Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61570 , 7 pages
10.12677/ACM.2023.132343

PI3K/Akt信号通路与糖尿病性骨质疏松相关性研究进展

朱玲1,朱恩江2,孙曙光3*

1大理大学临床医学院,云南 大理

2弥勒市中医医院骨伤二科,云南 弥勒

3大理大学第一附属医院内分泌科,云南 大理

收稿日期:2023年1月16日;录用日期:2023年2月14日;发布日期:2023年2月21日

摘要

糖尿病(diabetes mellitus, DM)是一种高发的代谢性疾病,可引发骨骼、血管、神经等多系统并发症,其中骨质疏松症(osteoporosis, OP)是其常见并发症之一。糖尿病性骨质疏松(diabetic osteoporosis, DOP)主要表现为糖尿病患者出现骨代谢异常、骨脆性增加,易发生骨折,其骨代谢紊乱的机制十分复杂。最新的研究表明,磷脂酰肌醇三激酶/蛋白激酶B (PI3K/Akt)通路可参与骨代谢的调节,对调控骨髓间质干细胞、成骨细胞和破骨细胞等细胞的生长、增殖、分化、凋亡和衰老具有重要意义,成为当前的研究热点。结合目前国内外学者对PI3K/Akt通路与糖尿病性骨质疏松的相关机制进行的研究,本文将对PI3K/Akt信号通路与糖尿病性骨质疏松的相关性进行综述,为进一步研究抗糖尿病性骨质疏松药物提供更多思路及重要靶点。

关键词

PI3K/Akt信号通路,糖尿病性骨质疏松,相关性

Research Progress on the Relationship between PI3K/Akt Signaling Pathway and Diabetic Osteoporosis

Ling Zhu1, Enjiang Zhu2, Shuguang Sun3*

1Clinical School of Medicine, Dali University, Dali Yunnan

2Department of Orthopaedics, Chinese Medicine Hospital of Mile, Mile Yunnan

3Endocrinology, The First Affiliated Hospital of Dali University, Dali Yunnan

Received: Jan. 16th, 2023; accepted: Feb. 14th, 2023; published: Feb. 21st, 2023

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease with high incidence, which can cause multi-system complications such as bone, vascular, nerve and so on. Osteoporosis (OP) is one of its common complications. Diabetic osteoporosis (DOP) is mainly characterized by abnormal bone metabolism, increased bone fragility and fracture in diabetic patients. The mechanism of bone metabolism disorder is very complex. Recent studies have shown that the phosphatidylinositol trikinase/protein kinase B (PI3K/Akt) pathway can participate in the regulation of bone metabolism, which is of great significance in regulating the growth, proliferation, differentiation, apoptosis and aging of bone marrow mesenchymal stem cells, osteoblasts and osteoclasts, and has become a current research hotspot. Combined with the current domestic and foreign scholars’ research on the mechanism of PI3K/Akt signaling pathway and diabetic osteoporosis, this article will review the correlation between PI3K/Akt signaling pathway and diabetic osteoporosis, and provide more ideas and important targets for further research on anti-diabetic osteoporosis drugs.

Keywords:PI3K/Akt Signaling Pathway, Diabetic Osteoporosis, Pertinence

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着我国人民生活方式的改变和人口老龄化日益严重,糖尿病与骨质疏松症的患病率逐年递增,这两种疾病均严重影响人民的生活质量和生存年限。DM是一种严重危害人类健康的慢性全身代谢性疾病,常伴有骨组织代谢异常相关并发症,发生骨结构改变,诱发DM相关性骨质疏松症的发生。1型糖尿病(type 1 diabetes mellitus, T1DM)和2型糖尿病(type 2 diabetes mellitus, T2DM)患者发生骨折的风险均高于正常同龄人,并且T2DM是骨质疏松性骨折的一个危险因素,这可能与骨代谢异常、高葡萄糖毒性、体重指数、胰岛素抵抗等多因素有关 [1] 。数据显示,T2DM合并OP的发生率超过50%,且T2DM患者发生髋骨骨折的风险为非糖尿病人群的1.3~2.1倍 [2] [3] 。既往研究报道,骨质疏松症的发病机制与破骨细胞(osteoclast, OC)及成骨细胞(osteoblast, OB)共同影响并介导的“骨平衡”失衡关系密切 [4] ,当成骨细胞和破骨细胞的存活、分化过程受到影响时,成骨细胞骨形成和破骨细胞骨吸收功能将被损坏,从而打破骨量和骨转换平衡,进一步导致骨质疏松的发生。

