Advances in Clinical Medicine
Vol. 13  No. 09 ( 2023 ), Article ID: 71644 , 7 pages
10.12677/ACM.2023.1391941

吸烟与肺结核相关性研究进展

史亚萍1,李元军1,2*,汪金美1,胡玮1,刘浩1

1延安大学附属医院呼吸内科,陕西 延安

2延安市第二人民医院呼吸与结核科,陕西 延安

收稿日期:2023年7月31日;录用日期:2023年8月24日;发布日期:2023年9月1日

摘要

肺结核作为常见的慢性呼吸道疾病,严重危害人类健康,同时也一直备受国内外研究者的关注。近年来有不少流行病学证据表明吸烟会增加结核分枝杆菌的感染、肺结核的患病率以及影响疾病的预后及转归。本文就吸烟对肺结核的发生及预后等方面进行综述,旨在了解二者之间的关系,为肺结核的预防及控制提供理论依据。

关键词

吸烟,肺结核,结核分枝杆菌

Advances in Research on the Association between Smoking and Pulmonary Tuberculosis

Yaping Shi1, Yuanjun Li1,2*, Jinmei Wang1, Wei Hu1, Hao Liu1

1Department of Respiratory Medicine, Affiliated Hospital of Yan’an University, Yan’an Shaanxi

2Department of Respiratory and Tuberculosis, Yan’an Second People’s Hospital, Yan’an Shaanxi

Received: Jul. 31st, 2023; accepted: Aug. 24th, 2023; published: Sep. 1st, 2023

ABSTRACT

Pulmonary tuberculosis is a common chronic respiratory disease that poses a serious health risk to humans and has been the subject of much interest from national and international researchers. In recent years, there has been considerable epidemiological evidence that smoking increases Mycobacterium tuberculosis infection, the prevalence of tuberculosis and affects the prognosis and outcome of the disease. In this paper, we review the effects of smoking on the incidence and prognosis of tuberculosis, with the aim of understanding the relationship between the two and providing a theoretical basis for the prevention and control of tuberculosis.

Keywords:Smoking, Pulmonary Tuberculosis, Mycobacterium tuberculosis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肺结核(Pulmonary tuberculosis, PTB)是一种常见的慢性呼吸道传染性疾病,作为我国重点控制的重大疾病之一,其严重危害人类健康。2022年世界卫生组织(WHO)公布的全球结核报告指出 ‎[1] ,2021年全球约有1060万人感染结核病,其中约有530万感染肺结核,160万人死于结核病,中国新发结核病人数约78万,是世界第三大结核病国家。我国是最大的烟草生产国和消费国,也是最大的烟草受害国。《中国吸烟危害健康报告2020》中提出:吸烟可以增加患肺结核的风险,提高肺结核患者的死亡率 ‎[2] 。近些年来,不断有证据表明吸烟和肺结核之间存在潜在关联,本文主要就吸烟对肺结核的发生及其预后等方面进行综述。

2. 吸烟和肺结核密切相关

吸烟增加肺结核的患病率及病情严重程度。国外一项病例对照研究发现:吸烟与肺结核患者体征和症状及痰菌高载量显著相关,提出吸烟可导致肺结核患者的高患病率且加重疾病严重程度 ‎[3] 。此外,一项关于吸烟与肺结核发病的Meta分析也指出,中国吸烟者患结核病的危险性是不吸烟者的1.71倍 ‎[4] ,而Smith ‎[5] 等在一项包括了2380例活动性PTB患者和4738例无结核病患者的病例对照研究中发现:曾经吸烟者、目前吸烟者和过去吸烟者与不吸烟者相比,吸烟强度和持续时间与患活动性PTB风险呈正相关。有学者在一项前瞻性队列研究中发现吸烟者患活动性肺结核的风险较不吸烟者有所升高,且每天吸烟(Ptrend = 0.0036)、吸烟年数(Ptrend = 0.023)与吸烟指数(Ptrend = 0.0023)存在显著的剂量–反应关系 ‎[6] 。以上研究都证实了吸烟会增加MTB的感染和患PTB的风险,与疾病严重程度呈正相关。

