Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 64437 , 8 pages
10.12677/ACM.2023.134902

脑血流动力学改变与脑小血管病关系的研究 进展

张亚军,尹凤琼*,杨潇,杨治燕,马腾,段宇珠

昆明医科大学第二附属医院特需病房,云南 昆明

收稿日期:2023年3月21日;录用日期:2023年4月18日;发布日期:2023年4月25日

摘要

脑血流动力学包括血压变异性改变、血管搏动性、脑血流量改变、脑血管反应性改变等,血压变异性改变会导致血流的波动性增加,并且抑制血流流向小动脉的流畅性,抑制NO的产生,损害血管内皮功能,导致“神经血管单位损伤”,血脑屏障异常,从而导致小血管病变。动脉硬化及血管搏动性的改变导致管壁增厚,管腔狭窄,血流波动性增加,由于大脑血管阻力低,容易受到搏动压力变化的影响,从而促进脑小血管病的发生发展,类淋巴系统是一种全脑范围的周围液体运输系统,其循环障碍将导致血管周围间隙扩大,由于排出废物障碍,造成CSVD患者的执行、注意力和记忆功能损害。脑血流动力学的改变是脑小血管病发生、发展的重要机制,通过加重血管内皮功能障碍、血–脑屏障功能破坏等导致动脉硬化、脑血流量降低,影响氧气等营养物质及废物的运输,加速脑小血管病的发生发展。

关键词

脑小血管病,血流动力学,血压变异性,脑血流量,脑深邃静脉,类淋巴系统,综述

Research Progress on the Relationship between Cerebral Hemodynamic Changes and Cerebral Small Vessel Disease

Yajun Zhang, Fengqiong Yin*, Xiao Yang, Zhiyan Yang, Teng Ma, Yuzhu Duan

The Second Affiliated Hospital of Kunming Medical Universal Special-Needed Hospital Ward, Kunming Yunnan

Received: Mar. 21st, 2023; accepted: Apr. 18th, 2023; published: Apr. 25th, 2023

ABSTRACT

Cerebral hemodynamics includes changes in blood pressure variability, vascular pulsation, cerebral blood flow, and cerebrovascular reactivity. Changes in blood pressure variability lead to increased blood flow volatility, inhibit the flow of blood to arterioles, inhibit the production of NO, damage vascular endothelial function, lead to “neurovascular unit injury”, and abnormal blood-brain barrier. This can lead to small blood vessel lesions. Arteriosclerosis and pulsating vascular changes lead to wall thickening, lumen stenosis, and increased blood flow volatility. Due to low cerebral vascular resistance, it is easily affected by pulsating pressure changes, thus promoting the occurrence and development of small cerebral vascular diseases. The glymphatic system is a kind of cerebral peripheral fluid transportation system, and its circulation obstacles will lead to the expansion of the perivascular space. Executive, attention and memory functions are impaired in CSVD patients. Changes in cerebral hemodynamics are an important mechanism for the occurrence and development of cerebrovascular disease, which can lead to arteriosclerosis and decreased cerebral blood flow by aggravating vascular endothelial dysfunction and damage of blood-brain barrier function, affecting the transport of nutrients such as oxygen and waste, and accelerating the occurrence and development of cerebral small vessel disease.

Keywords:CSVD, Cerebral Hemodynamics, BPV, CBF, DMV, Glymphatic System, Review

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脑小血管病(cerebral small vessel disease, CSVD)指的是各种病因影响颅内小动脉及其远端分支、微动脉、毛细血管、微静脉和小静脉所致的一系列临床、影像和病理综合征 [1] 。目前常用影像学诊断标准是2013年国际上提出的STRIVE影像学诊断标准,根据影像学表现的不同将其分为近期皮质下小梗死、推测为血管源性的腔隙、血管周围间隙、推测为血管源性的脑白质高信号、脑微出血和脑萎缩6种类型 [2] 。脑小血管病的病理机制尚未明确,目前包括慢性缺血/低灌注、内皮细胞损伤与血脑屏障功能障碍、动脉粥样硬化、免疫验证反应等,各种机制相互作用于脑小血管引起微血管重构,导致脑血流减少和慢性脑低灌注最终导致脑小血管病的发生 [3] [4] 。高龄、高血压、动脉粥样硬化是最常见的脑血管病的危险因素,随着年龄的增长,免疫系统逐渐重塑和恶化即“免疫衰老”也会导致脑小血管病的发生 [5] 。脑小血管病和脑卒中密切相关,约有25%的缺血性卒中患者及大多数出血性卒中患者检测出脑小血管病,并且还被证明与步态障碍、情绪障碍、认知障碍密切相关 [6] [7] 。随着脑小血管病机制的研究及发现,脑血流动力学的改变在脑小血管病的发病机制中逐渐被认知,高血压及年龄的增长导致小动脉粥样硬化,使得小动脉增厚、狭窄最终导致血流动力学改变,从而影响脑血流及氧气的运输,加速脑小血管病的发生发展 [4] 。并且越来越多的血流动力学指标改变与脑小血管病之间关系的研究被发掘出来,本文重点阐述脑学流动力学的改变(例如血压变异性、血管搏动性、脑血流量、脑血管反应性、类淋巴系统等)对脑小血管病的影响。