大量研究表明,PI3K/Akt (phosphateidylinositol-3 kinase/serine-threonine kinase, PI3K/Akt)信号通路是重要的胰岛素信号通路,是胰岛素发挥作用的重要传导通路 [5] 。同时亦是骨代谢的主要调节因子,可以定向诱导骨分化,促进骨形成 [6] 。胰岛素、胰岛素样生长因子(IGF)等能够激活PI3K/Akt信号通路,选择性地调控骨形成蛋白(BMP)、NF-kB受体激活剂配体(RANKL)等通路,从而影响成骨细胞和破骨细胞的形成、分化及其功能,发挥调节骨量和骨强度的作用 [7] 。因此,PI3K/AKT通路与骨质疏松症之间具有较大的相关性,且PI3K/Akt信号通路处于调控成骨细胞和破骨细胞增值、分化、凋亡及功能的信号通路中心。国内外学者也曾对中医药等多种药物直接或间接激活PI3K/AKT通路治疗骨质疏松症的相关机制进行了多维度、深层次的研究,但仍存在较多缺陷,以PI3K/Akt作为靶点有可能成为研究开发治疗糖尿病性骨质疏松症的新途径。本文将从PI3K/Akt信号通路与糖尿病性骨质疏松相关性方面进行综述,为进一步开发治疗糖尿病性骨质疏松新药物提供一定理论依据及思路。

2. PI3K/Akt信号通路

2.1. PI3K/Akt信号通路的组成

磷脂酰肌醇3激酶(phosphoinositide 3-kinase, P13K)是一种位于胞质的脂类激酶。PI3K由调节亚基p85和p110组成的异源二聚体,分别起着催化亚单位和调节亚单位的作用,具有丝氨酸/苏氨酸(Ser/Thr)激酶和磷脂酰肌醇(PI)激酶的双重活性 [8] ,有PI3KI、PI3KII、PI3KIII三种结构功能不同的类型,PI3KI在信号转导中发挥最为重要的作用,有PI3KIA和PI3KIB两种亚型 [9] 。PI3K在细胞膜大范围的信号转导、膜转运和代谢过程中起着关键调节作用。当前研究发现,PI3K所合成的活化后产物磷脂酰肌醇-3,4,5-三磷酸(PIP3)接受特定的刺激,作为许多不同细胞表面受体来控制细胞运动、生长、存活和分化的“第二信使”因此,对于调控细胞生命活动具有关键作用 [10] 。p85由Src同源结构域(SH)2,SH3及p110与p85相互作用的非编码区共同构成,SH2具有结合酪氨酸残基传导酪氨酸激酶信号的功能 [11] 。丝氨酸/苏氨酸激酶(serine/threonine kinase, Akt)是P13K最重要的下游信号分子,也称蛋白激酶(protein kinase, PKB),主要表达在细胞质内,约含480个氨基酸残基。目前发现的Akt的三种亚型是Akt1,Akt2,Akt3。其中Akt1调节细胞生长和凋亡,能够磷酸化肌动蛋白相关蛋白表达。Akt2主要表达于脂肪、骨骼肌和肝脏。Akt是PI3K/Akt信号下游的主要效应激酶,Akt的活化以质膜募集方式启动,其活化尚需T308和S473两个位点分别被PDK1和mTORC2磷酸化 [12] 。

2.2. PI3K/Akt信号通路的激活

细胞内的P13K可在受体酪氨酸激酶的作用下被激活,上游信号分子刺激后,处于胞质区位置自身磷酸化的酪氨酸残基与P110结合,PI3K被募集至质膜,P85进入质膜内表面,磷脂酰肌醇4,5-双磷酸(PIP2)磷酸化后与P110结合,形成大量的磷酸酰肌醇-3-磷酸(PI3P)。PIP3与含有PH结构域的磷酸肌醇依赖性蛋白激酶1 (phosphoinositide, dependent kinase 1, PDKl)及Akt结合使二者定位在细胞膜并相互靠近,促进PDKl对Akt进行磷酸化,PDKl磷酸化Akt的Thr308位点使其部分活化,哺乳动物雷帕霉素靶蛋白复合体2 (mammalian target of rapamycin complex 2, mTORC2)再对Akt的Ser473位点进行磷酸化,导致Akt完全活化,Akt活化后作用于下游效应分子半胱天冬蛋白酶9 (Caspase 9, Casp9)、糖原合成激酶3 (Glycogen synthase kinase 3, GSK3)等进一步调控细胞的生长、存活、增殖、分化、蛋白合成、血管发生、新陈代谢等多种过程 [13] [14] 。

