Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 74016 , 13 pages
10.12677/ACM.2023.13102311

迷走神经刺激在改善缺血性脑卒中后 功能障碍中的应用

李鑫1,2,3,4*,廖金成1,2,3,4,张晖集1,薛锐灵1,2,3,5,王怡1,2,3,4,康富丽1,2,3,4,蔡青青1,2,3,4, 马璟曦1,4#

1重庆医科大学,重庆

2中国科学院重庆绿色智能技术研究院,重庆

3中国科学院大学重庆学院,重庆

4重庆市人民医院神经内科,重庆

5重庆市人民医院康复医学科,重庆

收稿日期:2023年9月19日;录用日期:2023年10月12日;发布日期:2023年10月19日

摘要

缺血性脑卒中在世界范围内是非常严重的社会健康问题,不仅严重降低患者的生活质量,而且也会给社会造成巨大经济压力。标准的卒中治疗不能满足卒中后功能改善的需求,因此我们需要提出更多治疗方法。目前,迷走神经刺激已经被批准应用于癫痫、抑郁、偏头痛等领域,并且有大量基础以及临床研究证实其在改善卒中后功能障碍方面有积极作用。在这篇综述中,我们首先探讨了迷走神经刺激对于脑卒中功能障碍改善可能存在的潜在机制,其次详细讲述了迷走神经刺激对于脑卒中后运动、感觉、认知、情绪、吞咽功能障碍改善的应用现状,最后探讨了迷走神经刺激在临床应用所要面临的挑战。迷走神经刺激在缺血性脑卒中里的应用研究进入了关键阶段,我们仍需更多努力将该技术转向临床。

关键词

迷走神经刺激,缺血性脑卒中

Vagus Nerve Stimulation in Improving Dysfunction after Ischemic Stroke

Xin Li1,2,3,4*, Jincheng Liao1,2,3,4, Huiji Zhang1, Ruiling Xue1,2,3,5, Yi Wang1,2,3,4, Fuli Kang1,2,3,4, Qingqing Cai1,2,3,4, Jingxi Ma1,4#

1Chongqing Medical University, Chongqing

2Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing

3Chongqing School University of Chinese Academy of Sciences, Chongqing

4Department of Neurology, Chongqing General Hospital, Chongqing

5Department of Rehabilitation, Chongqing General Hospital, Chongqing

Received: Sep. 19th, 2023; accepted: Oct. 12th, 2023; published: Oct. 19th, 2023

ABSTRACT

Ischemic stroke is a very serious social health problem worldwide, which not only seriously reduces the quality of life of patients but also causes great economic pressure on society. Standard stroke treatments cannot fulfill the need for functional improvement after stroke, so we need to propose more therapeutic approaches. Currently, vagus nerve stimulation has been approved for use in epilepsy, depression, and migraine, and a large number of basic experimental as well as clinical studies have demonstrated its positive effects in improving post-stroke dysfunction. In this review, we firstly discuss the potential mechanisms of vagus nerve stimulation for the improvement of post-stroke dysfunction, then detail the current status of vagus nerve stimulation for the improvement of post-stroke motor, sensory, cognitive, emotional, and swallowing dysfunction, and finally discuss the challenges of vagus nerve stimulation in clinical applications. The study of vagus nerve stimulation in ischemic stroke has entered a critical stage, and more efforts are needed to transfer this technique to the clinical setting.

Keywords:Vagus Nerve Stimulation, Ischemic Stroke

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

缺血性脑卒中在世界范围内是一个非常严重的社会健康问题,也是导致残疾甚至死亡的主要原因之一。严重的脑卒中不仅仅会损害患者的生活质量,也会给社会造成经济负担。根据2020年世界卒中组织(World Stroke Organization, WSO)宣言,全球卒中负担形势令人担忧,如果按照目前的趋势继续下去,此后每年将新增约3000万新发卒中患者 [1] 。脑卒中在中国发病率更高,截止2020年,中国每年有2.5亿新发卒中病例,而且这一数字仍在持续增长 [2] 。当面临急性缺血性卒中时,最主要的治疗方式仍然只有静脉溶栓和机械取栓。然而,只有约10%的急性缺血性卒中患者能够符合溶栓取栓的条件,从而获得治疗 [3] 。因此,我们迫切需要一种新的辅助治疗方法来改善缺血性脑卒中患者的功能障碍。

迷走神经刺激(Vagus nerve stimulation, VNS)分为植入性迷走神经刺激(Invasive vagus nerve stimulation, iVNS)和无创的经皮迷走神经刺激(Transcutaneous vagus nerve stimulation, tVNS)。iVNS装置的植入是一种微创手术,对人体伤害很小,但仍存在潜在的风险,如呼吸困难、声带功能障碍、气管周围血肿等 [4] 。tVNS对比iVNS,是一种更为无创的操作,对于人体风险更小,不会出现相关手术风险。已经有研究证明tVNS可以激活迷走神经投射和介导的通路,其作用与iVNS一致 [5] 。tVNS一般分为经皮颈迷走神经刺激(tcVNS)和经皮耳迷走神经刺激(taVNS)两类。

美国食品和药品管理局已经批准iVNS应用于临床难治性部分发作性癫痫和对至少四种抗抑郁药物干预无效的严重复发性抑郁症患者 [6] [7] [8] 。随着研究的进展,iVNS的潜在应用已经扩展到一系列神经系统疾病,如缺血性中风、创伤性脑损伤、偏头痛、帕金森病和阿尔茨海默病 [9] - [14] 。

本文首先会探讨VNS在改善脑卒中功能障碍中的潜在机制。然后概述VNS对缺血性脑卒中导致的运动、感觉、认知、情绪、吞咽等功能障碍的改善作用。最后探讨VNS应用于临床将要面临的挑战。

2. 机制

2.1. 抗炎特性

既往的研究认为VNS可以通过广泛的迷走神经网络调节全身炎症反应。这些调节机制目前尚不完全明确,但主要由三种通路介导。第一种途径是脾交感抗炎途径,它通过脾交感神经释放去甲肾上腺素,去甲肾上腺素与脾淋巴细胞的β2肾上腺素能受体相连,从而释放乙酰胆碱。第二种途径是抗炎的下丘脑–垂体–肾上腺轴,它被迷走神经传入纤维激活,促使肾上腺释放皮质醇。第三种途径是迷走神经胆碱能抗炎途径,迷走神经传出纤维通过肠道神经元激活外周巨噬细胞中的α7烟碱乙酰胆碱受体(α7 nicotinic acetylcholine receptors, α7nAChR),调节全身炎症细胞因子的释放 [15] 。

在缺血性卒中VNS抗炎通路中,α7nAChR是中心靶点 [16] 。有研究报道,经线栓法局灶性脑缺血模型的大鼠接受α7nAChR拮抗剂和VNS治疗后,显示VNS能够刺激产生神经保护作用,而拮抗α7nAChR减弱了VNS的保护作用,并且减少了α7nAchR、p-JAK2、p-STAT3的表达,表明VNS可以通过α7nAchR/JAK2抗炎途径来减轻炎症 [17] 。有研究通过蛋白免疫印迹、定量聚合酶链反应和免疫组织化学检测,发现阻塞小鼠大脑中动脉(Middle cerebral artery occlusion, MACO)后14天,小鼠梗死周围皮层α7nAchR蛋白和mRNA表达水平下降,而taVNS逆转了α7nAchR的减少 [18] 。此外,Liu等人发现tcVNS导致了三叉神经节的皮质环氧合酶-2、降钙素基因相关肽和三叉神经尾核中的c-Fos表达显著降低,提示tcVNS同样减轻了皮质神经炎症 [19] 。

小胶质细胞是大脑的主要先天免疫细胞,在缺血性卒中后被激活,并影响促炎表型或调节性表型的表达,这是缺血性脑卒中后由于神经炎症导致相关功能障碍的机制之一。近期,有研究发现VNS通过α7nAChR介导Toll样受体-4/NF-κB通路,诱导脑缺血/再灌注损伤(Brain ischemia/reperfusion, I/R)后小胶质细胞从促炎表型向调节性表型转变,从而减轻神经炎症 [20] 。

