Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62823 , 5 pages
10.12677/ACM.2023.133585

MicroRNA在主动脉夹层发病机制中研究进展

阿依提拉·艾则孜,刘潇遥,张丹,马翔*

新疆医科大学第一附属医院心脏中心,新疆 乌鲁木齐

收稿日期:2023年2月17日;录用日期:2023年3月13日;发布日期:2023年3月21日

摘要

主动脉夹层(AD)是一种危及生命的急性综合征。AD发病和进展的病理机制主要与主动脉血管内皮细胞的功能改变、血管平滑肌细胞的表型转化和功能丧失、细胞外基质成分的改变和炎症反应有关。MicroRNA是一类高度保守的非编码RNA分子,可参与多种生物学功能。MiRNA的异常表达可导致不同的心血管疾病,在心血管疾病的发生、发展中发挥重要作用。

关键词

主动脉夹层,MiRNA,发病机制

Research Progress of MicroRNA in the Pathogenesis of Aortic Dissection

Ayitila·Aizezi, Xiaoyao Liu, Dan Zhang, Xiang Ma*

Cardiac Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Feb. 17th, 2023; accepted: Mar. 13th, 2023; published: Mar. 21st, 2023

ABSTRACT

Aortic dissection (AD) is a life-threatening acute syndrome. The pathological mechanism of the pathogenesis and progression of AD is mainly related to the functional changes of aortic vascular endothelial cells, phenotypic transformation and loss of function of vascular smooth muscle cells, changes in extracellular matrix components and inflammatory response. MicroRNA is a kind of highly conserved non-coding RNA molecules, which can participate in a variety of biological functions. The abnormal expression of miRNA can lead to different cardiovascular diseases and play an important role in the development and progression of cardiovascular diseases.

Keywords:Aortic Dissection, MiRNA, Pathogenesis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 介绍

主动脉夹层(Aortic Dissection, AD)是一种致命的血管疾病 [1] [2]。主动脉夹层是一种急性综合征,其病理特征是主动脉壁分层,通常由血管内壁(内膜和中膜)撕裂,血管破裂出血。AD会导致主动脉破裂出血,导致各种器官的急性血液灌注不足,严重危及生命,且院前死亡率和漏诊率高。紧急外科手术是目前挽救(Acute Aortic Dissection, AAD)患者生命的最佳方案 [3],但在开放手术治疗期间会出现许多并发症 [4]。因此需要及时诊断和有效的治疗干预 [3] [5]。

MicroRNA (miRNA)是一种高度保守的非编码RNA分子,约由18~25个核苷酸组成。MiRNAs参与各种生物学功能,如在细胞分化、增殖、迁移、凋亡和其他病理生理功能方面发挥着重要作用 [4]。MiRNAs表达异常可能导致不同的心血管疾病,如动脉粥样硬化、血管炎症、糖尿病血管并发症、冠状动脉和外周动脉疾病,如miR-200、miR-34a、miR-217和miR-146a [6]。

2. MicroRNA参与AD的发病机制

有研究显示,血管重构是AD发病机制的主要因素,主要的病理机制与主动脉血管平滑肌细胞及血管内皮细胞功能改变、还与细胞外基质成分变化、炎症反应有关 [7] [8]。MiRNA可通过影响血管内皮细胞与血管平滑肌细胞增殖、凋亡、分化等功能 [9] [10] [11],及降解细胞外基质及炎症反应等在AD发病中发挥作用 [12]。本文总结了miRNA在AD发病机制及进展中的分子机制,以便为未来的药物治疗提供线索。

2.1. MiRNA与血管平滑肌细胞稳态

血管平滑肌细胞(Vascular Smooth Muscle Cells, VSMCs)是主动脉中层的主要成分,根据VSMCs的功能特性将其分为静止态、收缩态、增殖态三种细胞亚型,主要有使肌肉收缩和分泌功能 [13]。VSMC具有固有的可塑性,并不是终末分化的:根据外部机械和生化线索,它们可逆地从分化的收缩表型转变为去分化的分泌表型 [13]。在生物信号和机械信号的刺激下,VSMCs可分泌相关因子调节细胞外基质(Extracellular Matrix, ECM)的成分和活性 [14]。此外,VSMCs还可将机械信号转化为生物信号,通过一定的信号通路引起胞内物质和胞外基质的成分和活性改变发挥功能。如,ECM由弹性蛋白、胶原蛋白、纤维连接蛋白和纤维蛋白组成。血管平滑肌细胞产生弹性蛋白和胶原蛋白,以抵抗血管扩张和破裂。另一方面,VSMC通过释放和成熟MMPs和金属蛋白酶组织抑制剂(TIMPs)来控制ECM的完整性和降解 [14] [15]。血管平滑肌细胞作为血管中膜主要细胞,在AD发病及进展的细胞学病理机制中起着重要作用,除了与主动脉血管平滑肌细胞功能异常有关外,还与血管内皮细胞功能改变、还与细胞外基质成分变化、炎症反应有关 [7] [16]。上述与VSMCs功能相关的结构、功能蛋白功能异常,会导致血管结构的变化,是AD的发生基础病理过程之一。

