Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67736 , 6 pages
10.12677/ACM.2023.1361416

亚临床甲状腺功能障碍与骨质疏松的关系及研究进展

杨贤1,杨历新2*

1青海大学研究生院,青海 西宁

2青海省人民医院内分泌科,青海 西宁

收稿日期:2023年5月25日;录用日期:2023年6月19日;发布日期:2023年6月28日

摘要

亚临床甲状腺功能减退、亚临床甲状腺功能亢进与骨质疏松均是临床中的常见性和多发性疾病。甲状腺激素在发育期、儿童期和成人期几乎所有组织中发挥广泛而复杂的作用。甲状腺激素是骨骼发育和骨代谢所必需的,是骨骼维持的重要调节剂。当亚临床甲状腺功能障碍时,甲状腺激素和促甲状腺激素水平异常,从而可能会增加骨量减少、骨质疏松,甚或骨折的风险。本文对亚临床甲状腺功能障碍与骨质疏松的关系及研究进展进行综述。

关键词

亚临床甲状腺功能减退,亚临床甲状腺功能亢进,骨质疏松

The Relationship and Research Progress between Subclinical Thyroid Dysfunction and Osteoporosis

Xian Yang1, Lixin Yang2*

1Graduate School of Qinghai University, Xining Qinghai

2Department of Endocrinology, Qinghai Provincial People’s Hospital, Xining Qinghai

Received: May 25th, 2023; accepted: Jun. 19th, 2023; published: Jun. 28th, 2023

ABSTRACT

Subclinical hypothyroidism, subclinical hyperthyroidism, and osteoporosis are common and multiple diseases in clinical practice. Thyroid hormone plays an extensive and complex role in almost all tissues during development, childhood and adulthood. Thyroid hormone is necessary for bone development and bone metabolism, and is an important regulator of bone maintenance. When subclinical thyroid dysfunction occurs, the levels of thyroid hormone and thyroid stimulating hormone are abnormal, which may increase the risk of osteopenia, osteoporosis, or even fracture. This article reviews the relationship and research progress between subclinical thyroid dysfunction and osteoporosis.

Keywords:Subclinical Hypothyroidism (SCH), Subclinical Hyperthyroidism (SCHyper), Osteoporosis (OP)

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

亚临床甲状腺功能障碍的定义是以血清促甲状腺激素(thyroid stimulating hormone, TSH)分泌高于或低于正常参考范围,以及游离甲状腺素(FT4)和游离三碘甲状腺原氨酸(FT3)正常为主要特点 [1] 。包括亚临床甲状腺功能减退(SCH)和亚临床甲状腺功能亢进(SCHyper)。骨质疏松症定义为一种全身代谢性骨骼疾病,其特征为骨量减少和骨组织微细结构退化,从而增加骨脆性和骨折易感性 [2] 。临床研究结果表明,亚临床甲状腺功能障碍不仅能导致心血管疾病、血脂紊乱、认知功能障碍和痴呆、2型糖尿病与肾功能异常等,而且对骨质疏松症和骨折也有一定的影响。现就亚临床甲状腺功能障碍与骨质疏松的关系及研究进展综述如下。

2. 流行病学和基本特征

1) SCH流行病学和基本特征:SCH是一种生物化学定义的疾病,其特征是血清促甲状腺激素(TSH)水平升高,游离甲状腺素(FT4)和游离三碘甲状腺原氨酸(FT3)浓度在正常参考值范围内 [3] 。根据血清TSH水平分为两组:轻度(1级)和重度(2级) [3] [4] [5] [6] 。轻度(1级)患者的血清TSH水平高于上限4.5 mIU/L且低于10 mIU/L,而重度(2级)患者的血清TSH水平高于10 mIU/L [7] 。约80%~90%的SCH患者属于轻度(1级)类型,重度(2级) SCH的患病率约为10% [3] [4] [8] 。在一般人群中,SCH的发病率在4%~10%之间,在老年人群中高达7%~26% [1] 。在美国的一项研究中,SCH的患病率为9.5%,≥74岁的女性和男性受试者分别升高至21%和16% [4] [9] 。日本甲状腺协会临床指南委员会报告称,SCH的检出率为3.3%~10.2%。在日本的一项研究中,6.3%和3.4%的女性和男性受试者中分别发现SCH,SCH的患病率在女性和男性受试者中均随年龄增加而增加 [10] 。另一方面,血清TSH水平高于10 mIU/L且抗TPO抗体阳性的女性患者可能进展为显性甲状腺功能减退症 [4] 。