在各种急慢性中枢神经系统疾病(脊髓损伤、局灶性脑缺血等)中,过氧化物酶体增殖物激活受体γ (Peroxisome proliferator-activated receptor γ, PPAR-γ)的激活与抗炎神经保护作用之间存在一定的关系。有研究发现,VNS可增强缺血半暗区PPAR-γ表达,抑制促炎细胞因子表达和免疫细胞活化,表明PPAR-γ可参与VNS诱导的抗炎过程 [21] 。

2.2. 保护血脑屏障完整性

血脑屏障(The blood-brain barrier, BBB)在调节脑内的血液、溶质和细胞运输以及维持中枢神经系统的内稳态微环境方面发挥着重要作用。缺血性卒中会引起内皮细胞炎症损伤、细胞旁和跨细胞通路通透性增加,从而导致血脑屏障损伤,进一步促进液体、化学物质和血源性细胞进入脑实质,从而引起脑水肿,加重炎症反应和脑损伤 [22] 。一项研究发现,白介素-17 (IL-17)可以破坏血脑屏障的完整性,增加活性氧的产生 [23] 。而tVNS可促进小胶质细胞M2极化,通过抑制IL-17水平减少I/R [24] 。

有研究发现tcVNS可显著降低损伤区域血脑屏障转移率,降低缺血半球反应性星形胶质细胞中基质金属蛋白酶-2/9的表达 [25] 。此外,一项研究调查了VNS对结肠炎小鼠皮质微梗死的影响,发现VNS通过双光子成像降低血脑屏障通透性并保护血脑屏障完整性 [26] 。此外,在皮质发育不良 [27] 和脑外伤 [28] 等其他病理条件的大鼠模型中,VNS还能保护血脑屏障的完整性并减轻症状,这也有助于理解缺血性卒中后VNS对血脑屏障的影响。

2.3. 促进血管生成

脑血流减少引起的脑损伤是缺血性脑卒中的基本病理过程。脑血管重塑在卒中功能恢复阶段起着至关重要的作用,侧支血流改善和血管生成增多是脑血容量增加的主要原因 [29] 。

然而,有证据表明,VNS对急性缺血性脑损伤的保护作用不是由局灶性脑血流的急性增多引起的,VNS诱导的细微血流变化未被检测到的原因可能是缺血期间维持组织灌注和自我调节血管舒张之间的不平衡导致的 [30] 。相反,有研究发现,taVNS显著增加梗死区周围微血管密度和内皮细胞增殖,表明taVNS增强了缺血后血管生成反应 [31] 。最近的研究表明,缺血性卒中后VNS介导的血管生成与血管生成因子的表达有关,如脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)、血管内皮生长因子(Vascular endothelial growth factor, VEGF)和生长分化因子11 (Growth and differentiation factors, GDF11) [31] [32] [33] 。

BDNF和VEGF参与并促进血管生成。在大脑发育阶段抑制VEGF表达可导致血管形成受损。有研究采用双免疫荧光染色和免疫印迹分析BDNF和VEGF蛋白及mRNA表达,发现taVNS在再灌注21天后显著上调缺血区边缘的BDNF和VEGF蛋白及mRNA水平 [31] 。

此外,由于GDF11具有参与血管重构、改善脑血管功能、促进神经发生、增强初级脑毛细血管内皮细胞(ECs)增殖的能力 [34] 。有研究对MCAO大鼠模型进行taVNS干预,检测脑和脾GDF11蛋白和mRNA表达。这个研究发现,taVNS可促进EC增殖和激活素样激酶5 (activin-like kinase 5, ALK5)表达,上调脑GDF11,下调脾GDF11,提示GDF11可能通过ALK5途径参与taVNS介导的血管生成机制 [32] 。继上述研究之后,作者于2018年再次阐述GDF11/ALK5参与并促进taVNS介导血管生成的机制 [33] 。

此外,CD31已被证明是一个敏感和特异性的血管分化标志物 [35] 。有系统荟萃分析表明,动物在VNS后出现微血管密度、CD31及其他标志物增加。因此,内皮细胞增殖和血管支持的增强可能与CD31及微血管密度的增加有关。实验结果表明VNS可以增加CD31的表达,从而保护神经元免受缺血事件的影响 [36] 。

2.4. 抑制细胞凋亡与自噬

细胞凋亡可能导致急性脑缺血后大量的神经元死亡。VNS潜在的抗凋亡特性可能是其在缺血性脑卒中发挥神经保护作用的机制之一。

近期研究表明,VNS可显著减少急性脑I/R损伤大鼠缺血半暗区末端脱氧核糖核酸转移酶(TdT)介导的脱氧尿苷三磷酸(dUTP)缺口末端标记阳性细胞和断裂caspase-3蛋白的数量,表明VNS的神经保护作用部分是通过抑制神经细胞凋亡实现的 [21] [37] 。此外,VNS通过下调Bax、裂解caspase-3以及上调Bcl-2来减少I/R后神经元的凋亡 [38] ,这可能是由脂钙素前列腺素D2合酶介导的。

自噬是一种不同于细胞凋亡的细胞死亡方式,与缺血性卒中的功能损害密切相关。有研究报道,与缺血再灌注组相比,VNS显著下调Beclin-1的表达,降低LC3-II/LC3-I比值,表明VNS通过抑制自噬途径对I/R发挥神经保护作用 [39] 。

2.5. 增强神经元可塑性

VNS的可塑性增强作用已在一些动物实验中得到证实。例如,Biggio等发现VNS诱导海马齿状回神经元增殖,增强神经元持续可塑性,增加大鼠海马BDNF的表达,这些都表明VNS对缺血性卒中的治疗效果有潜在的作用 [40] 。Meyers等人发现,在单侧皮质和皮质下缺血大鼠中,VNS增强皮质脊髓运动网络的可塑性,从而增加与康复上肢肌肉组织的突触连接,并且这种改善在VNS结束后持续数月 [41] 。此外,Zuo等人的研究结果表明,VNS可能通过调节自由运动大鼠海马的神经可塑性来影响记忆过程 [42] 。

迷走神经的刺激涉及多种与神经可塑性相关的神经调节通路 [43] 。VNS增加了整个大脑中这些神经调节因子和BDNF的水平 [44] ,这同样说明VNS可以增强脑损伤后的神经可塑性。

利用VNS的靶向可塑性增强疗法可以提供恢复功能失调神经回路正常神经活动所需的特异性,这些功能失调神经回路被认为是许多神经系统疾病的基础 [43] 。最近的研究也支持这样的假设,将声音与VNS配对可以指导大鼠 [45] 以及耳鸣患者的治疗性神经可塑性 [46] 。此外,据报道,VNS增加了脑出血大鼠 [47] 、脑外伤大鼠 [48] 和胰岛素抵抗大鼠 [49] 的神经可塑性,这是功能恢复的基础。这些结果支持了VNS可以增强神经可塑性的观点。

3. VNS在缺血性脑卒中里的应用

3.1. VNS改善卒中后上肢功能障碍

上肢功能障碍是卒中的常见后遗症之一,约75%的缺血性卒中患者在康复后仍存在上肢无力 [50] 。上肢力量也是中风后手臂功能和慢性残疾预后的预测因子 [51] 。大量临床前和临床证据表明,VNS联合康复治疗可促进脑卒中后上肢运动功能的恢复。在本节中,我们介绍了一些关于有创和无创VNS技术在中风后上肢功能障碍的动物研究和临床研究。

