Open Journal of Natural Science
Vol. 09  No. 01 ( 2021 ), Article ID: 40064 , 7 pages
10.12677/OJNS.2021.91018

Irisin的生理效应及其研究进展

孙卓1,范锦博2,梁向艳1,赵妍妍1,张小春1,张丽君1,孙霞1,赵玉峰1*

1西安医学院基础医学部基础医学研究所,陕西 西安

2西安医学院基础医学部病原微生物教研室,陕西 西安

收稿日期:2020年12月25日;录用日期:2021年1月21日;发布日期:2021年1月28日

摘要

Irisin (鸢尾素)从最初被发现在脂肪细胞棕化过程中的作用后就一直被研究者们广泛关注。它在多种组织中均有表达,在运动后及二型糖尿病,孕期糖尿病患者中表达量发生变化。由于Irisin可以改善胰岛素抵抗,促进脂肪细胞棕化,故其在糖尿病及肥胖症治疗中具有应用潜力。Irisin在神经系统发育中具有重要作用,其含量与认知水平密切相关。本文就Irisin的发现及生理效应的研究展开综述。

关键词

Irisin,脂肪代谢,白色脂肪组织,棕色脂肪组织,二型糖尿病,FNDC5

Physiological Effects of Irisin and its Research Progress

Zhuo Sun1, Jinbo Fan2, Xiangyan Liang1, Yanyan Zhao1, Xiaochun Zhang1, Lijun Zhang1, Xia Sun1, Yufeng Zhao1*

1Institute of Basic Medical Sciences, School of Basic Medicine, Xi’an Medical University, Xi’an Shaanxi

2Pathogen Microbiology Department, School of Basic Medicine, Xi’an Medical University, Xi’an Shaanxi

Received: Dec. 25th, 2020; accepted: Jan. 21st, 2021; published: Jan. 28th, 2021

ABSTRACT

Irisin has inspired great interests from scientists since it was discovered to be important for white fat browning. It is expressed in many different tissues and Irisin level has been shown to change after exercise and in Type 2 diabetes patients and gestational diabetes patients. Since Irisin improves insulin resistance and promotes fat browning, it has great potential in diabetes and obesity treatment. Irisin plays important role in nervous system development, and its level is closely related to cognitive level. This review summarizes the physiological effects of Irisin and its research progress.

Keywords:Irisin, Fat Metabolism, White Adipose Tissue, Brown Adipose Tissue, Type 2 Diabetes, FNDC5

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. Irisin的发现

Irisin是一种可以促进白色脂肪棕化的激素。Irisin最初是在对PGC1α转基因小鼠的研究中发现的 [1]。骨骼肌中表达量升高的PGC1a转基因小鼠不易患糖尿病或老年性肥胖,暗示这些小鼠的能量代谢系统具有特殊的改变。研究者们发现骨骼肌中的转基因PGC1a可诱导皮下脂肪的棕化。经过分析PGC1a转基因小鼠的基因表达谱发现,Fndc5的表达量明显增加,而Fndc5处理确实可以诱导体外培养的脂肪细胞中棕色脂肪基因的表达。Fndc5含有一个信号肽,两个纤维连接蛋白结构域和一个疏水结构域构成。质谱分析发现Fndc5在112位谷氨酸处被酶切后产生一种在小鼠和人之间一致性为100%的多肽,由于这个多肽从骨骼肌到脂肪等其他组织的信使作用,依据希腊神话中的信使女神Iris而被命名为Irisin。这一命名很好的概括了Irisin在运动后肌肉向脂肪(棕化和产热)以及其他和代谢相关组织传递中的化学信使作用。在表达PGC1a的骨骼肌细胞培养液中加入Irisin抗体后,其对于脂肪细胞中棕色脂肪基因表达的促进作用显著降低,暗示Irisin在脂肪细胞棕化中的重要作用。该研究还发现,Irisin可以在高脂饮食小鼠体内高效地使白色脂肪组织发生棕化,增加能量消耗并提高葡萄糖耐受性。