3. 吸烟促使肺结核的发生

近年来,吸烟作为肺结核发生的独立危险因素已在国内外的大量相关研究中得到证实。研究发现,烟草主要从免疫、基因方面影响肺结核的发生、发展。

3.1. 吸烟降低机体免疫功能

3.1.1. 激活免疫抑制胆碱通路

胆碱能系统在神经免疫交流中发挥重要作用,其功能的失调可导致多种炎症发生。尼古丁作为一种免疫调节因子,主要作用于烟碱型乙酰胆碱受体(Nicotinic acetylcholine receptors, nAChRs),通过胆碱能抗炎途径(Cholinergic anti-inflammatory pathway, CAP)影响炎症反应的调控过程 ‎[7] ,激活关键因子α7 nAChR上调miR-124表达,靶向激活信号转导与转录激活因子以减少IL-6、TNF-α转化酶的产生 ‎[8] ,而IL-6、TNF-α作为机体的一种保护性细胞因子 ‎[9] ,在MTB侵入机体的早期过程中有助于消除和控制其生长。另一方面,Wu ‎[10] 等人也曾提出尼古丁通过激活CAP来抑制Th-17细胞反应,后者在自身免疫和机体防御中具有重要意义。

3.1.2. 影响巨噬细胞功能

吞噬是宿主清除细胞内MTB的一种效应机制,存在于肺泡腔内的肺泡巨噬细胞(AMs)的主要杀菌机制是吞噬,尼古丁通过影响AMs的吞噬作用进而影响肺MTB的清除。吴菲 ‎[11] 等人用一定浓度的尼古丁刺激肺泡巨噬细胞后,其吞噬能力呈剂量依赖的趋势降低,并且在一项关于电子烟试验中同样发现,暴露于含尼古丁的气雾剂可以抑制AMs几乎所有的吞噬作用,且使具有吞噬作用的AMs百分比下降 ‎[12] 。在MTB感染小鼠的试验中发现 ‎[13] 尼古丁可通过降低LC3-II的表达来抑制AMs的自噬,此外,Monick于研究中 ‎[14] 首次在吸烟者的AMs中观察到了积累的自噬体和p62而发现自噬缺陷。吸烟损害机体重要的免疫防御机制,影响细菌的清除。

极化M1和M2是巨噬细胞两种不同亚群。既往研究证明巨噬细胞的极化失衡与PTB和HIV的发生有关,由于潜在的组织损伤或致病作用,任何程序的过度或长期极化都可能对宿主有害 ‎[15] ,一项体内和体外实验中发现香烟可诱导巨噬细胞M1极化激活 ‎[16] ,同样,朱雅楠等人 ‎[17] 提出长时间高浓度烟雾刺激促使巨噬细胞细胞谷氨酰胺代谢改变并向M2型极化,烟草暴露可使巨噬细胞长期向某种极化方向进行。国外一种倾斜的免疫反应 ‎[18] 认为暴露于香烟中的巨噬细胞会导致M1和M2细胞因子产生的不平衡从而导致肺部疾病的发生。

3.1.3. 调节Tregs的免疫抑制能力

CD4+ CD25+ FoxP3+调节T细胞(Tregs)是一种具有免疫抑制功能的T淋巴细胞,CD4+调节性T细胞在细胞核中特异性表达转录因子FoxP3+,在细胞表面表达CD25+和CTLA-4,共同参与免疫耐受和稳态的维持 ‎[19] 。Wang ‎[20] 等人认为尼古丁可能通过α7 nAChR增强Tregs介导的淋巴细胞免疫抑制,主要与CD4 +、CD25+、CTLA-4、FoxP3+表达上调和IL-2分泌减少有关。有研究也支持,认为CD4+ CD25high FoxP3+的增加可显著降低潜伏性结核感染组和结核病组患者全血的杀菌活性 ‎[21] ,而Tregs在疾病的活动期和潜伏期间主要限制宿主抗MTB免疫。尼古丁降低Tregs抗MTB感染的巨噬细胞活性,同时诱导Tregs产生转化生长因子-β (TGF-β) ‎[13] ,TGF-β ‎[22] 可进一步抑制艾滋–结核病合并感染中IL-2和IL-1β的产生,后者在预防MTB感染的免疫应答中起重要作用。