3.1.1. 动物研究

Porter等通过颅内微刺激定量评估了VNS与特定运动反复配对对运动皮质可塑性的影响,发现VNS与特定运动配对增加了运动皮质表征,这不是VNS的一般效应,而是VNS与特定运动配对所特有的 [52] 。Khodaparast等将17只雌性脑卒中急性期大鼠分为三组(康复期间的VNS组、康复后的VNS组和单独的康复组)进行基础研究,结果表明,在康复期间进行VNS可使前肢功能明显恢复到病变前水平,而另外两组则不能恢复到病变前水平 [53] 。这进一步验证了上述发现,康复训练时进行VNS能够改善中风后的上肢功能障碍。VNS联合康复治疗不仅可以改善脑缺血急性期上肢功能障碍,而且在损伤后恢复的慢性期也有很好的治疗效果。该作者不久后进行了进一步实验,在皮质和皮质下缺血性病变后7-11周内,在康复训练时进行VNS,小鼠的上肢力量恢复86%,单独进行康复训练的小鼠上肢力量仅恢复47%,而在每日康复训练后2小时进行同等VNS干预的小鼠上肢力量恢复为42% [54] 。这说明VNS配合康复训练同样能改善缺血性脑卒中慢性恢复期的小鼠上肢功能障碍。目前临床卒中人群以中老年为主,高龄患者卒中发生率高,功能预后差。最近的一项研究报道,在考虑并整合年龄因素的18月龄大鼠运动皮质缺血性病变后,对其进行6周的VNS配对康复治疗,结果显示组内和组间的命中率和峰值拉力显著增加,没有VNS的康复训练组上肢功能为损伤前的34% ± 19%,而VNS联合康复训练组上肢功能恢复到损伤前的98% ± 8%,提示VNS与康复训练配对治疗老年脑卒中患者的可能性 [55] 。

3.1.2. 临床研究

为了更好地将动物研究结果转化并应用于临床实践,还需要大量的临床研究证据来支持VNS配对康复训练的可行性和安全性。在一项随机临床对照试验中,21例慢性缺血性卒中(>6个月)患者被随机分为VNS配对康复训练组和单独康复组,结果显示干预后上肢运动Fugl-Meyer评分(Upper Fugl-Meyer, UFM)有明显改善 [56] 。一项盲法、随机、多地点临床试验(iVNS治疗组/iVNS假刺激组)研究了VNS联合康复训练对慢性卒中患者上肢功能障碍的潜在影响,对VNS植入患者进行了6周的临床治疗和90天的家庭锻炼计划。结果显示,两组患者在临床治疗6周后无显著差异,但在家庭训练90天后,iVNS组UFM和Wolf上肢运动功能评分(Wolf motor function test, WMFT)明显改善 [57] 。Dawson等人将随访期延长至1年,以探索慢性卒中患者家庭自我管理(VNS结合康复训练)的长期安全性、可行性和依从性,结果显示约73%的参与者在1年时UFM表现出具有临床意义的改善 [58] 。鉴于上述研究样本量小、非盲设计等局限性,Dawson又在19家卒中康复服务机构开展了后续研究(随机、三盲、假对照试验),试验结果充分支持VNS配对康复改善慢性缺血性卒中后上肢运动功能障碍 [59] 。然而,该方法如何应用于临床康复中达到最大效果,能否用于改善更严重的上肢功能障碍,值得进一步研究。

由于对iVNS技术有创性操作的潜在风险的关注,促使无创VNS技术在脑卒中的快速发展和应用。Capone等初步证实了taVNS联合机器康复治疗缺血性卒中后上肢功能障碍患者的可行性和安全性。14例缺血性或出血性慢性卒中患者被随机分为两组(机器辅助康复联合真或假taVNS训练)进行10天的干预,结果显示,与假刺激组相比,VNS刺激组没有出现不良事件,UFM评分也有显著改善 [60] 。Redgrave等人进行了一项单组干预前后研究,将taVNS与重复性任务特定练习(Repetitive task-specific practice, RTP)相结合(1次1小时,每周3次,持续6周)。该试点研究发现,与干预前相比,患者UFM评分平均提高了近17分,只有3名参与者报告了副作用(轻度头痛和疲劳),这表明taVNS联合RTP是一种可行、安全且可耐受的治疗中风后上肢无力的方法 [61] 。为了进一步研究taVNS联合康复治疗亚急性缺血性脑卒中患者上肢功能障碍的效果和安全性,Wu等选择了21名卒中发病0.5~3个月内的参与者,并且将他们随机分为常规康复治疗、taVNS刺激与康复配对组和taVNS假刺激与康复配对组。与假刺激组相比,taVNS刺激组的UFM、WMFT和功能独立性测量(Functional independence measurement, FIM)评分有显著改善,taVNS有利于亚急性缺血性脑卒中患者上肢运动功能的恢复 [62] 。

3.2. 感觉障碍

慢性感觉损伤是中风的常见后遗症,伴随触觉、本体感觉、立体感和注意力不集中的异常 [63] 。一般临床治疗策略往往侧重于神经损伤后运动功能的恢复,但躯体感觉的缺陷在很大程度上导致残疾 [64] [65] 。鉴于感觉丧失的普遍性和重要性,能够恢复感觉功能的有效干预措施的发展有可能为患有各种神经系统疾病的患者带来实质性的益处。

3.2.1. 文献报道

近期,有文献报道了一位经过6周iVNS配合运动功能训练的患者,其治疗结束后运动障碍明显改善,但仍有残留的、功能受限的感觉障碍。研究者对患者又进行了5周的VNS + 触觉治疗,在完成VNS + 触觉治疗后,患者的触觉阈值较治疗前恢复了88%,立体识别、定位和检测的恢复率分别为70%、60%和50%,两点辨别没有明显的改善 [66] 。结果显示该患者经过VNS+感觉治疗后感觉障碍有了显著改善。

3.2.2. 动物研究

基于上述报道,Darrow等人进行了更进一步的动物实验。他将17只大鼠全都进行右前臂正中神经和尺神经的横断和管状修复,并在左颈迷走神经上植入刺激袖带电极。从损伤后第16周开始,对大鼠进行感觉运动功能基线评估,并根据受损前肢的机械感觉戒断阈值动态分为两组。一组仅接受触觉康复(n = 8),另一组接受相同的触觉康复治疗(n = 9)的同时给予VNS训练。实验结果显示在慢性感觉丧失的大鼠模型中,与没有VNS的等效触觉康复相比,VNS与触觉康复相结合可显著改善机械感觉戒断阈值。VNS依赖性躯体感觉功能恢复在停止治疗后仍然维持数月。此外,视神经刺激配合触觉康复治疗可显著改善其他感觉运动指标的恢复 [67] 。尽管该动物模型并不是缺血性卒中模型,但VNS配合触觉康复能显著改善小鼠感觉障碍,未来可能仍需要更多的实验来验证VNS能够改善缺血性脑卒中小鼠感觉障碍这一观点。

3.2.3. 临床研究

VNS改善卒中后感觉障碍不仅仅是在单独的个体中体现,近期一项研究对12位慢性脑卒中患者(>3个月)进行为期6周的tVNS + 运动特定任务训练,结果显示tVNS与运动训练相结合后,上肢感觉仍然能够得到改善,即使在没有特殊感觉康复的情况下,tVNS也与UFM评分中感觉及运动改善有关 [68] 。近期,Li等人进行了一项60人的研究。他将急性脑卒中患者1:1随机分成tVNS刺激组与假刺激组,2组都联合相同的康复训练。结果显示,连续20天的ta-VNS治疗,使患者在3个月后不仅运动功能方面得到明显改善(Fugl-Meyer评分上肢部分:52%,Fugl-Meyer评分下肢部分:62%),而且在感觉方面改善仍然显著(Fugl-Meyer评分感觉部分:72%),并且这种改善在1年内持续有效 [69] 。该实验结果表明tVNS配合康复训练能有效改善急性卒中患者感觉障碍。