3. PI3K/Akt信号通路与骨组织的联系

3.1. PI3K/Akt信号通路与骨代谢

PI3K/Akt信号通路是广泛存在于真核细胞内,参与细胞生长、存活等众多过程 [15] [16] ,是细胞增殖、转移、粘附和死亡过程的重要调节者 [17] 。越来越多的证据表明PI3K/Akt信号通路能调节骨代谢 [18] [19] [20] 。缺乏Akt1的小鼠表现为骨量增长不足,次级骨化中心形成延迟 [21] 。激活Akt蛋白可促进前体成骨细胞MC3T3-E1增殖、分化 [22] 。Lee SU [23] 等报道了大黄素通过激活PI3K/Akt信号通路促进MC3T3-E1细胞内ALP的表达及细胞外矿化的形成,其促进作用在使用P13K特异性抑制剂LY294002时受到抑制。提示PI3K/Akt在骨形成过程中发挥着重要作用。同时目前研究发现,成骨细胞与破骨细胞上也表达胰岛素信号通路中的关键因子,并且这些因子参与骨形成与骨吸收,影响骨代谢。IGF-1是骨生成的强刺激因子,可与成骨细胞上的IGF-1受体结合,激活下游的信号分子P13K、Akt,促进成骨细胞的增殖、分化,促进骨形成。现有研究发现,在体外破骨细胞上清液IGF-1也可通过该信号调节破骨细胞增殖和分化 [24] 。同时,PI3K/Akt信号通路参与下游的核因子kB受体活化因子(RANKL)和巨噬细胞集落刺激因子受体(c-FMS)信号从而对破骨细胞分化、存活和骨吸收起到了至关重要的作用,抑制PI3K/Akt信号通路活性将使破骨细胞骨吸收能力减弱 [25] 。因此,PI3K/Akt信号通路既参与调控成骨细胞的存活、分化及凋亡 [26] [27] [28] ,也参与调控破骨细胞的分化及功能 [29] [30] 。

3.2. PI3K/Akt信号通路对成骨细胞的影响

成骨细胞(Osteoblast, OB)起源自间充质干细胞(mesenchymal stem cells, MSCs),在参与调节骨形成过程中起重要作用。Huang等 [31] 研究指出,PI3K/Akt在加快OB增殖同时,也可以通过Wnt/β-catenin、生长激素/胰岛素样生长因子-1等多种途径,促进OB增殖分化。既往研究显示 [32] ,PI3K/Akt信号通路参与人骨髓间充质干细胞(hMSCs)增殖和分化过程。PI3K抑制剂可抑制hMSCs增殖,但同时促进其向成骨分化和矿化。实验研究显示 [33] ,PI3K表达受抑制可阻断骨形态发生蛋白2 (bone morphogenetic protein 2, BMP2)介导的p-连环蛋白(13-catenin)的激活,进而影响骨髓干细胞(bone marrow stem cells, BMSCs)分化为成骨细胞。研究显示,敲除成骨细胞前体及软骨细胞Pten基因的老鼠表现出骨骺生长板畸形及骨骼过度生长,表明成骨细胞中P13K通过激活Akt后促进骨形成 [34] [35] 。

3.3. PI3K/Akt信号通路对破骨细胞的影响

破骨细胞(Osteoclast, OC)来源于骨髓造血干细胞,是一个高度分化的多核巨细胞,主要功能是直接参与骨吸收 [36] 。破骨细胞的形成和活化需要两个因素:RANKL和巨噬细胞集落刺激因子 [37] 。破骨细胞的数量与功能方面受到外界因素的影响,则会导致以骨破坏为主要特征的疾病 [38] [39] [40] 。RANKL属于肿瘤坏死因子(TNF)超家族成员之一,能诱导破骨形成的关键转录因子的转录,如NF-KB,C-FOS等 [41] ,是破骨细胞形成过程中的主要调节者 [42] 。有研究表明,PI3K/Akt通路与OC间存有重要联系 [43] ,破骨细胞对于Akt2敲除和加入PI3K/Akt通路抑制剂的细胞来说,骨钙素(Osteoclacin, OCN)表达降低(P < 0.05),说明这一通路在OC活化和极化的过程中发挥着重要的作用 [24] 。PI3K/Akt通路可通过影响巨噬细胞集落刺激因子受体(M-CSF)及核因子-κB受体活化因子配体(RANKL)、前列腺素E2 (PGE2)等因子,在OC存活、分化以及“骨平衡”中产生影响 [25] ,当PI3K/Akt通路被抑制时OC的形成减少。TNF-α、IL-1、IL-6及Lhx-2、TGF-β等信号能够通过PI3K/Akt途径,直接或间接促进OC生成,影响OP的发病。