各种miRNAs参与调控VSMC表型 [17],如,高表达的miR-206增加了FOXP1的表达,从而激活下游TGF-β信号通路,导致VSMC的存活率降低和凋亡增加 [18]。此外,miR-500b-5p靶向ACTG2的表达,进而影响血管平滑肌收缩通路造成血管平滑肌细胞异常增殖和表型转化,在AD发病进展中发挥作用 [10]。既往发现,miR-21靶向PTEN可抑制VSMC凋亡,促进其增殖;miR-21也可以通过调控靶基因SV2C抑制VSMC增殖,促进血管重构,参与AD发生 [12]。最近的一项研究中,在AD组织中SENCR下调,miR-206上调;且SENCR的过度表达抑制了HAVSMCs的增殖、迁移和表型转换,并减弱了体内AD的形成。通过qPCR和Pearson相分析,发现miR-206的表达受SENCR表达的负调节,且miR-206与SENCR之间存在负相关,最终表明miR-206靶向MYOCD,参与VSMC的增殖、迁移、表型转化,在AD发病及进展中发挥重要作用 [19]。

2.2. MiRNA与血管内皮及炎症反应

内皮细胞受损、活化和修复与心血管疾病、癌症、糖尿病等疾病的病理过程的发生发展密切相关。血管内皮细胞在血管生理过程中扮演重要角色,能保持血管完整性和渗透性,参与调节血管张力、免疫反应和炎症等。血管炎症通过局部产生组织炎症反应,打破主动脉壁的稳态,促进ECM降解和VSMC凋亡来影响AD形成 [20]。

MiRNA可靶向某些凋亡相关基因参与内皮细胞的增殖、凋亡和分化的调节,如miR-206通过靶向Caspase、Bcl-2等家族成员参与内皮细胞增殖、凋亡等功能致疾病 [21]。此外,miR-27a-3p调控血管内皮细胞功能,影响血管重构导致AD发病 [9]。miR-181b通过下游靶基因5-羟色胺受体6可直接抑制环磷酸腺苷信号通路,影响蛋白激酶A (Protein Kinase A, PKA)表达来调控NF-κB信号通路,促进炎症因子IL-8、IL-1β等释放,导致炎症发生来参与AD发病 [12]。

2.3. MiRNA与细胞外基质

VSMC可生成MMPs,MMPs和它的组织抑制物(TIMPs)在VSMCs胞外基质中通过降解胞外基质成分、调节胞外基质中蛋白塑性来发挥功能 [22]。ECM由弹性蛋白、胶原蛋白、纤维连接蛋白和纤维蛋白组成。在健康血管中,弹性蛋白可抵抗血管扩张,而胶原蛋白可抵抗破裂 [23]。ECM蛋白酶降解是AD的主要病理特征,而动脉血管ECM的蛋白酶降解主要通过MMPs完成 [24]。

研究证实,一些miRNAs可降解ECM来参与AD的发病过程 [25]。MiR-29b可靶向ELN,Col1A1,COL3A1,COL5A1,Bcl-2,Mcl-1增加细胞凋亡、抑制KB信号传导活性来改变ECM成分,参与腹主动脉瘤的发病 [26]。还有一些报道指出,miR-195、miR-205、miR-146b-5p等也可能通过影响TGF-β信号通路调节ECM来参与AD的发病 [27]。

3. 总结及展望

AD发病及进展的细胞学病理机制主要与主动脉血管平滑肌细胞及血管内皮细胞功能改变、细胞外基质成分变化、炎症反应有关 [7] [8]。MiRNA通过参与各种生物学功能,如血管平滑肌细胞的增殖、迁移和收缩,内皮细胞增殖和抗凋亡过程,参与疾病发病过程。

多项研究证明miRNA在各种疾病发病进展方面发挥重要作用,因此可在预防疾病及控制病情中有潜在的治疗价值。此外在疾病诊断、预后等方面也有价值。MiRNAs是一种有前途的新型治疗药物,可以通过使用不同的信号通路影响多个基因 [28]。如今,miRNAs不仅用于诊断和预后目的,还用于各种心血管疾病的治疗目的。