3.3. 认知障碍

脑卒中后认知功能的改善是患者独立生活能力的基本要求之一。一项研究发现,通过功能性磁共振成像,iVNS引起丘脑、海马、杏仁核、脑干和下丘脑等脑区血流量的变化,其中丘脑和杏仁核与情绪记忆有关,海马与空间和情景记忆有关 [70] 。有趣的是,VNS的神经保护作用部分是通过蓝斑介导的去甲肾上腺素能受体的激活来表现的,去甲肾上腺素的释放可以改善注意力、反应性和其他认知功能。刺激迷走神经增强记忆从而改善认知过程的潜在机制目前尚不清楚,推测可能是因为迷走神经释放的神经递质调节有关。

VNS技术改善认知功能主要集中在健康志愿者中。Colzato等人对80名健康志愿者进行了非侵入性VNS,结果显示,他们在发散思维方面有更明显的创造性表现,这可能与γ-氨基丁酸(γ-aminobutyric acid, GABA)浓度的短暂增加有关 [71] 。McIntire等对40名现役军人在34小时的睡眠剥夺条件下进行了tVNS,来评估tVNS作为疲劳对策的效果。结果表明,接受tVNS的参与者在多任务和唤醒方面表现明显更好 [72] 。这些研究为探索VNS对缺血性脑卒中后认知功能障碍的具体影响提供了证据。

目前关于VNS改善脑卒中后认知功能障碍的研究主要处于临床前阶段。Liu等对MACO模型大鼠进行了iVNS (电流强度为1 mA,频率为20 Hz,脉宽为0.4 ms,刺激持续时间和间隔时间均为3 s),通过Morris水迷宫和穿梭盒行为测试检测,发现VNS刺激改善了空间记忆和恐惧记忆的表现。在这项特殊的研究中,在脑室内注射神经毒素DSP-4后,VNS诱导的空间和恐惧记忆改善被逆转,这降低了皮质和海马脑区域的去甲肾上腺素水平,提示VNS改善卒中后认知功能障碍的可能机制之一为调节了去甲肾上腺素所导致的。

脑卒中后VNS诱导认知改善的确切机制尚不清楚,仍然需要大量的基础和临床研究证据来证明VNS可以改善脑卒中后认知功能障碍。

3.4. 情绪障碍

与迷走神经相关的大脑区域包括蓝斑、海马体、杏仁核和岛叶皮质等,这些区域也负责处理抑郁和焦虑的身心成分 [73] [74] 。脑卒中后抑郁和焦虑对脑卒中后运动和认知障碍的康复恢复有不利影响,并显著增加脑血管疾病复发的风险 [75] 。

有研究在阿尔茨海默病(AD)大鼠模型脑室内注射β-淀粉样蛋白1-4 (Aβ1-42),使得大鼠出现抑郁样行为和记忆功能障碍,并将大鼠分为VNS刺激组与假刺激组,进行3周的VNS刺激(振幅0.8 mA;脉冲持续时间,500 μs;频率30 Hz;开关周期,30 s/30s),结果显示VNS可预防Aβ诱导的抑郁样行为和记忆功能障碍,并且显著降低焦虑 [76] 。许多研究表明VNS可以减少大鼠和人类的焦虑表达 [77] [78] [79] 。在创伤后应激障碍大鼠模型中,将VNS与消退配对可以减少1周后的焦虑和唤醒 [80] 。而在治疗抑郁方面,美国食品和药品管理局已经批准iVNS应用于药物治疗无效的严重复发性抑郁症患者 [7] [81] 。

这些研究为探索VNS对改善缺血性脑卒中后情绪障碍提供了证据。

近期,Li等人进行了一项60人的研究。他将急性脑卒中患者1:1随机分成tVNS刺激组与假刺激组,通过评估HADS焦虑抑郁量表,结果显示,连续20天的taVNS治疗能够改善急性脑卒中患者焦虑抑郁情况 [69] 。

当然,VNS改善脑卒中后情绪障碍的机制还不够清楚,还需要大量的临床前以及临床研究来佐证。

3.5. 吞咽障碍

吞咽困难是卒中的常见后遗症,临床有37%~78%的急性卒中患者有不同程度的吞咽困难 [82] 。此外,卒中后吞咽困难的发生会导致各种并发症,如吸入性肺炎、营养不良、脱水甚至死亡,这表明寻找有效的吞咽困难治疗方法至关重要 [83] 。

3.5.1. 动物研究

近期一项实验将65只大鼠随机分为三组,假手术组(n = 15)、对照组(n = 25)和VNS组(n = 25),其中对照组及VNS组结扎动脉建立MCAO模型。在3组小鼠的耳甲区内外放置两个带相反电荷的磁电极,经皮电刺激频率为20 Hz,强度为2 mA平方脉冲(脉冲宽度为0.5 ms),通过电刺激器进行单次刺激30分钟,刺激周期维持在3周,其中仅有VNS刺激组打开刺激器进行电刺激。每周测量小鼠吞咽反射的变化,并通过肌电图活动评估注射蒸馏水引起的吞咽反射,并分析20 s内的吞咽次数和第一次吞咽的发病潜伏期。采用电镜、免疫组织化学、体视学、酶联免疫吸附试验(ELISA)和免疫印迹等方法观察脑白质髓鞘再生、血管生成和炎症反应。实验结果显示与假手术组相比,VNS组和对照组的第一次吞咽发作潜伏期仍明显延长,吞咽次数明显减少。与对照组相比,VNS组的吞咽数量显著增加,到第一次吞咽的发病潜伏期显著缩短。实验结果提示ta-VNS治疗3周改善了吞咽困难症状,增加了髓鞘再生和血管生成,抑制了炎症反应 [84] 。

3.5.2. 临床研究

近期一项研究召集了40名脑卒中后吞咽障碍患者,将其随机分为tVNS组与假刺激组,刺激组给予0.5脉冲宽度,25 Hz,疗程为3周的刺激,2个组均配合吞咽功能训练。通过改良曼恩吞咽功能评估法(Mann assessment of swallowing ability, MASA)、功能性沟通测量吞咽测试法(Functional communication measure, FCM)和Rosenbek漏吸量表(Rosenbek leakage/aspiration scale, RAS)评估吞咽功能。治疗3周后,两组患者MASA、FCM评分均显著高于基线,RAS评分均显著低于基线。ta-VNS组MASA评分、FCM评分均高于对照组,RAS评分下降较对照组显著。实验结果表明tVNS能改善卒中后吞咽障碍功能,并且在治疗结束后4周仍有改善趋势 [85] 。

对于VNS改善卒中后吞咽功能障碍已有相关动物实验及临床研究,但其机制仍不清楚,仍需更多的实验验证。

4. VNS应用于临床需面临的挑战

iVNS的安全性一直是该技术能否成功应用于临床的关键指标。iVNS治疗的并发症主要与外科手术和神经刺激有关。一项研究发现,接受iVNS手术的143例患者中有16.8%出现手术相关并发症,并发症与硬件故障有关(引线断裂、断开、自动关闭和刺激器故障) [86] 。需要注意的是,更换刺激器也会增加感染的风险,对于长期接受iVNS治疗的患者,应将设备的使用寿命作为考虑因素之一。

作为无创的迷走神经刺激,对比iVNS,其不会出现与外科手术相关的并发症,更适合临床应用,但仍然面临着许多挑战。

在急性脑卒中患者治疗过程中,患者各个时间点需要严格把控,包括临床评估、紧急CT扫描、溶栓或机械取栓的决定。所以我们需要考虑tVNS的提供是否会造成脑卒中急性医疗护理的延迟,而选择在何种时间点开展tVNS至关重要。因此,以一种有效和安全的方式引入tVNS等疗法来治疗急性脑卒中可能极具挑战性。

对于慢性中风,tVNS同样面临挑战。迄今为止进行的研究都是在高度监测的环境中进行的,研究人员提供的tVNS通常与康复训练相结合,需要专业人员的把控。而在家庭康复计划中,慢性卒中患者很难在康复进行时配对tVNS。tVNS在慢性脑卒中康复中的下一阶段应该包括探索如何将tVNS升级为家庭康复。