2. 血压变异性改变与脑小血管病的联系

血压变异性(Blood pressure variability, BPV)是指机体在一段时间内的血压波动情况,是机体内环境动态调节的一种体现,也是人体最基本的生理特征 [8] 。血压变异性包括超短期(每个心动周期BPV)、短期(24小时以内BPV、通过24 h动态血压监测进行评估)、中期(每天的BPV,通过家庭血压进行监测评估)、长期(季节性、数月或数年的随访期间的BPV) 4类。临床上常用24 h动态血压检测来评估血压变异性。其评估指标包括平均真实变异性(ARV)、标准差(SD)、变异系数(CV),血压变异性增高导致微循环改变,与脑小血管病的发生发展密切相关 [9] [10] 。血压变异性升高与脑小血管病的发生发展密切相关。有研究分析了326例脑小血管病患者24 h动态血压后发现夜间收缩压标准差是CSVD影像总负荷增加的独立危险因素,并且二者呈线性正相关 [11] 。一项纳入了140脑小血管病患者的回顾性分析发现,住院期间24小时动态血压高BPV与脑小血管病患者cSVD总负担显著相关,并且发现白天收缩压标准差和收缩压加权标准差是cSVD总负担的独立危险因素,收缩压加权标准差是cSVD进展的预测因素 [12] 。一项纳入2796例个体,随访研究患者长期(中位随访年限4年) BPV,研究发现较大的血压变异性与较高的白质高信号相关 [13] 。机制可能是:首先较大的BPV会增加血流的波动,并且抑制血流流向小动脉的流畅性,特别是在高流量器官如大脑,导致微血管损伤;第二,较大的BPV可以抑制NO的产生,损害血管内皮功能,导致“神经血管单位损伤”,血脑屏障异常,从而导致小血管病变。第三过度的BPV导致极低和极高的血压水平超出大脑自动调节的范围,导致血管损伤 [14] 。近来有研究发现BPV增加与WMH病变体积的增加相关,但与高血压状态无管,并且在高血压患者中最明显。该研究还发现BPV增加可导致颅内动脉过度扩张,颅内动脉扩张不仅与WMH的存在有关,而且与WMH的严重程度相关。当远端小血管病变发生是,近端血管可能发生代偿性扩张;第二近端血管扩张可能导致远端血压升高,导致脆弱的远端更容易受到血压的影响。两个过程可独立发生,更可能相互作用,形成恶性循环,促进了WMH的生长 [15] 。上述可看血压变异性可导致脑小血管病的发生发展,而脑小血管病反过来也可以影响血压的调控。

3. 血管搏动性改变及动脉硬化与脑小血管病的关系

动脉硬化是高龄及各种血管危险因素共同作用的结果,最终导致血管壁的平滑肌部分被纤维化物质所取代,使管壁增厚,管腔狭窄,增厚的血管壁弹性减低,逐渐变得僵硬,导致血流波动性增加,随着动脉硬化的增加导致动脉收缩压与舒张压异常变化,这导致动脉管壁异常拉伸,进一步导致内膜纤维化、坏死、重塑和血管的粥样硬化。最终这些变化导致更高的脉压传递到远端器官,大脑是一个血流量大的器官,由于脑血管阻力低,容易受到搏动压力变化的影响,从而促进脑小血管病的发生发展 [16] [17] 。目前临床上常利用MRI或TCD等无创性检查测量脉搏波传导速度(PWV)和搏动指数(PI)来评估血管硬化程度。PWV金标准是颈动脉-股动脉脉搏波传导速度(cf-PWV) [18] 。搏动指数(PI)是检测小血管卒中最可靠的TCD指标,可以显示远端血管的阻力大小,通常测量的是双侧大脑中动脉,是缺血脑卒中患者临床结局和长期死亡率的独立性因素 [19] 。