2. Irisin表达的组织

最初研究者们利用Western [1] 和ELISA [2] 的方法测定了血浆中Irisin的含量,并利用免疫反应确定了Irisin在心肌和骨骼肌中的表达 [3]。随后越来越多的研究发现Irisin也在肝 [4],脾脏,肾脏,胰腺,皮肤,脂肪 [5] [6],汗腺,唾液腺,睾丸 [7],附睾,脑等组织中广泛地表达。这说明Irisin在细胞生理中起着重要的作用,而Irisin在多种组织器官中的其他功能则需要更多的研究来确认。

3. Irisin在脂肪代谢中的作用

脂肪组织根据其颜色,解剖学位置,以及生物学功能的不同分为:白色脂肪组织(White Adipose Tissue, WAT)和棕色脂肪组织(Brown Adipose Tissue, BAT)。白色脂肪组织呈白色,主要在皮下以单细胞或在腹腔膜以紧密组织存在,其生物学功能为储存过多的能量。白色脂肪组织中油滴单个存在于每个细胞中,线粒体含量较少。棕色脂肪组织呈棕色,啮齿类动物中,棕色脂肪库主要存在于肩胛骨和胸部纵隔处 [8],其主要生物学功能为产热。棕色脂肪中油滴以多个小泡存在,线粒体数目很多。其线粒体膜上有UCP1 (uncoupling protein 1)蛋白,可以将质子从线粒体质中泵到线粒体膜间隙 [9],此过程可产热,在新生儿调节体温过程中具有重要作用。两种脂肪细胞虽都从中胚层发育而来,但起源于不同的间叶细胞干细胞谱系。

棕色脂肪按其来源以及位置的不同分为两种:经典棕色脂肪或组成型棕色脂肪(classicalBAT, cBAT)以及募集型棕色脂肪(recruitable BAT, rBAT)。经典棕色脂肪存在于小鼠和人类婴儿肩胛区域,它的前体细胞与骨骼肌的前体细胞更加相似,是表达Myf5肌原性标记的前体细胞 [10] [11]。募集型棕色脂肪在个体经运动或如长期冷暴露等产热刺激后产生于白色脂肪库和肌肉中,也被称为米色脂肪(Beige fat, Brite, brown-in-white)。米色脂肪与白色脂肪的前体相同,是不表达Myf5的前体细胞。白色脂肪转变为募集型棕色脂肪的过程被称为棕化 [12]。而Irisin可以诱导白色脂肪发生棕化 [1]。

Irisin不仅可以由肌肉分泌,同时也可以从脂肪细胞中分泌 [6]。人类白色脂肪组织中FNDC5表达量虽比肌肉中低100~200倍,但也构成了血浆中Irisin的一部分 [13]。

4. Irisin与运动的关系

FNDC5 mRNA在运动后的啮齿动物模型 [14] 和人类 [15] 中都有表达。但运动对于血浆中Irisin水平的影响具有争议。最初研究者们对于运动促进人血液中Irisin水平增高得出不同的结论,同时指出不同种类的运动(耐力运动或抗阻运动,短期运动或长期运动)对血液Irisin水平有不同的影响,主要由于使用的抗体识别的是FNDC5的跨膜结构域,而不是识别被分泌的Irisin [2] [16]。近年来,越来越多的研究者开始使用质谱测定血液中Irisin含量,从而使测定结果不受到不同抗体的影响 [17] [18]。实验证明,耐力或抗阻运动都可以提高人类血液中Irisin的含量。

5. Irisin在二型糖尿病中的作用

在Bostrom等最初发现Irisin的文章中指出,由于Irisin可以提高小鼠葡萄糖耐受,并降低空腹胰岛素水平,Irisin的治疗潜力值得研究 [1]。随后大量的研究开始探究Irisin在糖尿病中的作用。大部分研究显示二型糖尿病患者血液中Irisin含量降低 [19] [20] [21],若出现二型糖尿病的并发症,如:肾脏衰竭,心血管疾病,则Irisin含量更低 [22] [23]。而在一型糖尿病中,Irisin水平升高 [24] [25]。同时,空腹血糖与Irisin含量呈正相关 [15] [19] [26],并且Irisin和胰岛beta细胞功能正相关 [27]。