5. 总结

迄今为止,已有大量临床前及临床试验证明VNS能够改善患者脑卒中后功能障碍(运动、感觉、认知、情绪、吞咽),虽然其确切机制尚不明确,但是可以肯定的是VNS对卒中患者的功能改善作用。然而,如何将VNS应用于临床作为脑卒中治疗的新方法仍然需要解决。

基金项目

重庆市渝中区科学技术局科技计划项目(20210161);

重庆市自然科学基金面上项目(cstc2021jcyjmsxmX0071);

重庆市科卫联合医学科研项目(2020MSXM106),重庆市卫生健康委医学科研项目(2023WSJK008)。

文章引用

李 鑫,廖金成,张晖集,薛锐灵,王 怡,康富丽,蔡青青,马璟曦. 迷走神经刺激在改善缺血性脑卒中后功能障碍中的应用
Vagus Nerve Stimulation in Improving Dysfunction after Ischemic Stroke[J]. 临床医学进展, 2023, 13(10): 16512-16524. https://doi.org/10.12677/ACM.2023.13102311

参考文献

  1. 1. Brainin, M., Feigin, V.L., Norrving, B., Martins, S.C.O., Hankey, G.J. and Hachinski, V. (2020) Global Prevention of Stroke and Dementia: The WSO Declaration. The Lancet Neurology, 19, 487-488. https://doi.org/10.1016/S1474-4422(20)30141-1

  2. 2. Liu, L., Chen, W., Zhou, H., Duan, W., Li, S., Huo, X., et al. (2020) Chinese Stroke Association Guidelines for Clinical Management of Cerebrovascular Disorders: Executive Sum-mary and 2019 Update of Clinical Management of Ischaemic Cerebrovascular Diseases. Stroke and Vascular Neurology, 5, 159-176. https://doi.org/10.1136/svn-2020-000378

  3. 3. Ma, J., Qiao, P., Li, Q., Wang, Y., Zhang, L., Yan, L.J. and Cai, Z. (2019) Vagus Nerve Stimulation as a Promising Adjunctive Treatment for Ischemic Stroke. Neurochemistry Internation-al, 131, Article ID: 104539. https://doi.org/10.1016/j.neuint.2019.104539

  4. 4. Yap, J.Y.Y., Keatch, C., Lambert, E., Woods, W., Stoddart, P.R. and Kameneva, T. (2020) Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. Frontiers in Neuroscience, 14, Article No. 284. https://doi.org/10.3389/fnins.2020.00284

  5. 5. Zhang, Y., Liu, J., Li, H., Yan, Z., Liu, X., Cao, J., et al. (2019) Transcutaneous Auricular Vagus Nerve Stimulation at 1 Hz Modulates Locus Coeruleus Activity and Resting State Functional Connectivity in Patients with Migraine: An fMRI Study. NeuroImage: Clinical, 24, Article ID: 101971. https://doi.org/10.1016/j.nicl.2019.101971

  6. 6. Panebianco, M., Rigby, A., Weston, J. and Marson, A.G. (2015) Vagus Nerve Stimulation for Partial Seizures. Cochrane Database of Systematic Reviews, 2015, CD002896. https://doi.org/10.1002/14651858.CD002896.pub2

  7. 7. Conway, C.R. and Xiong, W. (2018) The Mechanism of Action of Vagus Nerve Stimulation in Treatment-Resistant Depression. Psychiatric Clinics of North America, 41, 395-407. https://doi.org/10.1016/j.psc.2018.04.005

  8. 8. Young, A.H., Juruena, M.F., De Zwaef, R. and Demyt-tenaere, K. (2020) Vagus Nerve Stimulation as Adjunctive Therapy in Patients with Difficult-to-Treat Depression (RESTORE-LIFE): Study Protocol Design and Rationale of a Real-World Post-Market Study. BMC Psychiatry, 20, Ar-ticle No. 471. https://doi.org/10.1186/s12888-020-02869-6

  9. 9. Khodaparast, N., Hays, S.A., Sloan, A.M., Hulsey, D.R., Ruiz, A., Pantoja, M., Rennaker, R.L. and Kilgard, M.P. (2013) Vagus Nerve Stimulation during Rehabil-itative Training Improves Forelimb Strength Following Ischemic Stroke. Neurobiology of Disease, 60, 80-88. https://doi.org/10.1016/j.nbd.2013.08.002

  10. 10. Pruitt, D.T., Schmid, A.N., Kim, L.J., Abe, C.M., Trieu, J.L., Choua, C., et al. (2016) Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury. Journal of Neurotrauma, 33, 871-879. https://doi.org/10.1089/neu.2015.3972

  11. 11. Farrand, A.Q., Helke, K.L., Gregory, R.A., Gooz, M., Hinson, V.K. and Boger, H.A. (2017) Vagus Nerve Stimulation Improves Locomotion and Neuronal Populations in a Model of Par-kinson’s Disease. Brain Stimulation, 10, 1045-1054. https://doi.org/10.1016/j.brs.2017.08.008

  12. 12. Vargas-Caballero, M., Warming, H., Walker, R., Holmes, C., Cruickshank, G. and Patel, B. (2022) Vagus Nerve Stimulation as a Potential Therapy in Early Alzheimer’s Disease: A Review. Frontiers in Human Neuroscience, 16, Article ID: 866434. https://doi.org/10.3389/fnhum.2022.866434

  13. 13. Butt, M.F., Albusoda, A., Farmer, A.D. and Aziz, Q. (2019) The Anatomical Basis for Transcutaneous Auricular Vagus Nerve Stimulation. Journal of Anatomy, 236, 588-611. https://doi.org/10.1111/joa.13122

  14. 14. Hilz, M.J. (2022) Transcutaneous Vagus Nerve Stimulation—A Brief In-troduction and Overview. Autonomic Neuroscience, 243, Article ID: 103038. https://doi.org/10.1016/j.autneu.2022.103038

  15. 15. Bonaz, B., Sinniger, V. and Pellissier, S. (2016) An-ti-Inflammatory Properties of the Vagus Nerve: Potential Therapeutic Implications of Vagus Nerve Stimulation. The Journal of Physiology, 594, 5781-5790. https://doi.org/10.1113/JP271539

  16. 16. Hoover, D.B. (2017) Cholinergic Modulation of the Immune System Pre-sents New Approaches for Treating Inflammation. Pharmacology & Therapeutics, 179, 1-16. https://doi.org/10.1016/j.pharmthera.2017.05.002

  17. 17. Lu, X.-X., Hong, Z.-Q., Tan, Z., Sui, M.-H., Zhuang, Z.-Q., Liu, H.-H., et al. (2017) Nicotinic Acetylcholine Receptor Alpha7 Subunit Mediates Vagus Nerve Stimulation-Induced Neuroprotection in Acute Permanent Cerebral Ischemia by a7nAchR/JAK2 Pathway. Medical Science Monitor, 23, 6072-6081. https://doi.org/10.12659/MSM.907628

  18. 18. Li, J., Zhang, Q., Li, S., Niu, L., Ma, J., Wen, L., Zhang, L. and Li, C. (2020) α7nAchR Mediates Transcutaneous Auricular Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Enhancing Axonal Plasticity. Neuroscience Letters, 730, Article ID: 135031. https://doi.org/10.1016/j.neulet.2020.135031

  19. 19. Liu, T.-T., Morais, A., Takizawa, T., Mulder, I., Simon, B.J., Chen, S.-P., et al. (2022) Efficacy Profile of Noninvasive Vagus Nerve Stimulation on Cortical Spreading Depression Susceptibility and the Tissue Response in a Rat Model. The Journal of Headache and Pain, 23, Article No. 12. https://doi.org/10.1186/s10194-022-01384-1

  20. 20. Jia, G.-W., Yu, L.-H., Liu, Y.-L., Wang, S.-R. and Ma, J.-X. (2023) Vagus Nerve Stimulation Is a Potential Treatment for Ischemic Stroke. Neural Regeneration Research, 18, 825-831. https://doi.org/10.4103/1673-5374.350698