2) SCHyper流行病学和基本特征:SCHyper也是一种生物化学定义的疾病,其特征是血清促甲状腺激素(TSH)水平低下,游离甲状腺素(FT4)和游离三碘甲状腺原氨酸(FT3)浓度在正常参考值范围内 [11] 。根据血清TSH水平分为两组:轻度和重度。轻型患者血清TSH水平为0.1~0.4 mIU/L,重型患者血清TSH水平低于0.1 mIU/L。由于轻型可以消退,建议在确诊SCHyper前3~6个月内重复测量血清TSH和FT4水平。另一方面,重型可能进展为显性甲亢 [12] [13] 。在一般人群中,美国SCHyper的患病率为0.7% [14] 。在一项研究中,苏格兰SCHyper的患病率为0.63%,发生率为29/100,000。同一项研究还表示,7年内,仅0.5%~0.7%的普通人群出现明显的甲状腺功能亢进症。在7年随访期间,63%的患者仍为SCHyper,而36%的患者恢复正常甲状腺功能,尤其是轻型SCHyper的患者 [15] 。一般而言,女性、老年人和碘缺乏地区人群SCHyper的患病率较高 [12] [14] [15] [16] [17] [18] 。事实上,75岁或以上老年患者中可高达15.4% [18] 。

3. 亚临床甲状腺功能障碍与骨代谢

1) 甲状腺激素与骨代谢:甲状腺激素(thyroid hormone, TH)是由甲状腺球蛋白中含碘酪氨酸残基缩合而成,经甲状腺滤泡分泌到循环血液之中。主要分为甲状腺素(T4)和三碘甲腺原氨酸(T3)两种形式,分别约占分泌总量的93%和7%,且T3的生物活性约为T4的5倍多,T4需要在外周组织中经5’脱碘酶脱碘转变成T3后,才能发挥更强的生物学效应。

直接作用:成骨细胞、破骨细胞及软骨细胞等多种骨细胞均可表达甲状腺激素受体(thyroid hormone receptor, TR),TH由靶细胞核内的TR介导发挥生物学效应。T3与TR的亲和力约为T4的10倍以上,且人类有TRα和TRβ两种受体。TRα和TRβ均以组织特异性方式广泛表达。TRα在骨骼中的表达浓度高于TRβ,介导T3对骨和软骨的作用 [19] ,而TRβ是下丘脑和垂体中表达的主要受体,介导下丘脑–垂体–甲状腺轴的负反馈控制 [20] 。在软骨细胞骨化过程中,TH通过甲状旁腺激素相关肽(PTHrP)的负反馈环、胰岛素样生长因子1 (IGF-1)、生长激素(GH)、Wnt形态发生因子、骨形态发生蛋白(BMPs)、成纤维细胞生长因子(FGF)等多种旁分泌因子,调节软骨细胞增殖和分化的速度,促进骨的生长 [21] [22] [23] 。目前尚不清楚,T3是否在破骨细胞反应中发挥直接作用,亦或者是否继发于T3在其他细胞如成骨细胞、骨髓基质细胞或巨噬细胞中的作用。

间接作用:在内分泌代谢系统中,一方面,TH与GH具有协同调控生长发育的作用;另一方面,TH促进GH分泌,提供允许作用。TH可刺激骨化中心发育成熟,加速软骨骨化,促进长骨生长。TH缺乏将影响GH正常发挥作用,导致长骨生长缓慢和骨骺闭合延迟 [24] 。IGF-1主要促进软骨生长,使软骨细胞增殖成为骨细胞,促进骨生长发育。IGF-1既可促进钙、磷、钠、钾、硫等多种元素进入软骨组织,还可促进氨基酸进入软骨细胞,增强DNA、RNA和蛋白质的合成,促进软骨组织增殖和骨化,长骨加长。总之,当机体T3缺乏时,GH和IGF合成分泌均减少。