国内外很多研究表明动脉硬化在脑小血管病的发生发展中起着重要的作用。一项纳入782例无卒中和痴呆的高血压患者的研究中,通过测量颈动脉–股动脉脉搏波速(cf-PWV),检测动脉硬化程度,并且行MRI检查区分有无脑小血管病及其类型,研究发现在高血压患者中,动脉硬化与脑小血管病的总负荷相关,尤其是与腔梗和基底节区血管周围间隙扩大相关 [18] 。Zhai等 [20] 在一项纳入953例接受肱动脉–踝动脉脉搏波速和MRI的受试者的研究中发现PWV增加与CSVD相关,包括PVS,MWH体积增大、脑叶CMBs和脑萎缩,但不包括腔梗。Kristian等 [21] 在一项长达五年的随访中对比了糖尿病患者与非糖尿病患者颈动脉–股动脉脉搏波速(c-fPWV)与脑白质高信号(WMH)之间的关系,发现动脉硬化在脑血管疾病早期病理生理过程中参与其中,发现PWV与较高的cWMH容积增加独立相关。Hannawi等人在分析了426例中年受试者首次发现脑室周围白质高信号比深部白质高信号受到动脉硬化、血管重构的影像更大,且不受年龄的影响 [22] 。

一项研究纳入206例腔隙性脑梗死患者,并分析了这些患者双侧大脑半球的PI值,发现腔隙性脑梗死患者同侧PI值与cSVD密切相关,并且在cSVD各亚型之间PI值各不相同,发现能够PI值清楚地反映cSVD的负担及患病率 [23] 。Markus等 [24] 人在一项纳入481人的队列研究中通过长期随访大脑中动脉的PI,发现搏动指数在基线较严重的WMH患者升高(P < 0.01),但在随访期间与WMH进展无关,最终发现只有高血压与WMH的基线严重程度及进展显著相关,最终得出PI与WMH的严重程度无关,也不能预测WMH的进展。同样在Tomas等人的研究中有类似发现,Tomas等 [25] 人认为WML和PVS在PI增加之前就会出现,认为PI升高是CSVD的一个相对较晚的表现,而不是危险因素。Chou等 [26] 人纳入681例测试者分别测量颈内动脉和椎动脉的PI值,并用核磁评估CMBs,最后研究发现,颈部动脉PI升高与CMBs相关,并发现深部CMB与颈内动脉PI升高相显著相关,脑叶CMB与椎动脉PI升高显著相关,并且与年龄、性别、心血管危险因素、WMH和腔梗无关,可以通过测量不同部位的PI值来评估CMBs的分布位置。积极治疗并降低PI值可以减缓脑小血管病的发生发展,降低动脉硬化程度可以减少脑小血管病及其他血管病的发生风险。

4. 脑血流量、血管反应性改变与脑小血管病的关系

各种病因作用于脑小血管引起微血管重构,使得血管壁增厚、闭塞、变薄,并导致小血管的自动调节功能受损,导致脑血流减少和慢性脑低灌注 [3] [4] 。很多研究都表明脑血流量与脑小血管病相关。Nomura等 [27] 的研究表明脑小血管病患者的CBF比非脑小血管病患者更容易受损,是非脑小血管病患者的3.2倍。Yu等 [28] 认为CSVD是影响整个大脑的疾病,与总负荷评分相关,发现CSVD总负荷评分与全脑CBF呈负相关。有研究认为慢性脑灌注不足与认知功能下降的进展有关,并发现较低的CBF水平与3年随访期间较高概率的认知能力下降有关,认为保存或改善CBF是预防认知功能下降的一种措施 [29] 。Gregg等 [30] 研究表明在无症状的老年人中,皮层位置发生的CNBs与静息状态CBF的广泛减少相关,认为静息状态CBF是CMBs是脑小血管病的一个标志。最近Zhang等 [31] 的研究表明,CBF减少是WMH的独立危险因素,CSVD患者存在动脉运输延迟。