3.1.4. 降低NK细胞的活性

自然杀伤细胞(NK细胞)是体内重要的固有免疫细胞,其可监视清除体内感染和恶变的细胞。NK细胞活性会随着吸烟数量的增加而下降,并且与吸烟者体内的可铁宁水平呈负相关 ‎[23] ,且长期接触烟草会降低机体血液中NK细胞内IL-16的浓度,影响先天免疫细胞的防御功能 ‎[24] ,Mian认为NK细胞功能的损害可致病毒感染和癌症的发病率更高 ‎[25] 。有人提出nAChRβ2受体是尼古丁诱导NK细胞功能损伤的主要途径 ‎[26] ,致使吸烟相关疾病的发生。NK细胞功能的降低会导致吸烟者呼吸道感染风险的增加,促使机体中MTB的免疫逃逸。

3.1.5. 抑制PRRs的表达

Toll样受体(TLRs)、表面活性蛋白(SP)和NOD样受体属于模式识别受体(PRRs),宿主通过协调来自PRRs的信号启动细胞相关功能以控制或者消除MTB ‎[27] 。有学者发现 ‎[28] 被尼古丁感染的AMs下调了TLR-2和TLR-4的表达,可抑制TLR-2和TLR-4激动剂刺激的AMs中促炎及抗炎等的表达 ‎[29] 。表面活性蛋白-D (SP-D)可调节AMs对MTB的吞噬作用,有人曾提出CS诱导的SP-D结构和功能缺陷可破坏肺固有免疫反应功能 ‎[30] ,减弱其抑制细菌生长和激活巨噬细胞吞噬的能力,并且SP-D可通过增加吞噬体–溶酶体融合来限制巨噬细胞中MTB在胞内生长 ‎[31] 。NOD-2调节AMs的固有免疫反应,使之在呼吸道MTB感染的初步控制中发挥作用 ‎[32] ,且国外有研究证明进入肺上皮的尼古丁可降低TLR-2、TLR-4、NOD-2的表达以及肺泡细胞中SP-D的产生 ‎[33] 。

3.1.6. 促进肺泡上皮细胞内MTB的生长

吸烟使呼吸道上皮细胞及黏膜的纤毛受损,影响清除功能,增加感染风险,肺泡上皮细胞在抵御肺部感染MTB的过程中发挥免疫调控作用。Miramontes ‎[34] 等人将MTB感染的肺上皮细胞和巨噬细胞用尼古丁做处理,发现尼古丁通过减少II型肺泡细胞(T2P)的HBD-2、HBD-3和LL-37的产生而促进MTB生长而增加MTB负荷,尼古丁在感染的肺泡上皮细胞中也可以剂量依赖性方式促进MTB生长 ‎[35] 。值得注意的是,我国学者王媛 ‎[36] 提出了P53信号通路通过负调控NF-κB信号通路控制细胞炎症反应来参与肺泡II型细胞(AECII)的抗结核免疫调控作用的观点,而P53生成增加会减少MTB的感染,烟草提取物 ‎[37] 通过翻译水平或翻译后修饰调控可引起p53蛋白水平的下调,p53缺陷的巨噬细胞未能控制MTB而表现为细胞内存活增强 ‎[38] 。p53虽有助于抑制细菌活性,但目前在MTB感染过程中的杀菌机制尚不清楚,有待进一步展开相关研究。

3.2. 肺结核、吸烟与基因的关系

几乎所有疾病的发生都会受环境和基因的影响,肺结核的发生也不例外。Li ‎[39] 曾提出SERPINA1基因中rs17580的类型突变与吸烟患者发生结核病的风险有较高的关系,罗芳 ‎[40] 等人认为IL-10 rs1800896位点基因多态性与肺结核易感性相关,且该基因与吸烟在发病过程中存在相加交互作用。同样的,胡宽 ‎[41] 也持有相似的观点,认为TAP1 rs1135216在吸烟者中也可增加肺结核的易感性。基因的改变在吸烟人群中可提高PTB的患病率,然而却有研究表明CYBB基因多态性在男性吸烟者中可显著降低相关结核病风险 ‎[42] 。对此,关于基因与吸烟者中PTB的患病率之间的关系,未来还需我们进一步的研究探索。