2) 促甲状腺激素与骨代谢:促甲状腺激素(thyroid-stimulating hormone, TSH)是由腺垂体TSH细胞合成和分泌的糖蛋白激素,由α亚单位和β亚单位组成的异二聚体。甲状腺功能直接受腺垂体分泌的TSH调控,在体内形成下丘脑–腺垂体–甲状腺轴(hypothalamus-pituitary-thyroid axis, HPTA)调节系统,维持血液中TH水平的相对稳定和甲状腺生长。

目前认为亚临床甲状腺功能障碍的诊断最确切的实验室指标是血清TSH。TSH通过TSH受体介导,虽然TSH受体主要在甲状腺滤泡细胞中表达,但在成骨细胞和破骨细胞中也均可表达TSH受体。TSH被认为是骨转换的关键负调节因子,由于肿瘤坏死因子α (TNF-α)局部产生减少,对成骨细胞骨吸收具有直接影响。相关研究表明,TSH是成骨细胞和破骨细胞的直接抑制剂,TSH又称为“骨抑制激素”。一方面,TSH通过NF-κB和JNK信号传导减少以及细胞因子TNF-α的产生减弱来发挥抗破骨细胞生成作用 [25] [26] 。另一方面,TSH对成骨细胞的影响是存在争议的。TSH通过激活蛋白激酶C和上调Fri4和Wnt5a来促进成骨细胞的分化 [27] 。TSH通过降低Wnt和VEGF信号通路的活性,以Runx2和osterix非依赖性方式抑制成骨细胞分化和I型胶原的表达 [25] 。

3) 甲状腺激素与骨矿物质代谢:骨矿物质代谢由TH、甲状旁腺激素(PTH)、降钙素(CT)、1,25(OH)2D3共同调控。钙与磷是机体构建和多种功能活动所必须的基本元素。血钙稳态对骨代谢至关重要,磷不仅是物质代谢过程中间物的基本成分,同时参与ATP、cAMP、DNA和RNA等分子结构的形成。在以上多种激素的共同调节下,骨不断地更新与重建,同时维持血钙和血磷稳态。

4. 亚临床甲状腺功能障碍的治疗与骨质疏松的相关性

1) SCH的治疗与骨质疏松的相关性:1) 根据ETA [6] 、ATA [28] 和AACE [29] 指南建议,伴有明显甲减症状、抗TPOAb阳性、血清FT4处于正常范围内最低水平、血清TSH以时间依赖性方式升高、血脂异常、致死性中风或动脉粥样硬化性疾病等,无论轻度或重度SCH患者,均建议考虑应予LT4替代治疗。2) 指南还建议,不伴甲减症状、抗TPOAb阴性、无心血管疾病危险因素,且血清TSH < 10 mIU/L者,建议随访观察,每6个月检测1次甲状腺功能。相关替代治疗遵循个体化原则,研究表明,替代治疗的结果存在争议性,有可能造成骨量丢失,加重骨质疏松,也有可能对患者骨密度无不良后果。针对LT4替代治疗,需考虑患者性别、年龄、药物剂量等,临床医师应通过补充LT4治疗SCH患者,确定特定年龄参考范围内的目标TSH水平。