文章引用

阿依提拉·艾则孜,刘潇遥,张 丹,马 翔. MicroRNA在主动脉夹层发病机制中研究进展
Research Progress of MicroRNA in the Pathogenesis of Aortic Dissection[J]. 临床医学进展, 2023, 13(03): 4077-4081. https://doi.org/10.12677/ACM.2023.133585

参考文献

  1. 1. DeMartino, R.R., Sen, I., Huang, Y., et al. (2018) Population-Based Assessment of the Incidence of Aortic Dissection, Intramural Hematoma, and Penetrating Ulcer, and Its Associated Mortality from 1995 to 2015. Circulation: Cardiovas-cular Quality and Outcomes, 11, e004689. https://doi.org/10.1161/CIRCOUTCOMES.118.004689

  2. 2. Lio, A., Bovio, E., Nicolò, F., et al. (2019) Influence of Body Mass Index on Outcomes of Patients Undergoing Surgery for Acute Aortic Dissection: A Propensity-Matched Analysis. Texas Heart Institute Journal, 46, 7-13. https://doi.org/10.14503/THIJ-17-6365

  3. 3. Erbel, R., Aboyans, V., Boileau, C., et al. (2014) 2014 ESC Guide-lines on the Diagnosis and Treatment of Aortic Diseases: Document Covering Acute and Chronic Aortic Diseases of the Thoracic and Abdominal Aorta of the Adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). European Heart Journal, 35, 2873-2926. https://doi.org/10.1093/eurheartj/ehu281

  4. 4. Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5

  5. 5. Chen, Y., Wei, X., Zhang, Z.H., et al. (2021) Downregula-tion of Filamin a Expression in the Aorta Is Correlated with Aortic Dissection. Frontiers in Cardiovascular Medicine, 8, Article ID: 690846. https://doi.org/10.3389/fcvm.2021.690846

  6. 6. Arunachalam, G., Upadhyay, R., Ding, H., et al. (2015) Mi-croRNA Signature and Cardiovascular Dysfunction. Journal of Cardiovascular Pharmacology, 65, 419-429. https://doi.org/10.1097/FJC.0000000000000178

  7. 7. Huang, W.H., Huang, C., Ding, H.Y., et al. (2020) In-volvement of miR-145 in the Development of Aortic Dissection via Inducing Proliferation, Migration, and Apoptosis of Vascular Smooth Muscle Cells. Journal of Clinical Laboratory Analysis, 34, e23028. https://doi.org/10.1002/jcla.23028

  8. 8. Chen, Y., He, Y., Wei, X., et al. (2022) Targeting Regulated Cell Death in Aortic Aneurysm and Dissection Therapy. Pharmacological Research, 176, Article ID: 106048. https://doi.org/10.1016/j.phrs.2021.106048

  9. 9. 孙羽东. miR-27a-3p调控内皮细胞功能参与主动脉夹层血管重构的机制研究[D]: [博士学位论文]. 上海: 中国人民解放军海军军医大学, 2017. https://doi.org/10.7666/d.Y3247231

  10. 10. 王维铁. 长链非编码RNA01278竞争性抑制miR-500b-5p调控ACTG2促进平滑肌细胞增殖在主动脉夹层形成中的作用机制研究[D]: [博士学位论文]. 长春: 吉林大学, 2020. https://doi.org/10.27162/d.cnki.gjlin.2020.000235

  11. 11. Duggirala, A., Delogu, F., Angelini, T.G., et al. (2015) Non Coding RNAs in Aortic Aneurysmal Disease. Frontiers in Genetics, 6, 125. https://doi.org/10.3389/fgene.2015.00125

  12. 12. 邹帅. 主动脉夹层Stanford A型microRNA的表达调控机制分析[D]: [硕士学位论文]. 衡阳: 南华大学, 2015.

  13. 13. Owens, G.K., Kumar, M.S. and Wamhoff, B.R. (2004) Molec-ular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiological Reviews, 84, 767-801. https://doi.org/10.1152/physrev.00041.2003

  14. 14. Berrier, A.L. and Yamada, K.M. (2007) Cell-Matrix Adhesion. Journal of Cellular Physiology, 213, 565-573. https://doi.org/10.1002/jcp.21237

  15. 15. Mazurek, R., Dave, J.M., Chandran, R.R., Misra, A., Sheikh, A.Q. and Greif, D.M. (2017) Vascular Cells in Blood Vessel Wall Development and Disease. Advances in Pharmacology, 78, 323-335. https://doi.org/10.1016/bs.apha.2016.08.001

  16. 16. Tchana-Sato, V., Sakalihasan, N. and Defraigne, J.O. (2018) Aortic Dissection. Revue Médicale De Liège, 73, 290-295.