4. 预后及转归

吸烟不仅影响着肺结核的发生,对其预后及转归也不容忽视。吸烟会使痰菌阴转延迟、增加耐药性,加速MTB感染后发展为肺癌的进程及病情反复等。

4.1. 延迟肺结核痰涂片阴转

吸烟影响肺结核的痰菌阴转时间,其可能是由于吸烟造成肺部损伤,肺泡巨噬细胞的吞噬及杀菌能力降低有关。在马来西亚的研究中证实在吸烟的PTB患者中痰涂片阴转受到延迟 ‎[43] ,国外学者 ‎[44] 在一项Meta分析中也持有相似观点。吸烟也可延长成人肺结核痰培养转化的时间 ‎[45] 。缩短痰培养转化时间可降低MTB传播的可能性,这就使得医务人员应密切监测此类结核患者的痰菌变化。

4.2. 增加肺结核的耐药性

有研究表明肺结核患者吸烟会增加机体对抗结核药物的耐药性,导致治疗周期延长、治疗费用增加及不良反应增多等。我国山东的一项关于治疗肺结核的回顾性研究提出吸烟会增加肺结核的耐药性 ‎[46] ,国外研究者Carter ‎[47] 也持有相同观点。值得关注的是,在一项队列研究中发现虽然吸烟和饮酒对结核病耐药没有独立影响,但同时存在两种习惯的PTB患者会提高结核病的耐药性 ‎[48] 。结核病的耐药性是危害人类生命健康安全的重要因素,在临床工作中,须重视有吸烟史的结核患者的耐药监测。

4.3. 其他

吸烟促使肺结核患者的预后不佳,Qin等人认为吸烟会加速MTB感染后肺癌的发展 ‎[49] ,使得结核病病情反复,干扰疾病治疗效果,使疾病恶化。有文献报道当前吸烟或既往有吸烟史的肺结核病患者治疗失败的风险较未曾吸烟者提高 ‎[50] 。Lampalo指出吸烟是肺结核病复发的显著危险因素 ‎[51] ,使得病情反复,病程延长。吸烟者多存在呼吸道系统的表现,极易掩盖结核病症状,从而导致结核患者就诊延迟,延误病情。

5. 总结与展望

吸烟和肺结核是全球公共卫生的两大主要问题,在发展中国家尤为重要。烟草会增加MTB的感染和患PTB的风险,在吸烟的PTB者中,疾病的治疗效果更差,死亡风险更高,严重影响疾病的预后和转归。因此,我国作为烟草大国和结核大国,必须重视结核病和烟草带来的危害性,加大宣传戒烟力度,突出限制烟草接触的紧迫性与重要性,其对有效控制结核病疫情有一定的意义。

文章引用

史亚萍,李元军,汪金美,胡 玮,刘 浩. 吸烟与肺结核相关性研究进展
Advances in Research on the Association between Smoking and Pulmonary Tuberculosis[J]. 临床医学进展, 2023, 13(09): 13887-13893. https://doi.org/10.12677/ACM.2023.1391941

参考文献

  1. 1. World Health Organization (2022) Global Tuberculosis Report 2022. Geneva.

  2. 2. 王辰, 肖丹, 池慧. 《中国吸烟危害健康报告2020》概要[J]. 中国循环杂志, 2021, 36(10): 937-952.

  3. 3. Adegbite, B.R., et al. (2020) Epidemiological, Mycobacteriological, and Clinical Characteristics of Smoking Pulmonary Tuberculosis Patients, in Lambaréné, Gabon: A Cross-Sectional Study. The American Journal of Tropical Medicine and Hygiene, 103, 2501-2505. https://doi.org/10.4269/ajtmh.20-0424

  4. 4. 魏佳, 彭丽, 陈虹. 吸烟与中国人群肺结核发病的Meta分析[J]. 重庆医学, 2017, 46(16): 2224-2227, 2232.

  5. 5. Smith, G.S., et al. (2015) Cigarette Smoking and Pulmonary Tuberculosis in Northern California. Journal of Epidemiology & Community Health, 69, 568-573. https://doi.org/10.1136/jech-2014-204292

  6. 6. Lin, H.H., Ezzati, M., Chang, H.Y. and Murray, M. (2009) Associ-ation between Tobacco Smoking and Active Tuberculosis in Taiwan: Prospective Cohort Study. American Journal of Respiratory and Critical Care Medicine, 180, 475-480. https://doi.org/10.1164/rccm.200904-0549OC

  7. 7. Yamada, M. and Ichinose, M. (2018) The Cholinergic An-ti-Inflammatory Pathway: An Innovative Treatment Strategy for Respiratory Diseases and Their Comorbidities. Current Opinion in Pharmacology, 40, 18-25. https://doi.org/10.1016/j.coph.2017.12.003