2) SCHyper的治疗与骨质疏松的相关性:1) 根据ETA、ATA和AACE指南建议,对于一般人群,伴甲状腺毒症且血清TSH水平持续低于0.1 mIU/L的重度SCHyper患者,应该给予治疗 [30] [31] 。2) 根据ATA和AACE指南,65岁及以上人群,除甲状腺毒症以外,伴心脏危险因素、骨质疏松症、未给予雌激素或二膦酸盐治疗的绝经后妇女等,且血清TSH水平低于0.1 mIU/L的SCHyper患者,也应给予治疗 [13] [18] 。3) 指南还建议,对于一般人群,血清TSH水平为0.1~0.4 mIU/L,且有甲状腺毒症、心脏危险因素、骨质疏松症的轻度SCHyper患者;亦或对于65岁以下,伴有心脏危险因素、骨质疏松症的重度SCHyper患者,以上均应考虑治疗 [13] 。4) 对于血清TSH水平为0.1~0.4 mIU/L,且年龄 < 65岁的无症状患者,不建议进行治疗,在3~6月内进行多次甲状腺功能检查。同样遵循个体化治疗原则,建议适当患者早期接受SCHyper治疗,避免进展为显性甲状腺功能亢进、增加总死亡率和心血管死亡率以及房颤和骨折的风险 [13] [18] [32] [33] 。一项非对照研究显示,抗甲状腺药物或放射性碘治疗后,各种心脏和骨骼参数均有所改善。

5. 小结

综上所述,事实证明,虽然SCH、SCHyper是生物化学定义的疾病,但是两者都可影响骨代谢,造成骨量丢失,导致骨质疏松、骨折的风险增加。治疗不恰当,可由亚临床状态发展为显性甲减、显性甲亢,此时对骨代谢的危险性更大。临床医师应重视亚临床甲状腺功能障碍,针对65岁及以上或者老年女性患者,尽早予以相关骨代谢检查和骨密度测定,早发现、早预防、早治疗骨质疏松。亚临床甲状腺功能障碍患者可无症状或症状轻微,老年人机体反应差,合并疾病多,当合并SCH或SCHyper时不易被发现,由实验室检查确定诊断。因此,临床医师需要开展大规模临床试验研究支持指南,以确定血清TSH水平的年龄特异性参考范围,深入理解和解读甲状腺功能检测。

文章引用

杨 贤,杨历新. 亚临床甲状腺功能障碍与骨质疏松的关系及研究进展
The Relationship and Research Progress be-tween Subclinical Thyroid Dysfunction and Osteoporosis[J]. 临床医学进展, 2023, 13(06): 10124-10129. https://doi.org/10.12677/ACM.2023.1361416

参考文献

  1. 1. Surks, M.I., Ortiz, E., Daniels, G.H., Sawin, C.T., Col, N.F., et al. (2004) Subclinical Thyroid Disease: Scientific Re-view and Guidelines for Diagnosis and Management. JAMA, 291, 228-238. https://doi.org/10.1001/jama.291.2.228

  2. 2. Consensus Development Conference: Diagnosis, Prophylaxis, and Treatment of Osteoporosis. The American Journal of Medicine, 94, 646-650. https://doi.org/10.1016/0002-9343(93)90218-E

  3. 3. Biondi, B., Cappola, A.R. and Cooper, D.S. (2019) Subclini-cal Hypothyroidism: A Review. JAMA, 322, 153-160. https://doi.org/10.1001/jama.2019.9052

  4. 4. Peeters, R.P. (2017) Subclinical Hypothyroidism. New England Journal of Medicine, 377, 1404. https://doi.org/10.1056/NEJMc1709853

  5. 5. Cooper, D.S. and Biondi, B. (2012) Subclinical Thyroid Disease. Lancet, 379, 1142-1154. https://doi.org/10.1016/S0140-6736(11)60276-6

  6. 6. Pearce, S.H.S., Brabant, G., Duntas, L.H., Monzani, F., Peeters, R.P., et al. (2013) 2013 ETA Guideline: Management of Subclinical Hypothyroidism. European Thyroid Jour-nal, 2, 215-228. https://doi.org/10.1159/000356507

  7. 7. Evron, J.M. and Papaleontiou, M. (2021) Decision Mak-ing in Subclinical Thyroid Disease. Medical Clinics of North America, 105, 1033-1045. https://doi.org/10.1016/j.mcna.2021.05.014

  8. 8. Fatourechi, V. (2009) Subclinical Hypothyroidism: An Update for Primary Care Physicians. Mayo Clinic Proceedings, 84, 65-71. https://doi.org/10.4065/84.1.65