4. PI3K/Akt信号通路与糖尿病性骨质疏松

PI3K/Akt信号通路在糖尿病 [44] 和骨质疏松 [45] 中均研究广泛。PI3K/Akt通路是胰岛素的主要信号转导通路,参与调控糖代谢。近年研究发现细胞因子P13K、Akt与成骨细胞及破骨细胞的增殖、分化等有关,可参与调控骨代谢。有研究显示利拉鲁肽在T2DOP大鼠中通过激活PI3K/Akt通路增加骨密度、抑制破骨细胞生成从而缓解疾病 [46] ,将PI3K/Akt信号通路与糖尿病、骨质疏松相联系起来。同时既往研究发现 [47] ,骨质疏松症致病与骨髓间充质干细胞(mesenchymal stem cells, MSCs)生物学行为有关。PI3K/Akt信号通路参与MSCs增殖和成骨分化调控。成骨分化伴随该信号通路下游Akt蛋白表达。在MSCs培养时加入PI3K抑制剂,细胞增殖数量明显减少,但促进其向成骨细胞分化和矿化,证实了增殖和分化之间的非共存关系,促进分化的同时也阻止了干细胞重新进入细胞周期。PI3K/Akt信号可能参与OP致病,并与其他信号通路之间存在协同作用。除此之外,PI3K/Akt通路与成骨和破骨通路紧密联系,调控着成骨细胞和破骨细胞存活、分化过程从而维持骨量和骨转换平衡。因此,PI3K/Akt信号通路具有调节成骨细胞和破骨细胞功能的双重作用,进而影响了骨质疏松的发生发展过程。

5. 展望

综上,PI3K/Akt信号通路近年来研究广泛,通过参阅文献发现,PI3K/Akt信号通路参与骨破坏相关疾病的发生 [48] 。临床上治疗糖尿病性骨质疏松症应从单纯降糖外的各个环节进行综合治疗。骨组织PI3K/Akt信号通路的激活可增加骨密度、抑制破骨细胞生成从而缓解疾病。尽管PI3K/Akt信号通路与糖尿病性骨质疏松症相关的分子机制还未被完全阐明,但为预防治疗糖尿病性骨质疏松症提供了新思路和研究方向。因此,以PI3K/Akt通路为一支点,更多DOP治疗手段将会被发掘,PI3K/Akt信号通路有望成为开发预防治疗糖尿病性骨质疏松症新药的潜在有效靶点。

基金项目

云南省教育厅科学研究基金项目资助,项目编号:2022Y866。

文章引用

朱 玲,朱恩江,孙曙光. PI3K/Akt信号通路与糖尿病性骨质疏松相关性研究进展
Research Progress on the Relationship between PI3K/Akt Signaling Pathway and Diabetic Osteoporosis[J]. 临床医学进展, 2023, 13(02): 2437-2443. https://doi.org/10.12677/ACM.2023.132343

参考文献

  1. 1. 李兴艳, 杜勇军. PPARα与2型糖尿病性骨质疏松的相关性研究进展[J]. 中国骨质疏松杂志, 2018, 24(8): 1093-1096.

  2. 2. 廖二元, 孟迅吾, 徐苓, 等. 原发性骨质疏松症诊疗指南[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 10(5): 413-444.

  3. 3. 赵心, 张晓梅, 纪立农. 2型糖尿病患者骨代谢改变的研究进展[J]. 中同糖尿病杂志, 2018, 26(7): 613-616.

  4. 4. 林德民, 谢兴文, 李宁, 等. PI3K/AkT通路与骨质疏松症的关系及中医药干预的研究进展[J]. 中国骨质疏松杂志, 2021, 27(6): 922-926.