  8. 8. Tahamtan, A., Teymoori-Rad, M., Nakstad, B. and Salimi, V. (2018) Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Frontiers in Immu-nology, 9, Article 1377. https://doi.org/10.3389/fimmu.2018.01377

  9. 9. Reuschl, A.K., et al. (2017) Innate Activation of Human Primary Epithelial Cells Broadens the Host Response to Mycobacterium Tuberculosis in the Airways. PLOS Pathogens, 13, e1006577. https://doi.org/10.1371/journal.ppat.1006577

  10. 10. Wu, S., et al. (2014) Attenuation of Collagen Induced Arthritis via Suppression on Th17 Response by Activating Cholinergic Anti-Inflammatory Pathway with Nicotine. European Journal of Pharmacology, 735, 97-104. https://doi.org/10.1016/j.ejphar.2014.04.019

  11. 11. 吴菲, 靳输梅, 李晓艳, 等. 尼古丁在诱导的肺泡巨噬细胞自噬及肺炎中的作用[J]. 生物技术通讯, 2019, 30(1): 25-30.

  12. 12. Serpa, G.L., Renton, N.D., Lee, N., Crane, M.J. and Jamieson, A.M. (2020) Electronic Nicotine Delivery System Aerosol-Induced Cell Death and Dysfunction in Macro-phages and Lung Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 63, 306-316. https://doi.org/10.1165/rcmb.2019-0200OC

  13. 13. Bai, X., et al. (2017) Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis. American Journal of Respiratory Cell and Molecular Biology, 57, 324-333. https://doi.org/10.1165/rcmb.2016-0270OC

  14. 14. Monick, M.M., et al. (2010) Identification of an Autophagy De-fect in Smokers’ Alveolar Macrophages. The Journal of Immunology, 185, 5425-5435. https://doi.org/10.4049/jimmunol.1001603

  15. 15. Lugo-Villarino, G., Vérollet, C., Maridonneau-Parini, I. and Ney-rolles, O. (2011) Macrophage Polarization: Convergence Point Targeted by Mycobacterium Tuberculosis and HIV. Frontiers in Immunology, 2, Article 43. https://doi.org/10.3389/fimmu.2011.00043

  16. 16. 冯浩珅. 香烟烟雾提取物对巨噬细胞M1/M2极化和凋亡的作用及机制研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2020.

  17. 17. 朱雅男, 王婷婷, 王勇, 等. 烟雾刺激影响巨噬细胞谷氨酰胺代谢调控极化的机制研究[C]//中华口腔医学会口腔粘膜病专业委员会、中华口腔医学会中西医结合专业委员会. 中华口腔医学会第十三次全国口腔粘膜病学暨第十一次全国口腔中西医结合学术大会论文汇编. 2021: 135-136.

  18. 18. da Silva, C.O., et al. (2020) Alteration of Immunophenotype of Human Macrophages and Monocytes after Exposure to Cigarette Smoke. Scientific Reports, 10, Article No. 12796. https://doi.org/10.1038/s41598-020-68753-1

  19. 19. Sakaguchi, S., et al. (2020) Regulatory T Cells and Human Dis-ease. Annual Review of Immunology, 38, 541-566. https://doi.org/10.1146/annurev-immunol-042718-041717

  20. 20. Wang, D.W., et al. (2010) Stimulation of α7 Nico-tinic Acetylcholine Receptor by Nicotine Increases Suppressive Capacity of Naturally Occurring CD4+CD25+ Regulatory T Cells in Mice in vitro. Journal of Pharmacology and Experimental Therapeutics, 335, 553-561. https://doi.org/10.1124/jpet.110.169961

  21. 21. Stringari, L.L., et al. (2021) Increase of CD4+CD25highFoxP3+ Cells Impairs in vitro Human Microbicidal Activity against Mycobacterium tuberculosis during Latent and Acute Pulmonary Tuberculosis. PLOS Neglected Tropical Diseases, 15, e0009605. https://doi.org/10.1371/journal.pntd.0009605

  22. 22. Devalraju, K.P., et al. (2019) Transforming Growth Factor-β Suppresses Interleukin (IL)-2 and IL-1β Production in HIV-Tuberculosis Co-Infection. Journal of Interferon & Cytokine Research, 39, 355-363. https://doi.org/10.1089/jir.2018.0164