  21. 21. Li, C. (2015) PPARγ Upregulation Induced by Vagus Nerve Stimulation Exerts Anti-Inflammatory Effect in Cerebral Ischemia/Reperfusion Rats. Medical Science Monitor, 21, 268-275. https://doi.org/10.12659/MSM.891407

  22. 22. Jiang, X. andjelkovic, A.V., Zhua, L., Yang, T., Bennett, M.V.L., Chen, J., Keep, R.F. and Shi, Y. (2018) Blood-Brain Barrier Dysfunction and Recovery after Ischemic Stroke. Progress in Neurobiology, 163-164, 144-171. https://doi.org/10.1016/j.pneurobio.2017.10.001

  23. 23. Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., et al. (2009) Cellular Mechanisms of IL-17-Induced Blood-Brain Barrier Disruption. The FASEB Journal, 24, 1023-1034. https://doi.org/10.1096/fj.09-141978

  24. 24. Zhao, X.-P., Zhao, Y., Qin, X.-Y., Wan, L.-Y. and Fan, X.-X. (2018) Non-Invasive Vagus Nerve Stimulation Protects against Cerebral Ischemia/Reperfusion Injury and Promotes Microglial M2 Polarization via Interleukin-17A Inhibition. Journal of Molecular Neuroscience, 67, 217-226. https://doi.org/10.1007/s12031-018-1227-7

  25. 25. Yang, Y., Yang, L.Y., Orban, L., Cuylear, D., Thompson, J., Si-mon, B. and Yang, Y. (2018) Non-Invasive Vagus Nerve Stimulation Reduces Blood-Brain Barrier Disruption in a Rat Model of Ischemic Stroke. Brain Stimulation, 11, 689-698. https://doi.org/10.1016/j.brs.2018.01.034

  26. 26. Chen, X., He, X., Luo, S., Feng, Y., Liang, F., Shi, T., Huang, R., Pei, Z. and Li, Z. (2018) Vagus Nerve Stimulation Attenu-ates Cerebral Microinfarct and Colitis-Induced Cerebral Microinfarct Aggravation in Mice. Frontiers in Neurology, 9, Article No. 798. https://doi.org/10.3389/fneur.2018.00798

  27. 27. Kaya, M., Orhan, N., Karabacak, E., Bahceci, M.B., Arican, N., Ahishali, B., Kemikler, G., Uslu, A., et al. (2013) Vagus Nerve Stimulation Inhibits Seizure Activity and Protects Blood-Brain Barrier Integrity in Kindled Rats with Cortical Dysplasia. Life Sciences, 92, 289-297. https://doi.org/10.1016/j.lfs.2013.01.009

  28. 28. Lopez, N.E., Krzyzaniak, M.J., Costantini, T.W., Putnam, J., Ha-geny, A.-M., Eliceiri, B., Coimbra, R. and Bansal, V. (2012) Vagal Nerve Stimulation Decreases Blood-Brain Barrier Disruption after Traumatic Brain Injury. Journal of Trauma and Acute Care Surgery, 72, 1562-1566. https://doi.org/10.1097/TA.0b013e3182569875

  29. 29. Liu, J., Wang, Y., Akamatsu, Y., Lee, C.C., Stetler, R.A., Lawton, M.T. and Yang, G.-Y. (2014) Vascular Remodeling after Ischemic Stroke: Mechanisms and Therapeutic Poten-tials. Progress in Neurobiology, 115, 138-156. https://doi.org/10.1016/j.pneurobio.2013.11.004

  30. 30. Sun, Z., Baker, W., Hiraki, T. and Greenberg, J.H. (2012) The Effect of Right Vagus Nerve Stimulation on Focal Cerebral Ischemia: An Experimental Study in the Rat. Brain Stim-ulation, 5, 1-10. https://doi.org/10.1016/j.brs.2011.01.009

  31. 31. Jiang, Y., Li, L., Ma, J., Zhang, L., Niu, F., Feng, T. and Li, C. (2016) Auricular Vagus Nerve Stimulation Promotes Functional Recovery and Enhances the Post-Ischemic Angiogenic Response in an Ischemia/Reperfusion Rat Model. Neurochemistry International, 97, 73-82. https://doi.org/10.1016/j.neuint.2016.02.009

  32. 32. Ma, J., Zhang, L., He, G., Tan, X., Jin, X. and Li, C. (2016) Transcutaneous Auricular Vagus Nerve Stimulation Regulates Expression of Growth Differentiation Factor 11 and Ac-tivin-Like Kinase 5 in Cerebral Ischemia/Reperfusion Rats. Journal of the Neurological Sciences, 369, 27-35. https://doi.org/10.1016/j.jns.2016.08.004

  33. 33. Ma, J., Zhang, L., Niu, T., Ai, C., Jia, G., Jin, X., et al. (2018) Growth Differentiation Factor 11 Improves Neurobehavioral Recovery and Stimulates Angiogenesis in Rats Subjected to Cerebral Ischemia/Reperfusion. Brain Research Bulletin, 139, 38-47. https://doi.org/10.1016/j.brainresbull.2018.02.011

  34. 34. Katsimpardi, L., Litterman, N.K., Schein, P.A., Miller, C.M., Loffredo, F.S., Wojtkiewicz, G.R., et al. (2014) Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors. Science, 344, 630-634. https://doi.org/10.1126/science.1251141

  35. 35. McKenney, J.K., Weiss, S.W. and Folpe, A.L. (2000) CD31 Expres-sion in Intratumoral Macrophages. The American Journal of Surgical Pathology, 25, 1167-1173. https://doi.org/10.1097/00000478-200109000-00007

  36. 36. de Melo, P.S., Parente, J., Rebello-Sanchez, I., Marduy, A., Gianlorenco, A.C., Kyung Kim, C., et al. (2023) Understanding the Neuroplastic Effects of Auricular Vagus Nerve Stimulation in Animal Models of Stroke: A Systematic Review and Meta-Analysis. Neurorehabilitation and Neural Re-pair, 37, 564-576. https://doi.org/10.1177/15459683231177595

  37. 37. Tache, Y., Jiang, Y., Li, L., Liu, B., Zhang, Y., Chen, Q. and Li, C. (2014) Vagus Nerve Stimulation Attenuates Cerebral Ischemia and Reperfusion Injury via Endogenous Cholinergic Pathway in Rat. PLOS ONE, 9, e102342. https://doi.org/10.1371/journal.pone.0102342

  38. 38. Zhang, L., Ma, J., Jin, X., Jia, G., Jiang, Y. and Li, C. (2016) L-PGDS Mediates Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Suppress-ing the Apoptotic Response. Neurochemical Research, 42, 644-655. https://doi.org/10.1007/s11064-016-2121-8

  39. 39. Zhang, L.-N., Zhang, X.-W., Li, C.-Q., Guo, J., Chen, Y.-P. and Chen, S.-L. (2021) Vagal Nerve Stimulation Protects against Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting Autophagy and Apoptosis. Neuropsychiatric Disease and Treatment, 17, 905-913. https://doi.org/10.2147/NDT.S300535

  40. 40. Biggio, F., Gorini, G., Utzeri, C., Olla, P., Marrosu, F., Mocchetti, I. and Follesa, P. (2009) Chronic Vagus Nerve Stimulation Induces Neuronal Plasticity in the Rat Hippocampus. The In-ternational Journal of Neuropsychopharmacology, 12, 1209-1221. https://doi.org/10.1017/S1461145709000200

  41. 41. Meyers, E.C., Solorzano, B.R., James, J., Ganzer, P.D., Lai, E.S., Rennaker, R.L., Kilgard, M.P. and Hays, S.A. (2018) Vagus Nerve Stimulation Enhances Stable Plasticity and Generalization of Stroke Recovery. Stroke, 49, 710-717. https://doi.org/10.1161/STROKEAHA.117.019202

  42. 42. Zuo, Y.T., Smith, D.C. and Jensen, R.A. (2007) Vagus Nerve Stimulation Potentiates Hippocampal LTP in Freely Moving Rats. Physiology & Behavior, 90, 583-589. https://doi.org/10.1016/j.physbeh.2006.11.009