健康的大脑需要持续的血液灌流和CBF的调控,控制CBF的重要因素由排列在血管管腔内皮细胞的单层特殊细胞维持。内皮细胞参与许多调控过程,例如调节血管张力、炎症反应、血栓形成、黏附和血管通透性 [32] 。内皮功能障碍被认为是血管病的早期标志,它先于结构的改变和实质的损害出现。当内皮功能障碍时血管的反应性下降,故脑血管反应性被用来评估脑血管内皮细胞功能障碍 [33] 。脑血管反应性(CVR)是指脑血管对血管活性刺激所做出的反应性扩张或收缩的一种现象。其反应了血管扩张的能力,可以通过测量血管扩张来反应脑血流量(CBF)或脑血容量(CBV)。采用BOLD来评估血管反应性时最常用的方法 [34] [35] 。Staszewski等 [36] 的研究首次对比评估了腔隙性卒中、血管性痴呆、帕金森综合征患者的颅内血管、颅外血管的反应性,发现CSVD患者中有严重脑白质损害、脑萎缩或血管周围间隙扩大的患者中,血管反应性的指标显著降低。另外在一项研究了CSVD患者24月的血管反应性的研究中发现,与具有动脉粥样硬化危险因素的正常患者相比,CSVD患者的所有CVR指标均随着时间显著下降 [37] 。Kim等 [38] 在研究了年龄范围为56~89岁的受试者中,发现全脑血管的CVR降低与受试者MMSE评分降低有关,且MMSE评分与基线CBF没有统计学上的相关性。

5. 脑深邃静脉改变与脑小血管病的关系

脑深邃静脉(DMV)是指位于脑室周围白质的小实质静脉,直径从几十微米到数百微米不等。通常使用磁化率加权成像(SWI)利用静脉中脱氧血红蛋白的磁化率效应可以显示出DMV的变化 [39] 。静脉中的管腔狭窄或闭塞会增加小静脉的阻力,减少脑血流量,导致静脉缺血。DMV中的静脉阻塞可能会影响脑室周围白质的引流系统,进而导致脑室周围白质静脉的灌注不足、引流系统终端和血管源性水肿,最终导致脑室周围脑白质高信号的产生 [40] 。随着影像学的发展,越来越多的研究表明深邃静脉与脑小血管病的发生发展中存在着重要的联系。Chen等 [41] 首次提出了DMV神经影像学特征与CSVD总负荷(包括PVS和脑萎缩)的相关性研究,并发现,CSVD患者的总负荷评分与DMV评分呈正相关,在调整了糖尿病等其他潜在混杂因素后发现,高DMV评分与年龄、腔梗、脑白质高信号、脑萎缩有关。Xu等 [42] 人也有同样的发现。Liu等 [43] 人在一项有979名参与者的研究中表明DMV数量减少与脑萎缩有关,尤其是中、下颞叶和海马区,这些部位萎缩容易导致阿尔茨海默病,这种相关性独立于脑血管危险因素和传统的CSVD影像学标记物,并且DMVS的破坏将导致白质损伤。同样有研究发现DMV破裂与CSVD患者脑白质损伤有关 [44] 。有研究表明DMV总分与CSVD患者认知障碍独立相关,CSVD总分越高,DMV评分越高的患者更容易出现认知损害 [45] 。Zhang等 [46] 研究发现DMVS的破裂与MRI可见的基底节血管周围间隙相关,与年龄和高血压无关。一项纵向研究发现,DMVS中破裂的严重程度不仅与基线腔梗有关,而且与2.5年后新出现的腔梗有关,但与WMH体积、CBF和脑白质微结构损伤无关 [47] 。另有研究 [48] 发现DMVS的破坏参与了广泛微出血的发展,静脉功能不全可能是微出血的发病机制之一。

6. 类淋巴系统改变与脑小血管病的关系

类淋巴系统是一种全脑范围的周围液体运输系统,类似于周围组织中的淋巴系统,它通过星形胶质细胞血管末端高度表达的AQP4水通道蛋白介导间质液体和脑脊液的交换,从而大脑中清除间质液体中的废物,最终返回全身循环,在肝脏和肾脏中被废除。血管周围间隙作为淋巴系统的解剖学基础,在清除脑废物、参与水循环、维持脑内平衡方面起着至关重要的作用。其动力是由心脏和呼吸周期引起的动脉管壁波动性以及缓慢的血管运动驱动的。血管周围间隙在影像上的扩大和增加可能与淋巴系统功能障碍有关 [49] [50] [51] 。在动脉硬化性CSVD动物模型中认为PVS扩大和淋巴功能受损存在相关性 [52] [53] 。有动物试验研究表明低灌注模型与显著脑白质损伤和最初的认知障碍以及淋巴系统功能受损有关 [54] 。淋巴系统功能障碍可以通过血管周围间隙的扩散张量图像分析(Alps指数)来评估。多项研究表明Alps指数的下降与脑白质高信号、腔梗、脑微出血、血管周围间隙扩大有关,并且与CSVD患者的执行、注意力和记忆功能损害相关 [55] [56] 。