  23. 23. Jung, Y.S., et al. (2020) Impact of Smoking on Human Natural Killer Cell Activity: A Large Cohort Study. Journal of Cancer Prevention, 25, 13-20. https://doi.org/10.15430/JCP.2020.25.1.13

  24. 24. Andersson, A., et al. (2016) Interleukin-16-Producing NK Cells and T-Cells in the Blood of Tobacco Smokers with and without COPD. International Journal of Chronic Obstructive Pulmonary Disease, 11, 2245-2258. https://doi.org/10.2147/COPD.S103758

  25. 25. Mian, M.F., Lauzon N.M.,, Stämpfli, M.R., Mossman, K.L. and Ashkar, A.A. (2008) Impairment of Human NK Cell Cytotoxic Activity and Cytokine Release by Cigarette Smoke. Journal of Leukocyte Biology, 83, 774-784. https://doi.org/10.1189/jlb.0707481

  26. 26. Hao, J., et al. (2013) Nicotinic Receptor β2 Determines NK Cell-Dependent Metastasis in a Murine Model of Metastatic Lung Cancer. PLOS ONE, 8, e57495. https://doi.org/10.1371/journal.pone.0057495

  27. 27. Liu, C.H., Liu, H. and Ge, B. (2017) Innate Immunity in Tu-berculosis: Host Defense vs Pathogen Evasion. Cellular & Molecular Immunology, 14, 963-975. https://doi.org/10.1038/cmi.2017.88

  28. 28. AlQasrawi, D. and Naser, S.A. (2020) Nicotine Modulates MyD88-Dependent Signaling Pathway in Macrophages during Mycobacterial Infection. Microorganisms, 8, Article 1804. https://doi.org/10.3390/microorganisms8111804

  29. 29. Chen, H.Y., Cowan, M.J., Hasday, J.D., Vogel, S.N. and Medvedev, A.E. (2007) Tobacco Smoking Inhibits Expression of Proinflammatory Cytokines and Activation of IL-1R-Associated Kinase, p38, and NF-κB in Alveolar Macrophages Stimulated with TLR2 and TLR4 Agonists. The Journal of Immunology, 179, 6097-6106. https://doi.org/10.4049/jimmunol.179.9.6097

  30. 30. Takamiya, R., et al. (2020) Acrolein in Cigarette Smoke Attenu-ates the Innate Immune Responses Mediated by Surfactant Protein D. Biochimica et Biophysica Acta (BBA)—General Subjects, 1864, Article ID: 129699. https://doi.org/10.1016/j.bbagen.2020.129699

  31. 31. Ferguson, J.S., et al. (2006) Surfactant Protein D Increases Fu-sion of Mycobacterium tuberculosis-Containing Phagosomes with Lysosomes in Human Macrophages. Infection and Immunity, 74, 7005-7009. https://doi.org/10.1128/IAI.01402-06

  32. 32. Juárez, E., et al. (2012) NOD2 Enhances the Innate Response of Alveo-lar Macrophages to Mycobacterium tuberculosis in Humans. European Journal of Immunology, 42, 880-889. https://doi.org/10.1002/eji.201142105

  33. 33. Valdez-Miramontes, C.E., et al. (2020) Nicotine Modulates Molecules of the Innate Immune Response in Epithelial Cells and Macrophages during Infection with M. tuberculosis. Clinical and Experimental Immunology, 199, 230-243. https://doi.org/10.1111/cei.13388

  34. 34. Miramontes, C.V., et al. (2021) Nicotine Promotes the Intracellular Growth of Mycobacterium tuberculosis in Epithelial Cells. Tuberculosis, 127, Article ID: 102026. https://doi.org/10.1016/j.tube.2020.102026

  35. 35. de Haro-Acosta, J., et al. (2021) Nicotine Associates to Intracellu-lar Mycobacterium tuberculosis Inducing Genes Related with Resistance to Antimicrobial Peptides. Experimental Lung Research, 47, 487-493. https://doi.org/10.1080/01902148.2021.2006829

  36. 36. 蔡玉荣, 王媛, 孔云逸, 等. p53和NF-κB信号通路在MTB感染AECII细胞中的免疫调控作用研究[J]. 中国免疫学杂志, 2022, 38(7): 769-776, 782.