  5. 5. Zhang, Y., Yang, S.N., Zhang, M., et al. (2019) Glycyr-rhetinic Acid Improves Insulin-Response Pathway by Regulating the Balance between the Ras/MAPK and PI3K/Akt Pathways. Nutrients, 11, 604-613. https://doi.org/10.3390/nu11030604

  6. 6. Jiang, H.T., Ran, C.C., Liao, Y.P., et al. (2019) IGF-1 Reverses the Os-teogenic Inhibitory Effect of Dexamethasone on BMP9-Induced Osteogenic Differentiation in Mouse Embryonic Fibro-blasts via PI3K/AKT/COX-2 Pathway. The Journal of Steroid Biochemistry and Molecular Biology, 191, 105363-105371. https://doi.org/10.1016/j.jsbmb.2019.04.012

  7. 7. Harada, S. and Rodan, G.A. (2003) Control of Osteoblast Func-tion and Regulation of Bone Mass. Nature, 423, 349-355. https://doi.org/10.1038/nature01660

  8. 8. Breitbart, H., Rotman, T., Rubinstein, S., et al. (2010) Role and Regulation of PI3K in Sperm Capacitation and the Acrosome Reaction. Molecular and Cellular Endocrinology, 314, 234-238. https://doi.org/10.1016/j.mce.2009.06.009

  9. 9. Lupia, E., Pigozzi, L., Goffi, A., et al. (2014) Role of Phosphoinositide 3-Kinase in the Pathogenesis of Acute Pancreatitis. World Journal of Gastroenterology, 20, 15190-15199. https://doi.org/10.3748/wjg.v20.i41.15190

  10. 10. Xiao, W., Wang, Y., Pacios, S., Li, S. and Graves, D.T. (2016) Cellular and Molecular Aspects of Bone Remodeling. Frontiers of Oral Biology, 18, 9-16. https://doi.org/10.1159/000351895

  11. 11. Jabbour, E., Ottmann, O.G., Deininger, M., et al. (2014) Targeting the Phosphoinositide 3-Kinase Pathway in Hematologic Malignancies. Haematologica, 99, 7-18. https://doi.org/10.3324/haematol.2013.087171

  12. 12. Hers, I., Vincent, E.E. and Tavaré, J.M. (2011) Akt Signalling in Health and Disease. Cell Signaling, 23, 1515-1527. https://doi.org/10.1016/j.cellsig.2011.05.004

  13. 13. Manning, B.D. and Cantley, L.C. (2007) AKT/PKB Signaling: Navigating Downstream. Cell, 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009

  14. 14. McNamara, C.R. and Degterev, A. (2011) Small Molecule Inhibi-tors of the P13K Signaling Network. Future Medicinal Chemistry, 3, 549-565. https://doi.org/10.4155/fmc.11.12

  15. 15. Cantley, L.C. (2002) The Phosphoinositide 3-Kinase Pathway. Science, 296, 1655-1657. https://doi.org/10.1126/science.296.5573.1655

  16. 16. 余跃伟, 夏春. 软骨细胞凋亡与PI3K/Akt途径及相关信号分子的研究进展[J]. 临床骨科杂志, 2009, 12(4): 457-460.

  17. 17. Zhang, Y.C., Cheng, T. and Yuan, W.P. (2013) Re-cent Studies on PI3K/AKT/mTOR Signaling Pathway in Hematopoietic Stem Cells. Journal of Experimental Hematology, 21, 245-249.

  18. 18. 孙正平, 梁灿德, 吴少鹏, 等. 补肾活血方对人成骨细胞的增殖和分化中p38MAPK及P13K/Akt信号转导通路的影响[J]. 世界中西医结合杂志, 2015, 10(11): 1589-1592.

  19. 19. 陈小香, 邓伟民, 魏秋实, 等. 从GH/IGF-1轴与P13K/Akt通路探讨老年骨质疏松症的发病机制[J]. 中国骨质疏松杂志, 2015, 21(11): 1412-1415.

  20. 20. 江春燕, 宋成文. P13K/AKT信号通路对骨髓间充质干细胞行为学调节的研究进展[J]. 湖南中医杂志, 2017, 33(12): 176-178.