综上所述,脑血流动力学改变是脑小血管病发病与病情进展机制的重要环节,随着影像技术、动物研究以及临床的进展,血压变异性、血管搏动性、脑血流量、血管反应性、深邃静脉、类淋巴系统功能的改变逐渐被发现、被研究,发现其均可导致脑小血管病的发生和病情进展。未来随着影像技术、动物研究及临床研究的进展和突破,上述血流动力学指标与脑小血管病之间的关系将会被逐一验证,也将会有更新颖的标准来评估脑血流动力学改变与脑小血管病之间的关系。

文章引用

张亚军,尹凤琼,杨 潇,杨治燕,马 腾,段宇珠. 脑血流动力学改变与脑小血管病关系的研究进展
Research Progress on the Relationship between Cerebral Hemodynamic Changes and Cerebral Small Vessel Disease[J]. 临床医学进展, 2023, 13(04): 6417-6424. https://doi.org/10.12677/ACM.2023.134902

参考文献

  1. 1. 胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726.

  2. 2. Wardlaw, J.M., Smith, E.E., Biessels, G.J., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838. https://doi.org/10.1016/S1474-4422(13)70124-8

  3. 3. Ren, B., Tan, L., Song, Y., et al. (2022) Cerebral Small Vessel Disease: Neuroimaging Features, Biochemical Markers, Influencing Factors, Pathological Mechanism and Treat-ment. Frontiers in Neurology, 13, Article ID: 843953. https://doi.org/10.3389/fneur.2022.843953

  4. 4. Gao, Y., Li, D., Lin, J., et al. (2022) Cerebral Small Vessel Dis-ease: Pathological Mechanisms and Potential Therapeutic Targets. Frontiers in Aging Neuroscience, 14, Article ID: 961661. https://doi.org/10.3389/fnagi.2022.961661

  5. 5. Jian, B., Hu, M., Cai, W., et al. (2020) Update of Im-munosenescence in Cerebral Small Vessel Disease. Frontiers in Immunology, 11, Article ID: 585655. https://doi.org/10.3389/fimmu.2020.585655

  6. 6. Kapasi, A., Decarli, C. and Schneider, J.A. (2017) Impact of Multiple Pathologies on the Threshold for Clinically Overt Dementia. Acta Neuropathologica, 134, 171-186. https://doi.org/10.1007/s00401-017-1717-7

  7. 7. Wardlaw, J.M., Smith, C. and Dichgans, M. (2019) Small Vessel Disease: Mechanisms and Clinical Implications. The Lancet Neurology, 18, 684-696. https://doi.org/10.1016/S1474-4422(19)30079-1

  8. 8. 刘骏, 杜瑞雪, 王亮, 等. 高血压患者血压变异性临床研究进展[J]. 中华老年心脑血管病杂志, 2017, 19(10): 1103-1105.

  9. 9. Parati, G., Stergiou, G.S., Dolan, E., et al. (2018) Blood Pressure Variability: Clinical Relevance and Application. The Journal of Clinical Hypertension, 20, 1133-1137. https://doi.org/10.1111/jch.13304

  10. 10. Rosei, E.A., Chiarini, G. and Rizzoni, D. (2020) How Important Is Blood Pressure Variability? European Heart Journal Supplements, 22, e1-e6. https://doi.org/10.1093/eurheartj/suaa061

  11. 11. 段雅鑫, 滕振杰, 胡明, 等. 脑小血管病动态血压变异性与脑小血管病影像总负荷的相关性[J]. 中国神经精神疾病杂志, 2022, 48(6): 321-327.