  9. 9. Canaris, G.J., Manowitz, N.R., Mayor, G. and Ridgway, E.C. (2000) The Colorado Thyroid Disease Prevalence Study. Archives of In-ternal Medicine, 160, 526-534. https://doi.org/10.1001/archinte.160.4.526

  10. 10. Nakajima, Y., Yamada, M., Aku-zawa, M., Ishii, S., Masamura, Y., et al. (2013) Subclinical Hypothyroidism and Indices for Metabolic Syndrome in Japanese Women: One-Year Follow-Up Study. Journal of Clinical Endocrinology & Metabolism, 98, 3280-3287. https://doi.org/10.1210/jc.2013-1353

  11. 11. Mitchell, A.L. and Pearce, S.H.S. (2010) How Should We Treat Patients with Low Serum Thyrotropin Concentrations? Clinical Endocrinology, 72, 292-296. https://doi.org/10.1111/j.1365-2265.2009.03694.x

  12. 12. Tsai, K. and Leung, A.M. (2021) Subclinical Hyperthy-roidism: A Review of the Clinical Literature. Endocrine Practice, 27, 254-260. https://doi.org/10.1016/j.eprac.2021.02.002

  13. 13. Ross, D.S., Burch, H.B., Cooper, D.S., Greenlee, M.C., Laurberg, P., et al. (2016) 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid, 26, 1343-1421. https://doi.org/10.1089/thy.2016.0229

  14. 14. Hollowell, J.G., Staehling, N.W., Flanders, W.D., Hannon, W.H., Gunter, E.W., et al. (2002) Serum TSH, T4, and Thyroid Anti-bodies in the United States Population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). The Journal of Clinical Endocrinology & Metabolism, 87, 489-499. https://doi.org/10.1210/jcem.87.2.8182

  15. 15. Vadiveloo, T., Donnan, P.T., Cochrane, L. and Leese, G.P. (2011) The Thyroid Epidemiology, Audit, and Research Study (TEARS): The Natural History of Endogenous Subclinical Hyper-thyroidism. The Journal of Clinical Endocrinology & Metabolism, 96, E1-E8. https://doi.org/10.1210/jc.2010-0854

  16. 16. Vejbjerg, P., Knudsen, N., Perrild, H., Laurberg, P., Carlé, A., et al. (2009) Lower Prevalence of Mild Hyperthyroidism Related to a Higher Iodine Intake in the Population: Prospective Study of a Mandatory Iodization Programme. Clinical Endocrinology, 71, 440-445. https://doi.org/10.1111/j.1365-2265.2008.03493.x

  17. 17. Mariotti, S., Barbesino, G., Caturegli, P., Bartalena, L., Sansoni, P., et al. (1993) Complex Alteration of Thyroid Function in Healthy Centenarians. The Journal of Clinical En-docrinology & Metabolism, 77, 1130-1134. https://doi.org/10.1210/jcem.77.5.8077303

  18. 18. Aghini-Lombardi, F., Antonangeli, L., Martino, E., Vitti, P., Mac-cherini, D., et al. (1999) The Spectrum of Thyroid Disorders in an Iodine-Deficient Community: The Pescopagano Sur-vey. The Journal of Clinical Endocrinology & Metabolism, 84, 561-566. https://doi.org/10.1210/jc.84.2.561

  19. 19. Nicholls, J.J., Brassill, M.J., Williams, G.R. and Bassett, J.H. (2012) The Skeletal Consequences of Thyrotoxicosis. Journal of Endocrinology, 213, 209-221. https://doi.org/10.1530/JOE-12-0059

  20. 20. Maioli, M., Contini, G., Santaniello, S., Bandiera, P., Pigliaru, G., Sanna, R., Rinaldi, S., Delitala, A.P., Montella, A., Bagella, L., et al. (2013) Amniotic Fluid Stem Cells Morph into a Cardiovascular Lineage: Analysis of a Chemically Induced Cardiac and Vascular Commitment. Drug Design, Develop-ment and Therapy, 7, 1063-1073. https://doi.org/10.2147/DDDT.S44706

