10.1007/s13402-017-0360-6

  40. 40. Yang, G., et al. (2020) OLR1 Promotes Pancreatic Cancer Metas-tasis via Increased c-Myc Expression and Transcription of HMGA2. Molecular Cancer Research, 18, 685-697. https://doi.org/10.1158/1541-7786.MCR-19-0718

期刊菜单