  12. 12. Fan, Y., Hou, C., Peng, L., et al. (2020) Twenty-Four-Hour Ambulatory Blood Pressure Variability Associated with Cerebral Small Vessel Disease MRI Burden and Its Progression in Inpatients with Cerebrovascular Disease. Frontiers in Neurology, 11, Article ID: 513067. https://doi.org/10.3389/fneur.2020.513067

  13. 13. Ma, Y., Song, A., Viswanathan, A., et al. (2020) Blood Pressure Variability and Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis of Population-Based Cohorts. Stroke, 51, 82-89. https://doi.org/10.1161/STROKEAHA.119.026739

  14. 14. Ma, Y., Yilmaz, P., Bos, D., et al. (2020) Blood Pressure Variation and Subclinical Brain Disease. JACC: Journal of the American College of Cardiology, 75, 2387-2399. https://doi.org/10.1016/j.jacc.2020.03.043

  15. 15. Zhang, B., Huo, Y., Yang, Z., et al. (2022) Day to Day Blood Pressure Variability Associated with Cerebral Arterial Dilation and White Matter Hyperintensity. Hypertension, 79, 1455-1465. https://doi.org/10.1161/HYPERTENSIONAHA.122.19269

  16. 16. Bae, J.H., Kim, J.M., Park, K.Y., et al. (2021) Association between Arterial Stiffness and the Presence of Cerebral Small Vessel Disease Markers. Brain and Behavior, 11, e01935. https://doi.org/10.1002/brb3.1935

  17. 17. Ghorbani, A., Ahmadi, M.J. and Shemshaki, H. (2015) The Value of Transcranial Doppler Derived Pulsatility Index for Diagnosing Cerebral Small-Vessel Disease. Advanced Bio-medical Research, 4, 54. https://doi.org/10.4103/2277-9175.151574

  18. 18. Riba-Llena, I., Jiménez-Balado, J., Castañé, X., et al. (2018) Arte-rial Stiffness Is Associated with Basal Ganglia Enlarged Perivascular Spaces and Cerebral Small Vessel Disease Load. Stroke, 49, 1279-1281. https://doi.org/10.1161/STROKEAHA.118.020163

  19. 19. Hashemilar, M., Partovi, A., Forghani, N., et al. (2022) Comparison of Transcranial Doppler Ultrasound Indices in Large and Small Vessel Disease Cerebral Infarction. Current Journal of Neurology, 20, 229-234. https://doi.org/10.18502/cjn.v20i4.8349

  20. 20. Zhai, F.F., Ye, Y.C., Chen, S.Y., et al. (2018) Arterial Stiffness and Cerebral Small Vessel Disease. Frontiers in Neurology, 9, 723. https://doi.org/10.3389/fneur.2018.00723

  21. 21. Funck, K.L., Laugesen, E., Høyem, P., et al. (2021) Arterial Stiff-ness and Progression of Cerebral White Matter Hyperintensities in Patients with Type 2 Diabetes and Matched Controls: A 5-Year Cohort Study. Diabetology Metabolic Syndrome, 13, 71. https://doi.org/10.1186/s13098-021-00691-y

  22. 22. Hannawi, Y., Vaidya, D., Yanek, L.R., et al. (2022) Association of Vascular Properties with the Brain White Matter Hyperintensity in Middle-Aged Population. Journal of the American Heart Association, 11, e024606. https://doi.org/10.1161/JAHA.121.024606

  23. 23. Nam, K.W., Kwon, H.M. and Lee, Y.S. (2020) Distinct Associa-tion between Cerebral Arterial Pulsatility and Subtypes of Cerebral Small Vessel Disease. PLOS ONE, 15, e0236049. https://doi.org/10.1371/journal.pone.0236049

  24. 24. Kneihsl, M., Hofer, E., Enzinger, C., et al. (2020) Intracranial Pulsatility in Relation to Severity and Progression of Cerebral White Matter Hyperintensities. Stroke, 51, 3302-3309. https://doi.org/10.1161/STROKEAHA.120.030478

  25. 25. Vikner, T., Karalija, N., Eklund, A., et al. (2022) 5-Year Associations among Cerebral Arterial Pulsatility, Perivascular Space Dilation, and White Matter Lesions. Annals of Neu-rology, 92, 871-881. https://doi.org/10.1002/ana.26475

  26. 26. Chou, K.H., Wang, P.N., Peng, L.N., et al. (2019) Location-Specific Association between Cerebral Microbleeds and Arterial Pulsatility. Frontiers in Neurology, 10, 1012. https://doi.org/10.3389/fneur.2019.01012

  27. 27. Nomura, Y., Faegle, R., Hori, D., et al. (2018) Cerebral Small Ves-sel, but Not Large Vessel Disease, Is Associated with Impaired Cerebral Autoregulation during Cardiopulmonary Bypass: A Retrospective Cohort Study. Anesthesia & Analgesia, 127, 1314-1322. https://doi.org/10.1213/ANE.0000000000003384