  21. 21. Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M. and Tabin, C.J. (1996) Regulation of Rate of Cartilage Differentiation by Indian Hedgehog and PTH-Related Protein. Science, 273, 613-622. https://doi.org/10.1126/science.273.5275.613

  22. 22. Minina, E., Kreschel, C., Naski, M.C., Ornitz, D.M. and Vort-kamp, A. (2002) Interaction of FGF, Ihh/Pthlh, and BMP Signaling Integrates Chondrocyte Proliferation and Hyper-trophic Differentiation. Developmental Cell, 3, 439-449. https://doi.org/10.1016/S1534-5807(02)00261-7

  23. 23. St-Jacques, B., Hammerschmidt, M. and McMahon, A.P. (1999) Indian Hedgehog Signaling Regulates Proliferation and Differentiation of Chondrocytes and Is Essential for Bone Formation. Genes & Development, 13, 2072-2086. https://doi.org/10.1101/gad.13.16.2072

  24. 24. 朱大年, 王庭槐. 生理学[M]. 第9版. 北京: 人民卫生出版社, 2018: 392.

  25. 25. Abe, E., Marians, R.C., Yu, W., Wu, X.B., Ando, T., Li, Y., Iqbal, J., Eldeiry, L., Rajendren, G., Blair, H.C., et al. (2003) TSH Is a Negative Regulator of Skeletal Remodeling. Cell, 115, 151-162. https://doi.org/10.1016/S0092-8674(03)00771-2

  26. 26. Hase, H., Ando, T., Eldeiry, L., Brebene, A., Peng, Y., Liu, L., Amano, H., Davies, T.F., Sun, L., Zaidi, M., et al. (2006) TNF α Mediates the Skeletal Effects of Thyroid-Stimulating Hormone. Proceedings of the National Academy of Sciences of the United States of America, 103, 12849-12854. https://doi.org/10.1073/pnas.0600427103

  27. 27. Baliram, R., Latif, R., Berkowitz, J., et al. (2011) Thy-roid-Stimulating Hormone Induces a Wnt-Dependent, Feed-Forward Loop for Osteoblastogenesis in Embryonic Stem Cell Cultures. Proceedings of the National Academy of Sciences of the United States of America, 108, 16277-16282. https://doi.org/10.1073/pnas.1110286108

  28. 28. Jonklaas, J., Bianco, A.C., Bauer, A.J., Burman, K.D., Cappola, A.R., et al. (2014) Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid, 24, 1670-1751. https://doi.org/10.1089/thy.2014.0028

  29. 29. Garber, J.R., Cobin, R.H., Gharib, H., Hennessey, J.V., Klein, I., et al. (2012) Clinical Practice Guidelines for Hypothyroidism in Adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocrine Practice, 18, 988-1028. https://doi.org/10.4158/EP12280.GL

  30. 30. Biondi, B., Bartalena, L., Cooper, D.S., Hegedus, L., Laurberg, P., et al. (2015) The 2015 European Thyroid Association Guidelines on Diagnosis and Treatment of Endogenous Subclinical Hy-perthyroidism. European Thyroid Journal, 4, 149-163. https://doi.org/10.1159/000438750

  31. 31. Bahn, R.S., Burch, H.B., Cooper, D.S., Garber, J.R., Greenlee, M.C., et al. (2011) Hyperthyroidism and Other Causes of Thyrotoxicosis: Management Guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid, 21, 593-646. https://doi.org/10.1089/thy.2010.0417

  32. 32. Biondi, B. and Cooper, D.S. (2018) Subclinical Hyperthyroidism. New England Journal of Medicine, 378, 2411-2419. https://doi.org/10.1056/NEJMcp1709318

  33. 33. Grais, I.M. and Sowers, J.R. (2014) Thyroid and the Heart. The American Journal of Medicine, 127, 691-698. https://doi.org/10.1016/j.amjmed.2014.03.009

  34. NOTES

    *通讯作者。

期刊菜单