研究者们对于Irisin在孕期糖尿病患者中的含量具有争议。不同的研究者分别发现患有孕期糖尿病的女性血液中Irisin含量高于 [28],低于 [29] [30] [31] [32] [33],或相似于健康个体 [34]。但是,绝大多数研究以及一个汇总分析 [31] 证明孕期糖尿病患者血浆中Irisin含量降低。

6. Irisin在治疗中的作用

在糖尿病 [35] [36] 以及胰岛素抵抗 [37] [38] 小鼠模型中使用Irisin可以通过调节AMPK信号通路 [37] 降低糖异生作用,促进糖原生成,改善肌肉胰岛素抵抗。Irisin还可以增强糖尿病小鼠内皮细胞功能 [39]。Irisin同样可以抑制由高糖 [40] 或高饱和脂肪酸饮食 [41] 引起的凋亡而增强胰岛β细胞存活率。由于外源Irisin可有效地使皮下脂肪棕化,理论上还可以将其制成可注射的多肽辅助治疗肥胖,糖尿病等代谢疾病 [1]。

7. Irisin还是FNDC5?

Irisin从其被发现开始就被广泛的研究,而它的前体FNDC5却被相对较少的人关注。FNDC5在新陈代谢 [42] [43],心肌细胞分化 [44] [45],神经发育 [46] [47] 中具有重要作用。而FNDC5的基因多态性在人群中与很多疾病相关:如FNDC5单核苷酸多态性rs16835198和rs726344在1976个德国受试者中和胰岛素敏感性显著相关(p < 0.0253) [48],rs16835198在一项对6822名中国汉族人的基因型筛查中显示和空腹胰岛素水平显著相关(p < 0.046) [49]。

8. Irisin在神经系统中的作用

Irisin在神经系统的发育中具有重要作用。FNDC5基因在脑的很多区域都有表达,如:小脑浦肯野细胞 [3],下丘脑 [50] 以及海马体 [51]。Western以及质谱证明Irisin在脑脊液中也存在 [28] [52]。在原代小鼠胚胎大脑皮层神经元细胞成熟过程中,以及人类胚胎干细胞来源的神经细胞分化为神经元的过程中,FNDC5含量升高 [46] [51]。FNDC5过表达促进小鼠胚胎干细胞向神经细胞的分化 [53],而FNDC5 knockdown显著抑制小鼠胚胎干细胞向神经细胞的分化 [54]。

Irisin介导了运动对脑健康的有益作用。运动对脑健康具有很多益处,如降低痴呆和抑郁的风险,维护认知能力。而运动对于脑神经系统的作用很可能是由肌肉分泌的激素进入血液,通过血脑屏障而引起脑中基因表达的改变。PGC1a-FNDC5-BDNF通路的发现就为此提供了有力的证据。BDNF (Brain-derived neurotrophic factor)是介导由运动引起的海马齿状回细胞增殖的重要因子 [55]。运动引起肌肉中PGC1a蛋白表达量升高 [56],而PGC1a促进FNDC5表达 [1]。使用腺病毒载体在肝脏中表达FNDC5可以提高血浆中Irisin含量,并导致海马BDNF表达量升高。后期,由研究者发现,耐力运动不仅可以提高骨骼肌中Irisin表达量,还可以提高海马中Irisin的表达量 [51]。

随后几项研究探索了衰老个体 [57],年轻运动员 [58] 或肥胖症患者 [59] 血浆中Irisin含量和认知功能的关系。其中两项研究表明Irisin与更好的认知功能相关 [57] [58],而另外的一项研究发现Irisin与认知功能负相关 [59]。