  28. 28. Yu, C., Lu, W., Qiu, J., et al. (2020) Alterations of the Whole Cerebral Blood Flow in Patients with Different Total Cerebral Small Vessel Disease Burden. Frontiers in Aging Neuroscience, 12, 175. https://doi.org/10.3389/fnagi.2020.00175

  29. 29. Kitagawa, K., Oku, N., Kimura, Y., et al. (2009) Relationship be-tween Cerebral Blood Flow and Later Cognitive Decline in Hypertensive Patients with Cerebral Small Vessel Disease. Hypertension Research, 32, 816-820. https://doi.org/10.1038/hr.2009.100

  30. 30. Gregg, N.M., Kim, A.E., Gurol, M.E., et al. (2015) Incidental Cerebral Microbleeds and Cerebral Blood Flow in Elderly Individuals. JAMA Neurology, 72, 1021-1028. https://doi.org/10.1001/jamaneurol.2015.1359

  31. 31. Zhang, R., Huang, P., Wang, S., et al. (2022) Decreased Cere-bral Blood Flow and Delayed Arterial Transit Are Independently Associated with White Matter Hyperintensity. Frontiers in Aging Neuroscience, 14, Article ID: 762745. https://doi.org/10.3389/fnagi.2022.762745

  32. 32. Ashby, J.W. and Mack, J.J. (2021) Endothelial Control of Cerebral Blood Flow. The American Journal of Pathology, 191, 1906-1916. https://doi.org/10.1016/j.ajpath.2021.02.023

  33. 33. Mena Romo, L. and Gómez-Choco, M. (2022) Neuroimaging in Small Vessel Disease. Hipertensión y Riesgo Vascular, 40, 25-33. https://doi.org/10.1016/j.hipert.2022.05.005

  34. 34. Sleight, E., Stringer, M.S., Marshall, I., et al. (2021) Cerebrovas-cular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Frontiers in Physiology, 12, Article ID: 643468. https://doi.org/10.3389/fphys.2021.643468

  35. 35. Atwi, S., Shao, H., Crane, D.E., et al. (2019) BOLD-Based Cere-brovascular Reactivity Vascular Transfer Function Isolates Amplitude and Timing Responses to Better Characterize Cer-ebral Small Vessel Disease. NMR in Biomedicine, 32, e4064. https://doi.org/10.1002/nbm.4064

  36. 36. Staszewski, J., Skrobowska, E., Piusińska-Macoch, R., et al. (2019) Cerebral and Extracerebral Vasoreactivity in Patients with Different Clinical Manifestations of Cerebral Small-Vessel Disease: Data from the Significance of Hemodynamic and Hemostatic Factors in the Course of Different Manifestations of Cerebral Small-Vessel Disease Study. Journal of Ultrasound in Medicine, 38, 975-987. https://doi.org/10.1002/jum.14782

  37. 37. Staszewski, J., Dȩbiec, A., Skrobowska, E., et al. (2021) Cerebral Vasoreactivity Changes over Time in Patients with Different Clinical Manifestations of Cerebral Small Vessel Disease. Frontiers in Aging Neuroscience, 13, Article ID: 727832. https://doi.org/10.3389/fnagi.2021.727832

  38. 38. Kim, D., Hughes, T.M., Lipford, M.E., et al. (2021) Relationship between Cerebrovascular Reactivity and Cognition among People with Risk of Cognitive Decline. Frontiers in Physiolo-gy, 12, Article ID: 645342. https://doi.org/10.3389/fphys.2021.645342

  39. 39. Ao, D.H., Zhang, D.D., Zhai, F.F., et al. (2021) Brain Deep Me-dullary Veins on 3-T MRI in a Population-Based Cohort. Journal of Cerebral Blood Flow & Metabolism, 41, 561-568. https://doi.org/10.1177/0271678X20918467

  40. 40. Nan, D., Cheng, Y., Feng, L., et al. (2019) Potential Mechanism of Venous System for Leukoaraiosis: From Post- Mortem to in Vivo Research. Neurodegenerative Diseases, 19, 101-108. https://doi.org/10.1159/000505157

  41. 41. Chen, X., Wei, L., Wang, J., et al. (2020) Decreased Visible Deep Medul-lary Veins Is a Novel Imaging Marker for Cerebral Small Vessel Disease. Neurological Sciences, 41, 1497-1506. https://doi.org/10.1007/s10072-019-04203-9