  17. 17. Li, P., Liu, Y., Yi, B., et al. (2013) MicroRNA-638 Is Highly Expressed in Human Vascular Smooth Muscle Cells and Inhibits PDGF-BB-Induced Cell Proliferation and Mi-gration through Targeting Orphan Nuclear Receptor NOR1. Cardiovascular Research, 99, 185-193. https://doi.org/10.1093/cvr/cvt082

  18. 18. Xing, T., Du, L.X., Zhuang, X.B., et al. (2017) Upregulation of mi-croRNA-206 Induces Apoptosis of Vascular Smooth Muscle Cells and Decreases Risk of Atherosclerosis through Modulating FOXP1. Experimental and Therapeutic Medicine, 14, 4097-4103. https://doi.org/10.3892/etm.2017.5071

  19. 19. Song, Y., Wang, T., Mu, C.J., et al. (2022) LncRNA SENCR Overex-pression Attenuated the Proliferation, Migration and Phenotypic Switching of Vascular Smooth Muscle Cells in Aortic Dissection via the miR-206/Myocardin Axis. Nutrition, Metabolism & Cardiovascular Diseases, 32, 1560-1570. https://doi.org/10.1016/j.numecd.2022.03.004

  20. 20. Yuan, X.S., Chen, J.J. and Dai, M. (2016) Paeonol Promotes microRNA-126 Expression to Inhibit Monocyte Adhesion to ox-LDL-Injured Vascular Endothelial Cells and Block the Activation of the PI3K/Akt/NF-κB Pathway. International Journal of Molecular Medicine, 38, 1871-1878. https://doi.org/10.3892/ijmm.2016.2778

  21. 21. Sun, Y., An, N., Li, J.S., et al. (2019) miRNA-206 Regulates Human Pulmonary Microvascular Endothelial Cell Apoptosis via Targeting in Chronic Obstructive Pulmonary Disease. Journal of Cellular Biochemistry, 120, 6223-6236. https://doi.org/10.1002/jcb.27910

  22. 22. Booms, P., Ney, A., Barthel, F., et al. (2006) A Fibrillin-1-Fragment Con-taining the Elastin-Binding-Protein GxxPG Consensus Sequence Upregulates Matrix Metalloproteinase-1: Biochemical and Computational Analysis. The Journal of Molecular and Cellular Cardiology, 40, 234-246. https://doi.org/10.1016/j.yjmcc.2005.11.009

  23. 23. Sakalihasan, N., Michel, J.-B., Katsargyris, A., et al. (2018) Ab-dominal Aortic Aneurysms. Nature Reviews Disease Primers, 4, 34. https://doi.org/10.1038/s41572-018-0030-7

  24. 24. Ikonomidis, J.S., Jones, J.A., Barbour, J.R., et al. (2006) Expres-sion of Matrix Metalloproteinases and Endogenous Inhibitors within Ascending Aortic Aneurysms of Patients with Marfan Syndrome. Circulation, 114, I365-I370. https://doi.org/10.1161/CIRCULATIONAHA.105.000810

  25. 25. Gurung, R., Choong, A.M., Woo, C.C., et al. (2020) Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Ab-dominal Aortic Aneurysm. International Journal of Molecular Sciences, 21, 6334. https://doi.org/10.3390/ijms21176334

  26. 26. Maegdefessel, L., Azuma, J., Toh, R., et al. (2012) Inhibition of mi-croRNA-29b Reduces Murine Abdominal Aortic Aneurysm Development. Journal of Clinical Investigation, 122, 497-506. https://doi.org/10.1172/JCI61598

  27. 27. 胡孜阳, 罗建方, 钟诗龙, 等. 应用基因芯片初步分析主动脉夹层与正常主动脉微小RNA的差异表达[J]. 中华心血管病杂志, 2012, 40(5): 406-410. https://doi.org/10.3760/cma.j.issn.0253-3758.2012.05.011

  28. 28. Melman, Y.F., Shah, R., Danielson, K., et al. (2015) Circulating MicroRNA-30d Is Associated with Response to Cardiac Resynchronization Therapy in Heart Failure and Regulates Cardiomyocyte Apoptosis: A Translational Pilot Study. Circulation, 131, 2202-2216. https://doi.org/10.1161/CIRCULATIONAHA.114.013220

  29. NOTES

    *通讯作者。

期刊菜单