9. 亟待解决的问题

自从Irisin在2012年被发现,研究者们对于Irisin产生了浓厚的兴趣;使用Irisin这一关键词在PubMed上搜索即可得到超过1000篇同行评审期刊上的文章。Irisin对于很多系统都具有重要的生理作用,如:糖代谢稳定,白色脂肪棕化,神经系统发育等。但是有关Irisin的研究也存在许多尚未解决的问题。

从上综述可以发现,关于Irisin的研究有很多出入,甚至结论完全相反,其中一个重要原因就是不同研究者使用的抗体或实验方法不同。人血浆中Irisin含量就有0.01 ng/ml到2000 ng/ml范围之内的不同报道 [60] [61] [62] [63] [64],这说明将样品制备步骤标准化,以及探测Irisin含量方法的统一化至关重要。

最初发现Irisin的文章中使用的抗体是识别FNDC5疏水结构域和C末端的抗体 [1],所以其中被认为是Irisin的条带可能是全长FNDC5或其他被非特异识别的蛋白。随后,识别Irisin纤维连接蛋白III结构域的抗体进入市场被广泛使用。可见,Irisin相关研究中使用的抗体也是比较研究结果之间差别的重要因素。如果样品制备步骤,使用的抗体,检测的方法不同,那么不同研究之间很难有可比性。而这也是Irisin相关生理效应研究的一个难点。

基金项目

西安医学院博士启动基金“IL1RAPL1增强子激活导致失活X染色体结构松散的机制研究”项目编号:2020DOC14,主持人:孙卓。

西安医学院博士启动基金“LINC复合体在细胞减数分裂中的组装及其机制研究”项目编号:2020DOC17,主持人:范锦博。

文章引用

孙 卓,范锦博,梁向艳,赵妍妍,张小春,张丽君,孙 霞,赵玉峰. Irisin的生理效应及其研究进展
Physiological Effects of Irisin and its Research Progress[J]. 自然科学, 2021, 09(01): 147-153. https://doi.org/10.12677/OJNS.2021.91018

参考文献

  1. 1. Bostrom, P., et al. (2012) A PGC1-Alpha-Dependent Myokine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature, 481, 463-468. https://doi.org/10.1038/nature10777

  2. 2. Huh, J.Y., et al. (2014) Irisin in Response to Acute and Chronic Whole-Body Vibration Exercise in Humans. Metabolism, 63, 918-921. https://doi.org/10.1016/j.metabol.2014.04.001

  3. 3. Dun, S.L., et al. (2013) Irisin-Immunoreactivity in Neural and Non-Neural Cells of the Rodent. Neuroscience, 240, 155-162. https://doi.org/10.1016/j.neuroscience.2013.02.050

  4. 4. Aydin, S., et al. (2015) Effect of Carnosine Supplementa-tion on Apoptosis and Irisin, Total Oxidant and Antioxidants Levels in the Serum, Liver and Lung Tissues in Rats Ex-posed to Formaldehyde Inhalation. Peptides, 64, 14-23. https://doi.org/10.1016/j.peptides.2014.11.008

  5. 5. Moreno-Navarrete, J.M., et al. (2013) Irisin Is Expressed and Produced by Human Muscle and Adipose Tissue in Association with Obesity and Insulin Resistance. The Journal of Clinical Endocrinology and Metabolism, 98, E769-E778. https://doi.org/10.1210/jc.2012-2749

  6. 6. Roca-Rivada, A., et al. (2013) FNDC5/Irisin Is Not Only a Myokine But Also an Adipokine. PLoS ONE, 8, e60563. https://doi.org/10.1371/journal.pone.0060563

  7. 7. Aydin, S., et al. (2014) A Comprehensive Immunohistochemical Examination of the Distribution of the Fat-Burning Protein Irisin in Biological Tissues. Peptides, 61, 130-136. https://doi.org/10.1016/j.peptides.2014.09.014

  8. 8. Giralt, M. and Villarroya, F. (2013) White, Brown, Beige/Brite: Different Adipose Cells for Different Functions? Endocrinology, 154, 2992-3000. https://doi.org/10.1210/en.2013-1403