  43. 43. Hays, S.A., Rennaker, R.L. and Kilgard, M.P. (2013) Target-ing Plasticity with Vagus Nerve Stimulation to Treat Neurological Disease. In: Progress in Brain Research, Elsevier, Amsterdam, 275-299. https://doi.org/10.1016/B978-0-444-63327-9.00010-2

  44. 44. Mouillet-Richard, S., Furmaga, H., Carreno, F.R. and Frazer, A. (2012) Vagal Nerve Stimulation Rapidly Activates Brain-Derived Neurotrophic Factor Receptor TrkB in Rat Brain. PLOS ONE, 7, e34844. https://doi.org/10.1371/journal.pone.0034844

  45. 45. Loerwald, K.W., Borland, M.S., Rennaker, R.L., Hays, S.A. and Kilgard, M.P. (2018) The Interaction of Pulse Width and Current Intensity on the Extent of Cortical Plasticity Evoked by Vagus Nerve Stimulation. Brain Stimulation, 11, 271-277. https://doi.org/10.1016/j.brs.2017.11.007

  46. 46. Vanneste, S., Martin, J., Rennaker, R.L. and Kilgard, M.P. (2017) Pairing Sound with Vagus Nerve Stimulation Modulates Cortical Synchrony and Phase Coherence in Tinnitus: An Ex-ploratory Retrospective Study. Scientific Reports, 7, Article No. 17345. https://doi.org/10.1038/s41598-017-17750-y

  47. 47. Hays, S.A., Khodaparast, N., Hulsey, D.R., Ruiz, A., Sloan, A.M., Rennaker, R.L. and Kilgard, M.P. (2014) Vagus Nerve Stimulation during Rehabilitative Training Improves Func-tional Recovery after Intracerebral Hemorrhage. Stroke, 45, 3097-3100. https://doi.org/10.1161/STROKEAHA.114.006654

  48. 48. Smith, D.C., Modglin, A.A., Roosevelt, R.W., Neese, S.L., Jensen, R.A., Browning, R.A. and Clough, A.R.W. (2005) Electrical Stimulation of the Vagus Nerve Enhances Cognitive and Motor Recovery Following Moderate Fluid Percussion Injury in the Rat. Journal of Neurotrauma, 22, 1485-1502. https://doi.org/10.1089/neu.2005.22.1485

  49. 49. Chunchai, T., Samniang, B., Sripetchwandee, J., Pin-tana, H., Pongkan, W., Kumfu, S., et al. (2016) Vagus Nerve Stimulation Exerts the Neuroprotective Effects in Obese-Insulin Resistant Rats, Leading to the Improvement of Cognitive Function. Scientific Reports, 6, Article No. 26866. https://doi.org/10.1038/srep26866

  50. 50. Harvey, R.L. and Nudo, R.J. (2014) Cortical Brain Stimulation: A Potential Therapeutic Agent for Upper Limb Motor Recovery Following Stroke. Topics in Stroke Rehabilitation, 14, 54-67. https://doi.org/10.1310/tsr1406-54

  51. 51. Harris, J.E. and Eng, J.J. (2007) Paretic Upper-Limb Strength Best Explains Arm Activity in People with Stroke. Physical Therapy, 87, 88-97. https://doi.org/10.2522/ptj.20060065

  52. 52. Porter, B.A., Khodaparast, N., Fayyaz, T., Cheung, R.J., Ahmed, S.S., Vrana, W.A., Rennaker, R.L. and Kilgard, M.P. (2011) Repeatedly Pairing Vagus Nerve Stimulation with a Movement Reorganizes Primary Motor Cortex. Cerebral Cortex, 22, 2365-2374. https://doi.org/10.1093/cercor/bhr316

  53. 53. Khodaparast, N., Hays, S.A., Sloan, A.M., Fayyaz, T., Hulsey, D.R., Rennaker, R.L. and Kilgard, M.P. (2014) Vagus Nerve Stimulation Delivered during Motor Rehabilitation Improves Re-covery in a Rat Model of Stroke. Neurorehabilitation and Neural Repair, 28, 698-706. https://doi.org/10.1177/1545968314521006

  54. 54. Khodaparast, N., Kilgard, M.P., Casavant, R., Ruiz, A., Qureshi, I., Ganzer, P.D., Rennaker, R.L. and Hays, S.A. (2015) Vagus Nerve Stimulation during Rehabilitative Training Im-proves Forelimb Recovery after Chronic Ischemic Stroke in Rats. Neurorehabilitation and Neural Repair, 30, 676-684. https://doi.org/10.1177/1545968315616494

  55. 55. Hays, S.A., Ruiz, A., Bethea, T., Khodaparast, N., Carmel, J.B., Rennaker, R.L. and Kilgard, M.P. (2016) Vagus Nerve Stimulation during Rehabilitative Training Enhances Recovery of Forelimb Function after Ischemic Stroke in Aged Rats. Neurobiology of Aging, 43, 111-118. https://doi.org/10.1016/j.neurobiolaging.2016.03.030

  56. 56. Dawson, J., Pierce, D., Dixit, A., Kimberley, T.J., Rob-ertson, M., Tarver, B., Hilmi, O., et al. (2016) Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired with Upper-Limb Rehabilitation after Ischemic Stroke. Stroke, 47, 143-150. https://doi.org/10.1161/STROKEAHA.115.010477

  57. 57. Kimberley, T.J., Pierce, D., Prudente, C.N., Francisco, G.E., Yozbatiran, N., Smith, P., et al. (2018) Vagus Nerve Stimulation Paired with Upper Limb Rehabilitation after Chronic Stroke. Stroke, 49, 2789-2792. https://doi.org/10.1161/STROKEAHA.118.022279

  58. 58. Dawson, J., Engineer, N.D., Prudente, C.N., Pierce, D., Francisco, G., Yozbatiran, N., et al. (2020) Vagus Nerve Stimulation Paired with Upper-Limb Rehabilitation after Stroke: One-Year Follow-Up. Neurorehabilitation and Neural Repair, 34, 609-615. https://doi.org/10.1177/1545968320924361

  59. 59. Jesse Dawson, C. (2021) Vagus Nerve Stimulation Paired with Rehabilitation for Upper Limb Motor Function after Ischaemic Stroke (VNS-REHAB): A Randomised, Blinded, Pivotal, Device Trial. The Lancet, 397, 1545-1553. https://doi.org/10.1016/S0140-6736(21)00475-X

  60. 60. Capone, F., Miccinilli, S., Pellegrino, G., Zollo, L., Simo-netti, D., Bressi, F., et al. (2017) Transcutaneous Vagus Nerve Stimulation Combined with Robotic Rehabilitation Im-proves Upper Limb Function after Stroke. Neural Plasticity, 2017, Article ID: 7876507. https://doi.org/10.1155/2017/7876507

  61. 61. Redgrave, J.N., Moore, L., Oyekunle, T., Ebrahim, M., Falidas, K., Snowdon, N., Ali, A. and Majid, A. (2018) Transcutaneous Auricular Vagus Nerve Stimulation with Concurrent Upper Limb Repetitive Task Practice for Poststroke Motor Recovery: A Pilot Study. Journal of Stroke and Cerebrovascular Diseases, 27, 1998-2005. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.056

  62. 62. Wu, D., Ma, J., Zhang, L., Wang, S., Tan, B. and Jia, G. (2020) Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study. Neural Plasticity, 2020, Article ID: 8841752. https://doi.org/10.1155/2020/8841752

  63. 63. Connell, L., Lincoln, N. and Radford, K. (2008) Somatosen-sory Impairment after Stroke: Frequency of Different Deficits and Their Recovery. Clinical Rehabilitation, 22, 758-767. https://doi.org/10.1177/0269215508090674