  42. 42. Xu, Z., Li, F., Wang, B., et al. (2020) New Insights in Address-ing Cerebral Small Vessel Disease: Association with the Deep Medullary Veins. Frontiers in Aging Neuroscience, 12, Article ID: 597799. https://doi.org/10.3389/fnagi.2020.597799

  43. 43. Liu, Z.Y., Zhai, F.F., Ao, D.H., et al. (2022) Deep Medullary Veins Are Associated with Widespread Brain Structural Abnormalities. Journal of Cerebral Blood Flow & Metabolism, 42, 997-1006. https://doi.org/10.1177/0271678X211065210

  44. 44. Zhang, R., Huang, P., Jiaerken, Y., et al. (2021) Venous Dis-ruption Affects White Matter Integrity through Increased Interstitial Fluid in Cerebral Small Vessel Disease. Journal of Cerebral Blood Flow & Metabolism, 41, 157-165. https://doi.org/10.1177/0271678X20904840

  45. 45. Xu, Z., Li, F., Xing, D., et al. (2021) A Novel Imaging Bi-omarker for Cerebral Small Vessel Disease Associated with Cognitive Impairment: The Deep-Medullary-Veins Score. Frontiers in Aging Neuroscience, 13, Article ID: 720481. https://doi.org/10.3389/fnagi.2021.720481

  46. 46. Zhang, K., Zhou, Y., Zhang, W., et al. (2022) MRI-Visible Peri-vascular Spaces in Basal Ganglia but Not Centrum Semiovale or Hippocampus Were Related to Deep Medullary Veins Changes. Journal of Cerebral Blood Flow & Metabolism, 42, 136-144. https://doi.org/10.1177/0271678X211038138

  47. 47. Zhou, Y., Li, Q., Zhang, R., et al. (2020) Role of Deep Medul-lary Veins in Pathogenesis of Lacunes: Longitudinal Observations from the CIRCLE Study. Journal of Cerebral Blood Flow & Metabolism, 40, 1797-1805. https://doi.org/10.1177/0271678X19882918

  48. 48. Zhang, R., Li, Q., Zhou, Y., et al. (2019) The Relationship be-tween Deep Medullary Veins Score and the Severity and Distribution of Intracranial Microbleeds. NeuroImage: Clinical, 23, Article ID: 101830. https://doi.org/10.1016/j.nicl.2019.101830

  49. 49. Benveniste, H. and Nedergaard, M. (2022) Cerebral Small Vessel Disease: A Glymphopathy? Current Opinion in Neurobiology, 72, 15-21. https://doi.org/10.1016/j.conb.2021.07.006

  50. 50. Tian, Y., Zhao, M., Chen, Y., et al. (2022) The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease. Biomolecules, 12, 748. https://doi.org/10.3390/biom12060748

  51. 51. Yu, L., Hu, X., Li, H., et al. (2022) Perivascular Spaces, Glymphatic System and MR. Frontiers in Neurology, 13, Article ID: 844938. https://doi.org/10.3389/fneur.2022.844938

  52. 52. Koundal, S., Elkin, R., Nadeem, S., et al. (2020) Optimal Mass Transport with Lagrangian Workflow Reveals Advective and Diffusion Driven Solute Transport in the Glymphatic Sys-tem. Scientific Reports, 10, 1990. https://doi.org/10.1038/s41598-020-59045-9

  53. 53. Xue, Y., Liu, N., Zhang, M., et al. (2020) Concomitant En-largement of Perivascular Spaces and Decrease in Glymphatic Transport in an Animal Model of Cerebral Small Vessel Disease. Brain Research Bulletin, 161, 78-83. https://doi.org/10.1016/j.brainresbull.2020.04.008

  54. 54. Cao, J., Yao, D., Li, R., et al. (2022) Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion. Neuroscience Bulletin, 38, 181-199. https://doi.org/10.1007/s12264-021-00772-y

  55. 55. Zhang, W., Zhou, Y., Wang, J., et al. (2021) Glymphatic Clear-ance Function in Patients with Cerebral Small Vessel Disease. Neuroimage, 238, Article ID: 118257. https://doi.org/10.1016/j.neuroimage.2021.118257

  56. 56. Tang, J., Zhang, M., Liu, N., et al. (2022) The Association between Glymphatic System Dysfunction and Cognitive Impairment in Cerebral Small Vessel Disease. Frontiers in Ag-ing Neuroscience, 14, Article ID: 916633. https://doi.org/10.3389/fnagi.2022.916633

  57. NOTES

    *通讯作者。

期刊菜单