  9. 9. Jastroch, M., et al. (2010) Mitochondrial Proton and Electron Leaks. Essays in Biochemistry, 47, 53-67. https://doi.org/10.1042/bse0470053

  10. 10. Seale, P., et al. (2008) PRDM16 Controls a Brown Fat/Skeletal Muscle Switch. Nature, 454, 961-967. https://doi.org/10.1038/nature07182

  11. 11. Timmons, J.A., et al. (2007) Myogenic Gene Expression Signature Es-tablishes That Brown and White Adipocytes Originate from Distinct Cell Lineages. Proceedings of the National Academy of Sciences of the United States of America, 104, 4401-4406. https://doi.org/10.1073/pnas.0610615104

  12. 12. Young, P., Arch, J.R. and Ashwell, M. (1984) Brown Adipose Tissue in the Parametrial Fat Pad of the Mouse. FEBS Letters, 167, 10-14. https://doi.org/10.1016/0014-5793(84)80822-4

  13. 13. Perakakis, N., et al. (2017) Physiology and Role of Irisin in Glucose Homeostasis. Nature Reviews Endocrinology, 13, 324-337. https://doi.org/10.1038/nrendo.2016.221

  14. 14. Roberts, M.D., et al. (2013) Elevated Skeletal Muscle Irisin Precur-sor FNDC5 mRNA in Obese OLETF Rats. Metabolism, 62, 1052-1056. https://doi.org/10.1016/j.metabol.2013.02.002

  15. 15. Huh, J.Y., et al. (2012) FNDC5 and Irisin in Humans: I. Pre-dictors of Circulating Concentrations in Serum and Plasma and II. mRNA Expression and Circulating Concentrations in Response to Weight Loss and Exercise. Metabolism, 61, 1725-1738. https://doi.org/10.1016/j.metabol.2012.09.002

  16. 16. Ellefsen, S., et al. (2014) Irisin and FNDC5: Effects of 12-Week Strength Training, and Relations to Muscle Phenotype and Body Mass Composition in Untrained Women. Eu-ropean Journal of Applied Physiology, 114, 1875-1888. https://doi.org/10.1007/s00421-014-2922-x

  17. 17. Daskalopoulou, S.S., et al. (2014) Plasma Irisin Levels Progres-sively Increase in Response to Increasing Exercise Workloads in Young, Healthy, Active Subjects. European Journal of Endocrinology, 171, 343-352. https://doi.org/10.1530/EJE-14-0204

  18. 18. Jedrychowski, M.P., et al. (2015) Detection and Quantitation of Circu-lating Human Irisin by Tandem Mass Spectrometry. Cell Metabolism, 22, 734-740. https://doi.org/10.1016/j.cmet.2015.08.001

  19. 19. Liu, J.J., et al. (2013) Lower Circulating Irisin Is Associated with Type 2 Diabetes Mellitus. Journal of Diabetic Complications, 27, 365-369. https://doi.org/10.1016/j.jdiacomp.2013.03.002

  20. 20. Choi, Y.K., et al. (2013) Serum Irisin Levels in New-Onset Type 2 Diabetes. Diabetes Research and Clinical Practice, 100, 96-101. https://doi.org/10.1016/j.diabres.2013.01.007

  21. 21. Kurdiova, T., et al. (2014) Effects of Obesity, Diabetes and Ex-ercise on Fndc5 Gene Expression and Irisin Release in Human Skeletal Muscle and Adipose Tissue: In Vivo and in Vitro Studies. The Journal of Physiology, 592, 1091-1107. https://doi.org/10.1113/jphysiol.2013.264655

  22. 22. Zhang, M., et al. (2014) The Association of New Inflammatory Markers with Type 2 Diabetes Mellitus and Macrovascular Complications: A Preliminary Study. European Review for Medical and Pharmacological Sciences, 18, 1567-1572.