  64. 64. Sullivan, J.E. and Hedman, L.D. (2015) Sensory Dysfunction Following Stroke: Incidence, Significance, Examination, and Intervention. Topics in Stroke Rehabilitation, 15, 200-217. https://doi.org/10.1310/tsr1503-200

  65. 65. Tyson, S.F., Hanley, M., Chillala, J., Selley, A.B. and Tallis, R.C. (2007) Sensory Loss in Hospital-Admitted People with Stroke: Characteristics, Associated Factors, and Relationship with Func-tion. Neurorehabilitation and Neural Repair, 22, 166-172. https://doi.org/10.1177/1545968307305523

  66. 66. Kilgard, M.P., Rennaker, R.L., Alexander, J. and Dawson, J. (2018) Vagus Nerve Stimulation Paired with Tactile Training Improved Sensory Function in a Chronic Stroke Patient. NeuroRehabilitation, 42, 159-165. https://doi.org/10.3233/NRE-172273

  67. 67. Darrow, M.J., Mian, T.M., Torres, M., Haider, Z., Danaphongse, T., Rennaker, R.L., Kilgard, M.P. and Hays, S.A. (2020) Restoration of Somatosensory Function by Pairing Vagus Nerve Stimulation with Tactile Rehabilitation. Annals of Neurology, 87, 194-205. https://doi.org/10.1002/ana.25664

  68. 68. Baig, S.S., Falidas, K., Laud, P.J., Snowdon, N., Farooq, M.U., Ali, A., Majid, A. and Redgrave, J.N. (2019) Transcutaneous Auricular Vagus Nerve Stimulation with Upper Limb Repetitive Task Practice May Improve Sensory Recovery in Chronic Stroke. Journal of Stroke and Cerebrovascular Diseases, 28, Article ID: 104348. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104348

  69. 69. Niu, L.-C., Li, J.-N., Xie, C.-C., Li, C.-Q., Zhang, G.-F., Tang, H., et al. (2022) Efficacy and Safety of Transcutaneous Auricular Vagus Nerve Stimulation Combined with Conventional Rehabilitation Training in Acute Stroke Patients: A Randomized Controlled Trial Conducted for 1 Year In-volving 60 Patients. Neural Regeneration Research, 17, 1809-1813. https://doi.org/10.4103/1673-5374.332155

  70. 70. Sucholeiki, R., Alsaadi, T.M., Morris III, G.L., Ulmer, J.L., Biswal, B. and Mueller, W.M. (2002) fMRI in Patients Implanted with a Vagal Nerve Stimulator. Seizure, 11, 157-162. https://doi.org/10.1053/seiz.2001.0601

  71. 71. Colzato, L.S., Ritter, S.M. and Steenbergen, L. (2018) Transcutaneous Vagus Nerve Stimulation (tVNS) Enhances Divergent Thinking. Neuropsychologia, 111, 72-76. https://doi.org/10.1016/j.neuropsychologia.2018.01.003

  72. 72. McIntire, L.K., McKinley, R.A., Goodyear, C., McIn-tire, J.P. and Brown, R.D. (2021) Cervical Transcutaneous Vagal Nerve Stimulation (ctVNS) Improves Human Cogni-tive Performance under Sleep Deprivation Stress. Communications Biology, 4, Article No. 634. https://doi.org/10.1038/s42003-021-02145-7

  73. 73. Kar, S.K. and Sarkar, S. (2016) Neuro-Stimulation Techniques for the Management of Anxiety Disorders: An Update. Clinical Psychopharmacology and Neuroscience, 14, 330-337. https://doi.org/10.9758/cpn.2016.14.4.330

  74. 74. Carreno, F.R. and Frazer, A. (2017) Vagal Nerve Stimulation for Treatment-Resistant Depression. Neurotherapeutics, 14, 716-727. https://doi.org/10.1007/s13311-017-0537-8

  75. 75. Das, J. and Rajanikant, G.K. (2018) Post Stroke Depression: The Sequelae of Cerebral Stroke. Neuroscience & Biobehavioral Reviews, 90, 104-114. https://doi.org/10.1016/j.neubiorev.2018.04.005

  76. 76. Yesiltepe, M., Cimen, B. and Sara, Y. (2022) Effects of Chronic Vagal Nerve Stimulation in the Treatment of β-Amyloid-Induced Neuropsychiatric Symptoms. European Jour-nal of Pharmacology, 931, Article ID: 175179. https://doi.org/10.1016/j.ejphar.2022.175179

  77. 77. George, M.S., Ward, H.E., Ninan, P.T., Pollack, M., Nahas, Z. anderson, B., Kose, S., et al. (2008) A Pilot Study of Vagus Nerve Stimulation (VNS) for Treatment-Resistant Anxiety Disorders. Brain Stimulation, 1, 112-121. https://doi.org/10.1016/j.brs.2008.02.001

  78. 78. Furmaga, H., Shah, A. and Frazer, A. (2011) Serotonergic and Noradrenergic Pathways Are Required for the Anxiolytic-Like and Antidepressant-Like Behavioral Effects of Repeated Vagal Nerve Stimulation in Rats. Biological Psychiatry, 70, 937-945. https://doi.org/10.1016/j.biopsych.2011.07.020

  79. 79. Shah, A.P., Carreno, F.R., Wu, H., Chung, Y.A. and Frazer, A. (2016) Role of TrkB in the Anxiolytic-Like and Antidepressant-Like Effects of Vagal Nerve Stimulation: Comparison with Desipramine. Neuroscience, 322, 273-286. https://doi.org/10.1016/j.neuroscience.2016.02.024

  80. 80. Noble, L.J., Gonzalez, I.J., Meruva, V.B., Callahan, K.A., Belfort, B.D., Ramanathan, K.R., et al. (2017) Effects of Vagus Nerve Stimulation on Extinction of Conditioned Fear and Post-Traumatic Stress Disorder Symptoms in Rats. Translational Psychiatry, 7, e1217. https://doi.org/10.1038/tp.2017.191

  81. 81. Austelle, C.W., O’Leary, G.H., Thompson, S., Gruber, E., Kahn, A., Manett, A.J., Short, B. and Badran, B.W. (2022) A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodulation: Technology at the Neural Interface, 25, 309-315. https://doi.org/10.1111/ner.13528

  82. 82. Kamel, H., Arnold, M., Liesirova, K., Broeg-Morvay, A., Meisterernst, J., Schlager, M., et al. (2016) Dysphagia in Acute Stroke: Incidence, Burden and Impact on Clinical Outcome. PLOS ONE, 11, e0148424. https://doi.org/10.1371/journal.pone.0148424

  83. 83. Cohen, D.L., Roffe, C., Beavan, J., Blackett, B., Fairfield, C.A., Hamdy, S., et al. (2016) Post-Stroke Dysphagia: A Review and Design Considerations for Future Trials. International Journal of Stroke, 11, 399-411. https://doi.org/10.1177/1747493016639057

  84. 84. Long, L., Zang, Q., Jia, G., Fan, M., Zhang, L., Qi, Y., Liu, Y., Yu, L. and Wang, S. (2022) Transcutaneous Auricular Vagus Nerve Stimulation Promotes White Matter Repair and Im-proves Dysphagia Symptoms in Cerebral Ischemia Model Rats. Frontiers in Behavioral Neuroscience, 16, Article ID: 811419. https://doi.org/10.3389/fnbeh.2022.811419

  85. 85. Wang, Y., He, Y., Jiang, L., Chen, X., Zou, F., Yin, Y., Li, J., Li, C., Zhang, G., Ma, J. and Niu, L. (2022) Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Post-Stroke Dysphagia. Journal of Neurology, 270, 995-1003. https://doi.org/10.1007/s00415-022-11465-5

  86. 86. Kahlow, H. and Olivecrona, M. (2013) Complications of Vagal Nerve Stimulation for Drug-Resistant Epilepsy. Seizure, 22, 827-833. https://doi.org/10.1016/j.seizure.2013.06.011

  87. NOTES

    *第一作者。

    #通讯作者。

期刊菜单