  21. 21. Ulici, V., Hoenselaar, K.D., Agoston, H., et al. (2009) The Role of Akt 1 in Teminal Stages of Endochondral Bone Fonnation: Angiogenesis and Ossification. Bone, 45, 1133-1145. https://doi.org/10.1016/j.bone.2009.08.003

  22. 22. Gu, Y.X., Du, J., Si, M.S., et al. (2013) The Roles of PI3K/Akt Signaling Pathway in Regulating MC3T3-E1 Preosteoblast Proliferation and Differentiation on SLA and SLActive Tita-nium Surfaces. Journal of Biomedical Materials Research, 101, 748-754. https://doi.org/10.1002/jbm.a.34377

  23. 23. Lee, S.U., Shin, H.K. and Min, Y.K. (2008) Emodin Accelerates Osteo-blast Differentiation through Phosphatidylinositol 3-Kinase Activation and Bone Morphogenetic Protein-2 Gene Expres-sion. International Immunopharmacology, 8, 741-747. https://doi.org/10.1016/j.intimp.2008.01.027

  24. 24. Chen, L.L., Huang, M., Tan, J.Y., et al. (2013) PI3K/AKT Pathway Involvement in the Osteogenic Effects of Osteoclast Cul-ture Supernatants on Preosteoblast Cells. Tissue Engineering Part A, 19, 2226-2232. https://doi.org/10.1089/ten.tea.2012.0469

  25. 25. Adapala, N.S., Barbe, M.F., Tsygankov, A.Y., et al. (2014) Loss of Cbl-PI3K Interaction Enhances Osteoclast Survival Due to p21-Ras Mediated PI3K Activation Independent of Cbl-b. Journal of Cellular Biochemistry, 115, 1277-1289. https://doi.org/10.1002/jcb.24779

  26. 26. Park, S.J., Kim, S.H., Choi, H.S., et al. (2009) Fibroblast Growth Factor 2-Induced Cytoplasmic Asparaginyl-tRNA Synthetase Promotes Survival of Osteoblasts by Regulating Anti-Apoptotic P13K/Akt Signaling. Bone, 45, 994-1003. https://doi.org/10.1016/j.bone.2009.07.018

  27. 27. Dufour, C., Holy, X. and Marie, P.J. (2008) Transforming Growth Factor Beta Prevents Osteoblast Apoptosis Induced by Skeletal Unloading via P13K/Akt, Bcl.2, and Phosphor Bad Sig-naling. American Journal of Physiology-Endocrinology and Metabolism, 294, 794-801. https://doi.org/10.1152/ajpendo.00791.2007

  28. 28. Wu, J.B., Fong, Y.C., Tsai, H.Y., et al. (2008) Naringin Induced Bone Morphogenetic Protein-2 Expression via P13K, Akt, c-Fos/c-Jun and AP.1 Pathway in Osteoblasts. European Journal of Pharmacology, 588, 333-341. https://doi.org/10.1016/j.ejphar.2008.04.030

  29. 29. Fukuda, A., Hikita, A., Wakeyama, H., et al. (2005) Regulation of Osteoclast Apoptosis and Motility by Small GTPase Binding Protein Rac1. Journal of Bone and Mineral Research, 20, 2245-2253. https://doi.org/10.1359/JBMR.050816

  30. 30. Moon, J.B., Kim, J.H., Kim, K., et al. (2012) Akt Induces Osteoclast Differentiation through Regulating the GSK313/NFATc1 Signaling Cascade. The Journal of Immunology, 188, 163-169. https://doi.org/10.4049/jimmunol.1101254

  31. 31. Huang, L., Wang, Y., Jiang, Y., et al. (2018) High Levels of GSK-3β Signalling Reduce Osteogenic Differentiation of Stem Cells in Osteonecrosis of Femoral Head. The Journal of Biochemistry, 163, 243-251. https://doi.org/10.1093/jb/mvx076

  32. 32. 王雪鹏, 李茂强, 边振宇, 等. PI3K/Akt信号通路在骨髓间充质干细胞增殖及成骨分化调控中的作用[J]. 中华骨质疏松和骨矿盐疾病杂志, 2014(3): 250-257.