  23. 23. Liu, J.J., et al. (2014) Relationship between Circulating Irisin, Renal Function and Body Composition in Type 2 Diabetes. Journal of Diabetic Complications, 28, 208-213. https://doi.org/10.1016/j.jdiacomp.2013.09.011

  24. 24. Ates, I., et al. (2017) Factors Associated with Increased Irisin Levels in the Type 1 Diabetes Mellitus. Endocrine Regulations, 51, 1-7. https://doi.org/10.1515/enr-2017-0001

  25. 25. Espes, D., Lau, J. and Carlsson, P.O. (2015) Increased Levels of Irisin in People with Long-Standing Type 1 Diabetes. Diabetic Medicine, 32, 1172-1176. https://doi.org/10.1111/dme.12731

  26. 26. Huerta, A.E., et al. (2015) Circulating Irisin and Glucose Metabolism in Overweight/Obese Women: Effects of Alpha-Lipoic Acid and Eicosapentaenoic Acid. Journal of Physiology and Bio-chemistry, 71, 547-558. https://doi.org/10.1007/s13105-015-0400-5

  27. 27. Yang, M., et al. (2014) Circulating Levels of Irisin in Mid-dle-Aged First-Degree Relatives of Type 2 Diabetes Mellitus—Correlation with Pancreatic Beta-Cell Function. Dia-betology & Metabolic Syndrome, 6, 133. https://doi.org/10.1186/1758-5996-6-133

  28. 28. Piya, M.K., et al. (2014) The Identification of Irisin in Human Cere-brospinal Fluid: Influence of Adiposity, Metabolic Markers, and Gestational Diabetes. American Journal of Physiolo-gy-Endocrinology and Metabolism, 306, E512-E518. https://doi.org/10.1152/ajpendo.00308.2013

  29. 29. Kuzmicki, M., et al. (2014) Serum Irisin Concentration in Women with Gestational Diabetes. Gynecological Endocrinology, 30, 636-639. https://doi.org/10.3109/09513590.2014.920006

  30. 30. Usluogullari, B., et al. (2017) Role of Serum Levels of Irisin and Oxidative Stress Markers in Pregnant Women with and without Gestational Diabetes. Gynecological Endocrinology, 33, 405-407. https://doi.org/10.1080/09513590.2017.1284789

  31. 31. Zhao, L., et al. (2015) Circulating Irisin Is Lower in Gesta-tional Diabetes Mellitus. Endocrine Journal, 62, 921-926. https://doi.org/10.1507/endocrj.EJ15-0230

  32. 32. Yuksel, M.A., et al. (2014) Maternal Serum and Fetal Cord Blood Irisin Levels in Gestational Diabetes Mellitus. Diabetes Research and Clinical Practice, 104, 171-175. https://doi.org/10.1016/j.diabres.2013.12.025

  33. 33. Ural, U.M., et al. (2016) Alteration of Maternal Serum Irisin Levels in Gestational Diabetes Mellitus. Ginekologia Polska, 87, 395-398. https://doi.org/10.5603/GP.2016.0013

  34. 34. Ebert, T., et al. (2014) Serum Levels of Irisin in Gestational Diabetes Mellitus during Pregnancy and after Delivery. Cytokine, 65, 153-158. https://doi.org/10.1016/j.cyto.2013.11.009

  35. 35. Liu, T.Y., et al. (2015) Irisin Inhibits Hepatic Gluconeogenesis and Increases Glycogen Synthesis via the PI3K/Akt Pathway in Type 2 Diabetic Mice and Hepatocytes. Clinical Science, 129, 839-850. https://doi.org/10.1042/CS20150009

  36. 36. Duan, H., et al. (2016) Anti-Diabetic Activity of Recombinant Irisin in STZ-Induced Insulin-Deficient Diabetic Mice. International Journal of Biological Macromolecules, 84, 457-463. https://doi.org/10.1016/j.ijbiomac.2015.12.049

  37. 37. Xin, C., et al. (2016) Irisin Improves Fatty Acid Oxidation and Glucose Utilization in Type 2 Diabetes by Regulating the AMPK Signaling Pathway. International Journal of Obesity (London), 40, 443-451. https://doi.org/10.1038/ijo.2015.199

  38. 38. Yang, Z., et al. (2015) Decreased Irisin Secretion Contributes to Muscle Insulin Resistance in High-Fat Diet Mice. International Journal of Clinical and Experimental Pathology, 8, 6490-6497.