  37. 37. 薛晓媛. 烟草混合物诱导正常肺细胞p53蛋白水平表达的分子机制研究[D]: [硕士学位论文]. 大连: 大连医科大学, 2016.

  38. 38. Lim, Y.J., et al. (2020) M1 Macrophage Dependent-p53 Regulates the Intracellular Survival of Mycobacteria. Apoptosis, 25, 42-55. https://doi.org/10.1007/s10495-019-01578-0

  39. 39. Li, T. and Han, S. (2022) Association of Single Nucleotide Polymorphism rs17580 with Smoking and Pulmonary Tuberculosis. Journal of Healthcare Engineer-ing, 2022, Article ID: 6984403. https://doi.org/10.1155/2022/6984403

  40. 40. 罗芳, 赖石凤, 陈悦, 等. IL-10 rs1800896位点基因多态性与吸烟的交互作用对肺结核发病的影响[J]. 医学研究生学报, 2021, 34(1): 48-52.

  41. 41. 胡宽, 罗芳, 张开漩, 等. TAP1基因多态性与被动吸烟的交互作用对肺结核发病的影响[J]. 医学研究生学报, 2021, 34(7): 721-726.

  42. 42. Liu, Q., et al. (2015) Association of CYBB Polymorphisms with Tuberculosis Susceptibility in the Chinese Han Population. Infection, Genetics and Evolution, 33, 169-175. https://doi.org/10.1016/j.meegid.2015.04.026

  43. 43. Ibrahim, M.N., Rosmawati, N., Husain, N., Daud, A. and Chinnayah, T. (2022) Epidemiology and Risk Factors of Delayed Sputum Smear Conversion in Malaysian Aborigines with Smear-Positive Pulmonary Tuberculosis. International Journal of Environmental Research and Public Health, 19, Article 2365. https://doi.org/10.3390/ijerph19042365

  44. 44. Wang, E.Y., Arrazola, R.A., Mathema, B., Ahluwalia, I.B. and Mase, S.R. (2020) The Impact of Smoking on Tuberculosis Treatment Outcomes: A Meta-Analysis. The Inter-national Journal of Tuberculosis and Lung Disease, 24, 170-175. https://doi.org/10.5588/ijtld.19.0002

  45. 45. Kanda, R., et al. (2015) Factors Affecting Time to Sputum Culture Conversion in Adults with Pulmonary Tuberculosis: A His-torical Cohort Study without Censored Cases. PLOS ONE, 10, e0142607. https://doi.org/10.1371/journal.pone.0142607

  46. 46. Tao, N.N., et al. (2021) Risk Factors for Drug-Resistant Tu-berculosis, the Association between Comorbidity Status and Drug-Resistant Patterns: A Retrospective Study of Previ-ously Treated Pulmonary Tuberculosis in Shandong, China, during 2004-2019. BMJ Open, 11, e044349. https://doi.org/10.1136/bmjopen-2020-044349

  47. 47. Carter, B.B., et al. (2021) Survival Analysis of Patients with Tuberculosis and Risk Factors for Multidrug-Resistant Tuberculosis in Monrovia, Liberia. PLOS ONE, 16, e0249474. https://doi.org/10.1371/journal.pone.0249474

  48. 48. Song, W.M., et al. (2022) Impact of Alcohol Drinking and To-bacco Smoking on the Drug-Resistance of Newly Diagnosed Tuberculosis: A Retrospective Cohort Study in Shandong, China, during 2004-2020. BMJ Open, 12, e059149. https://doi.org/10.1136/bmjopen-2021-059149

  49. 49. Qin, Y., et al. (2022) The Relationship between Previous Pul-monary Tuberculosis and Risk of Lung Cancer in the Future. Infectious Agents and Cancer, 17, Article No. 20. https://doi.org/10.1186/s13027-022-00434-2

  50. 50. Aguilar, J.P., et al. (2019) Smoking and Pulmonary Tuberculosis Treatment Failure: A Case-Control Study. Jornal Brasileiro de Pneumologia, 45, e20180359. https://doi.org/10.1590/1806-3713/e20180359

  51. 51. Lampalo, M., et al. (2019) The Role of Cigarette Smoking and Alcohol Consumption in Pulmonary Tuberculosis Development and Recurrence. Acta clinica Croatica, 58, 590-594. https://doi.org/10.20471/acc.2019.58.04.04

  52. NOTES

    *通讯作者。

期刊菜单