  33. 33. Lee, J.H., Kim, B.G., Ahn, J.M., et al. (2010) Role of PI3K on the Regulation of BMP2-Induced beta-Catenin Activation in Human Bone Marrow Stem Cells. Bone, 46, 1522-1532. https://doi.org/10.1016/j.bone.2010.02.013

  34. 34. Ford-Hutchinson, A.F., Ali, Z., Lines, S.E., et al. (2007) Inactivation of Pten in Osteochondroprogenitor Cells Leads to Epiphyseal Growth Plate Abnormalities and Skeletal Overgrowth. Journal of Bone and Mineral Research, 22, 1245-1259. https://doi.org/10.1359/jbmr.070420

  35. 35. Liu, X., Bruxvoort, K.J., Zylstra, C.R., et al. (2007) Lifelong Accumula-tion of Bone in Mice Lacking Pten in Osteoblasts. Proceedings of the National Academy of Sciences of the United States of America, 104, 2259-2264. https://doi.org/10.1073/pnas.0604153104

  36. 36. 于世凤. 破骨细胞及其骨吸收调控研究进展[J]. 中国骨质疏松杂志, 2000, 6(1): 78-83.

  37. 37. Miron, R.J. and Bosshardt, D.D. (2016) OsteoMacs: Keyplayers around Bone Bio-materials. Biomaterials, 82, 1-19. https://doi.org/10.1016/j.biomaterials.2015.12.017

  38. 38. Fujii, T., et al. (2012) IL-4 Inhibits TNF-α-Mediatedosteoclast Formation by Inhibition of RANKL Expression in TNF-α-Activated Stromal Cells and Direct Inhibition of TNF-α-Activated Osteoclast Precursors via a T-Cell-Independent Mechanism in Vivo. Bone, 51, 771-780. https://doi.org/10.1016/j.bone.2012.06.024

  39. 39. Neale, S.D., Smith, R., Wass, J.A., et al. (2000) Osteoclast Dif-ferentiation from Circulating Mononuclear Precursors in Paget’s Disease Is Hypersensitive to 1,25-Dihydroxyvitamin D 3 and RANKL. Bone, 27, 409-416. https://doi.org/10.1016/S8756-3282(00)00345-8

  40. 40. Hwang, Y.S., Ma, G.T., Park, K.K., et al. (2014) Lyso-phosphatidic Acid Stimulates Osteoclast Fusion through OC-STAMP and P2X7 Receptor Signaling. Journal of Bone and Mineral Metabolism, 32, 110-122. https://doi.org/10.1007/s00774-013-0470-9

  41. 41. Tsubaki, M., Komai, M., Itoh, T., et al. (2014) Nitro-gen-Containing Bisphosphonates Inhibit RANKL- and M-CSF-Induced Osteoclast Formation through the Inhibition of ERK1/2 and Akt Activation. Journal of Biomedical Science, 21, 10. https://doi.org/10.1186/1423-0127-21-10

  42. 42. Muruganandan, S. and Sinal, C.J. (2014) The Impact of Bone Mar-row Adipocytes on Osteoblast and Osteoclast Differentiation. IUBMB Life, 66, 147-155. https://doi.org/10.1002/iub.1254

  43. 43. 杨一秋, 李兰, 赵娜, 等. PI3K/AKT信号通路与骨质疏松关系的研究进展[J]. 中国老年学杂志, 2022, 42(24): 6144-6148.

  44. 44. Liu, K., Yang, Y., Zhou, F., et al. (2020) Inhibition of PI3K/AKT/mTOR Signaling Pathway Promotes Autophagy and Relieves Hyperalgesia in Diabetic Rats. NeuroReport, 31, 644-649. https://doi.org/10.1097/WNR.0000000000001461

  45. 45. Pala, E. and Denkçeken, T. (2019) Differen-tially Expressed Circulating miRNAs in Postmenopausal Osteoporosis: A Meta-Analysis. Bioscience Reports, 39, 667-675. https://doi.org/10.1042/BSR20190667

  46. 46. 张莹, 周艳红, 李江雁, 等. 基于PI3K/Akt通路研究利拉鲁肽对2型糖尿病骨质疏松大鼠的作用[J]. 中国骨质疏松杂志, 2021(7): 985-989.

  47. 47. Chanda, D., Kumar, S. and Ponnazhagan, S. (2010) Therapeutic Potential of Adult Bone Marrow-Derived Mesenchymal Stem Cells in Diseases of the Skeleton. Journal of Cellular Biochemistry, 111, 249-257. https://doi.org/10.1002/jcb.22701

  48. 48. 史东梅, 董明, 陆颖, 等. PI3K/Akt信号通路与骨破坏: 问题与机制[J]. 中国组织过程研究, 2020, 24(23): 3716-3722.

  49. NOTES

    *通讯作者。

期刊菜单