  39. 39. Zhu, D., et al. (2015) Irisin Improves Endothelial Function in Type 2 Diabetes through Reducing Oxi-dative/Nitrative Stresses. Journal of Molecular and Cellular Cardiology, 87, 138-147. https://doi.org/10.1016/j.yjmcc.2015.07.015

  40. 40. Liu, S., et al. (2017) Effects and Underlying Mechanisms of Irisin on the Proliferation and Apoptosis of Pancreatic Beta Cells. PLoS ONE, 12, e0175498. https://doi.org/10.1371/journal.pone.0175498

  41. 41. Natalicchio, A., et al. (2017) The Myokine Irisin Is Released in Response to Saturated Fatty Acids and Promotes Pancreatic Beta-Cell Survival and Insulin Secretion. Diabetes, 66, 2849-2856. https://doi.org/10.2337/db17-0002

  42. 42. Cai, C., et al. (2017) Gene Location, Expression, and Function of FNDC5 in Meishan Pigs. Scientific Reports, 7, Article No. 7886. https://doi.org/10.1038/s41598-017-08406-y

  43. 43. Xiong, X.Q., et al. (2015) FNDC5 Overexpression and Irisin Ameliorate Glucose/Lipid Metabolic Derangements and Enhance Lipolysis in Obesity. Biochimica et Biophysica Acta, 1852, 1867-1875. https://doi.org/10.1016/j.bbadis.2015.06.017

  44. 44. Rabiee, F., et al. (2014) Induced Expression of Fndc5 Signifi-cantly Increased Cardiomyocyte Differentiation Rate of Mouse Embryonic Stem Cells. Gene, 551, 127-137. https://doi.org/10.1016/j.gene.2014.08.045

  45. 45. Nazem, S., et al. (2018) Fndc5 Knockdown Induced Suppression of Mitochondrial Integrity and Significantly Decreased Cardiac Differentiation of Mouse Embryonic Stem Cells. Journal of Cellular Biochemistry, 119, 4528-4539. https://doi.org/10.1002/jcb.26590

  46. 46. Ghahrizjani, F.A., et al. (2015) Enhanced Expression of FNDC5 in Human Embryonic Stem Cell-Derived Neural Cells Along with Relevant Embryonic Neural Tissues. Gene, 557, 123-129. https://doi.org/10.1016/j.gene.2014.12.010

  47. 47. Tanhaei, S., et al. (2018) RNA/Protein Discordant Expression of Fndc5 in Central Nervous System Is Likely to Be Mediated through microRNAs. DNA and Cell Biology, 37, 373-380. https://doi.org/10.1089/dna.2017.4067

  48. 48. Staiger, H., et al. (2013) Common Genetic Variation in the Human FNDC5 Locus, Encoding the Novel Muscle-Derived “Browning” Factor Irisin, Determines Insulin Sensitivity. PLoS ONE, 8, e61903. https://doi.org/10.1371/journal.pone.0061903

  49. 49. Tang, S., et al. (2014) An Interaction between a FNDC5 Variant and Obesity Modulates Glucose Metabolism in a Chinese Han Population. PLoS ONE, 9, e109957. https://doi.org/10.1371/journal.pone.0109957

  50. 50. Varela-Rodriguez, B.M., et al. (2016) FNDC5 Expression and Circulating Irisin Levels Are Modified by Diet and Hormonal Conditions in Hypothalamus, Adipose Tissue and Muscle. Scientific Reports, 6, Article No. 29898. https://doi.org/10.1038/srep29898

