Advances in Clinical Medicine
Vol. 14  No. 04 ( 2024 ), Article ID: 84875 , 8 pages
10.12677/acm.2024.1441165

新发心房颤动预测模型的研究进展

——基于经典心血管危险因素

杨尚谕,殷跃辉*

重庆医科大学附属第二医院心血管内科,重庆

收稿日期:2024年3月19日;录用日期:2024年4月13日;发布日期:2024年4月19日

摘要

心房颤动(atrial fibrillation, AF)是最常见的持续性心律失常,显著增加死亡、心力衰竭、卒中、痴呆和认知功能障碍风险。临床上有相当一部分房颤患者没有症状,仅在查体或发生并发症时,才被发现罹患房颤。预测模型是房颤高风险人群筛选的有效工具,对该人群进行更积极的监控及制定预防措施能够带来临床获益。不同预测模型来源人群不同,最佳适用人群也不同,本文总结了基于经典心血管危险因素的房颤预测模型,现旨在针对不同适用人群的房颤预测模型进行讨论,以期为临床医务人员提供指导。

关键词

预测模型,心房颤动,预测

Advances in Prediction Model of New-Onset Atrial Fibrillation

—Based on Classic Cardiovascular Risk Factors

Shangyu Yang, Yuehui Yin*

Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Mar. 19th, 2024; accepted: Apr. 13th, 2024; published: Apr. 19th, 2024

ABSTRACT

Atrial fibrillation (AF) is the most common persistent arrhythmia, which significantly increases risk of death, heart failure, stroke, dementia and cognitive dysfunction. A significant proportion of patients with AF have no symptoms in clinic, and they are not found AF until physical examination or complications occur. The predictive models of atrial fibrillation can help screen patients with high risk of atrial fibrillation, and clinical benefits could be brought with more aggressive monitoring and preventive measures. Different prediction models come from different people and are suitable for different people. This paper summarizes the research progress of atrial fibrillation prediction models based on classical cardiovascular risk factors. This paper aims to discuss the prediction models of atrial fibrillation for different applicable populations, in order to provide guidance for clinicians.

Keywords:Prediction Model, Atrial Fibrillation, Prediction

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

心房颤动(AF)是最常见的持续性心律失常 [1] ,中国房颤真实世界研究显示2020~2021年房颤的粗患病率为2.3%,并且随着年龄的增长而增加。年龄标准化房颤患病率总体为1.6% [2] 。随着人口老龄化,该病的发病率与患病率将日益增高 [3] 。约1/4的房颤患者自述无症状 [4] ,仅在查体或发生并发症时,才被发现罹患房颤。与有症状的患者相比,这些无症状患者发生血栓栓塞事件和死亡的风险更高 [5] ,因此,识别房颤高危人群,从而进行系统性筛查及早期预防十分重要。20余年来,相关预测模型发展迅速,从分析房颤相关危险因素,构建简单风险评分模型 [6] ,到加入相关生化检验 [7] 、心电图、心脏彩超检查指标以及遗传基因相关的增强模型,从使用经典的逻辑回归方法、列线图,到目前人工智能主导的机器学习 [8] ,极大的增加了房颤预测的准确性及灵敏性。因我国临床上患者数量多,而简单的评分可以更快速地识别房颤事件高风险人群,使得这些人群可以进行更深入的筛查及预防。故本文将重点对基于心血管危险因素的房颤预测模型进行阐述。

2. 不同种族的人群

2.1. 亚洲人群

2.1.1. CHADS2评分和CHAD2S2-VASc评分

2001年Gage等 [9] 通过合并既往两个研究 [10] [11] 的危险因素形成一个新的风险评分——CHADS2评分。该评分由5个卒中危险因素组成,包括充血性心力衰竭、高血压、年龄、糖尿病病史以及既往缺血性卒中或TIA史。2010年Lip等 [12] 在CHADS2评分的基础上纳入血管性疾病和女性2项,并将年龄细分为65~74岁(1分)、年龄 ≥ 75岁(2分),形成了CHA2DS2-VASc评分。除了评估房颤患者卒中风险分层之外,两种评分在预测新发房颤、预测房颤射频消融后复发 [13] 、预测冠脉造影预后 [14] 、评价无房颤患者的卒中风险 [15] 等心血管疾病方面均有一定应用。Chao等 [16] 研究显示,CHADS2评分从0分到6分的房颤发病率从每0.8例/1000人/年增加到每34.6例/1000人/年,AUC为0.713。一项关于中国西南地区的流行病学调查 [17] 中,两种评分预测房颤的AUC分别为0.68和0.72。Saliba等 [18] 使用CHADS2和CHA2DS2-VASc评分预测中东人群房颤也有较好结果(AUC = 0.728, 0.744)。