  51. 51. Wrann, C.D., et al. (2013) Exercise Induces Hippocampal BDNF through a PGC-1alpha/FNDC5 Pathway. Cell Metabolism, 18, 649-659. https://doi.org/10.1016/j.cmet.2013.09.008

  52. 52. Ruan, Q., et al. (2018) Detection and Quantitation of Irisin in Hu-man Cerebrospinal Fluid by Tandem Mass Spectrometry. Peptides, 103, 60-64. https://doi.org/10.1016/j.peptides.2018.03.013

  53. 53. Forouzanfar, M., et al. (2015) Fndc5 Overexpression Facilitat-ed Neural Differentiation of Mouse Embryonic Stem Cells. Cell Biology International, 39, 629-637. https://doi.org/10.1002/cbin.10427

  54. 54. Hashemi, M.S., et al. (2013) Fndc5 Knockdown Significantly Decreased Neural Differentiation Rate of Mouse Embryonic Stem Cells. Neuroscience, 231, 296-304. https://doi.org/10.1016/j.neuroscience.2012.11.041

  55. 55. Vaynman, S., Ying, Z. and Gomez-Pinilla, F. (2004) Hip-pocampal BDNF Mediates the Efficacy of Exercise on Synaptic Plasticity and Cognition. European Journal of Neuro-science, 20, 2580-2590. https://doi.org/10.1111/j.1460-9568.2004.03720.x

  56. 56. Olesen, J., Kiilerich, K. and Pilegaard, H. (2010) PGC-1alpha-Mediated Adaptations in Skeletal Muscle. Pflügers Archiv, 460, 153-162. https://doi.org/10.1007/s00424-010-0834-0

  57. 57. Kuster, O.C., et al. (2017) Novel Blood-Based Biomarkers of Cognition, Stress, and Physical or Cognitive Training in Older Adults at Risk of Dementia: Preliminary Evidence for a Role of BDNF, Irisin, and the Kynurenine Pathway. Journal of Alzheimer’s Disease, 59, 1097-1111. https://doi.org/10.3233/JAD-170447

  58. 58. Belviranli, M., et al. (2016) The Relationship between Brain-Derived Neurotrophic Factor, Irisin and Cognitive Skills of Endurance Athletes. The Physician and Sportsmedicine, 44, 290-296. https://doi.org/10.1080/00913847.2016.1196125

  59. 59. Fagundo, A.B., et al. (2016) Modulation of Irisin and Phys-ical Activity on Executive Functions in Obesity and Morbid Obesity. Scientific Reports, 6, Article No. 30820. https://doi.org/10.1038/srep30820

  60. 60. Crujeiras, A.B., Pardo, M. and Casanueva, F.F. (2015) Irisin: “Fat” or Ar-tefact. Clinical Endocrinology, 82, 467-474. https://doi.org/10.1111/cen.12627

  61. 61. Elbelt, U., Hofmann, T. and Stengel, A. (2013) Irisin: What Promise Does It Hold? Current Opinion in Clinical Nutrition & Metabolic Care, 16, 541-547. https://doi.org/10.1097/MCO.0b013e328363bc65

  62. 62. Hofmann, T., Elbelt, U. and Stengel, A. (2014) Irisin as a Muscle-Derived Hormone Stimulating Thermogenesis—A Critical Update. Peptides, 54, 89-100. https://doi.org/10.1016/j.peptides.2014.01.016

  63. 63. Polyzos, S.A. and Mantzoros, C.S. (2015) An Update on the Validity of Irisin Assays and the Link between Irisin and Hepatic Metabolism. Metabolism, 64, 937-942. https://doi.org/10.1016/j.metabol.2015.06.005

  64. 64. Polyzos, S.A., Mathew, H. and Mantzoros, C.S. (2015) Irisin: A True, Circulating Hormone. Metabolism, 64, 1611-1618. https://doi.org/10.1016/j.metabol.2015.09.001

  65. NOTES

    *通讯作者。

期刊菜单