2.1.2. HATCH评分

该评分最早是在2010年,Cees B等 [19] 为确定房颤进展的危险因素,在一项纳入1219例阵发性房颤患者的研究中,随访1年,使用这些危险因素构成了HATCH评分,包括高血压、年龄 > 75岁、短暂性脑缺血发作或卒中、慢性阻塞性肺疾病和心力衰竭。有研究 [20] 显示,HATCH评分每增加1分的新发房颤风险比为2.059。Hsieh等 [21] 将CHADS2、CHA2DS2-VASc评分和HATCH评分用于评估卒中患者的房颤风险,比较了住院期间和随访期间三种评分的AUC,结果显示HATCH评分在两个队列中均最优,将中风严重程度添加到三种风险评分中,显著提高了模型的性能。一项台湾的研究 [22] 比较了HATCH、CHA2DS2-VASc和CHADS2评分对癌症患者新发房颤的预测,结果显示,HATCH评分预测价值较前两者评分更佳(AUC = 0.69 vs 0.68 vs 0.67)。

以上两种模型的优点在于纳入评分的危险因素均为经典心血管危险因素,临床上相关评分内容简单易得,且在我国人群中进行了多次验证,均显示出较高预测价值,适合高危人群筛查。缺点在于两种评分并不是房颤预测的特异性评分,可能无法达到最佳预测效果,且在国外人群的验证较少,仍需大规模的不同种族的人群进行验证。

2.1.3. C2HEST评分

为了调查亚洲人群发生房颤的危险因素,Li等 [23] 在2019年通过对中国云南保险数据库的471,446例患者进行分析,得出C2HEST评分,基于中国人群的发现集和基于韩国人群的验证集中AUC分别为0.750,0.654。该评分由5个危险因素组成,包括冠心病或慢性阻塞性肺疾病、高血压、老年、收缩性心力衰竭、甲亢。此研究中,还与上述3种评分进行比较,除了在验证集中与HATCH评分上相比略微显著(AUC = 0.654 vs 0.646, P = 0.059)外,C2HEST评分均显示出更好预测能力。2020年,一项研究 [24] 再次比较了C2HEST评分和HATCH评分,结果依旧显示两种评分对新发房颤有良好的预测效能,其中C2HEST评分(AUC = 0.789)较HATCH评分(AUC = 0.771)更好(Delong test P < 0.001)。法国的一项卒中人群研究 [25] 中,显示C2HEST评分显著优于CHA2DS2-VASc评分和Framingham房颤评分(AUC = 0.734 vs 0.703 vs 0.720)。该模型纳入了甲亢这一危险因素,有研究表明甲状腺功能亢进患者房颤发生率较普通人群明显升高 [26] 。

该评分的优点在于是首次在亚洲人群中建立的房颤风险模型,发现集与验证集人群数量大,且在欧洲人群进行过验证。缺点在于该模型在欧洲人群的验证中并没有与欧洲人群经典的房颤预测模型如CHARGE-AF评分等进行比较。

2.1.4. 10年房颤风险评分

Aronson等 [27] 在以色列队列96,778名患者中开发了10年房颤风险评分,并在Framingham心脏研究(FHS)组、社区动脉粥样硬化风险(ARIC)研究、心血管健康研究(CHS)中进行验证,衍生队列和验证队列10年累积房颤发病率均为6%,衍生队列AUC为0.743,验证队列AUC为0.749。该研究较之前的房颤预测模型相比,纳入了几个新的风险因素,如炎症性疾病、外周动脉疾病和慢性阻塞性肺病。表明自身炎症性疾病对房颤发生可能也有一定作用。该队列随访时间长,是首次在中东队列中建立的房颤预测评分。但仍需在东亚及欧美人群进行验证。

2.2. 欧美人群

2.2.1. Framingham房颤评分

2009年,Framingham心脏研究(FHS)组 [6] 对1968年6月和1987年9月进行的Framingham心脏研究的4764名参与者长达10年的随访观察,房颤发生率约10%,该队列人群主要为中老年白人。确定了10年内与房颤发展相关的临床危险因素。根据临床病史、检查和心电图得出风险评分,其中包括年龄、体重指数 ≥ 30、收缩压 ≥ 160 mmHg、高血压是否治疗、PR间期、出现明显心脏杂音的年龄、发生心衰的年龄。衍生队列中的AUC为0.78,后续加入了超声心动图指标,模型AUC仅提高到0.79。因为人群的局限性,随后Schnabel等 [28] 在年龄、基因与环境易感性–雷克雅未克研究(AGES)和心血管健康研究(CHS)队列(包含白人和非裔美国人)中进行了验证,仍表现良好——AGESAUC = 0.67、CHS的白人AUC = 0.68、非裔美国人AUC = 0.66。

该评分的优点在于随后基于欧美人群开发的评分中多次进行验证,其均显示出一定的预测价值。缺点在于纳入的相关危险因素如PR间期、超声心动图指标等需专门检查,较为麻烦,出现心脏杂音及心衰的年龄可能回忆偏倚较大。

2.2.2. ARIC评分

2011年,社区动脉粥样硬化风险(ARIC)组 [29] 利用ARIC研究中的14,546名受试者(包含年龄在45~64岁的黑人与白人),房颤发生率约3.5%。根据临床实践中常见的房颤危险因素,组成了新的评分。该评分包括以下变量:年龄、种族、身高、吸烟状况、收缩压、高血压药物使用、心脏杂音、左室肥厚、左房增大、糖尿病、冠心病和心力衰竭。ARIC评分AUC = 0.78,在该队列中优于Framingham房颤评分(AUC = 0.68)。

该评分同时纳入了白人和黑人人种,对欧美人群具有较好适用性,该评分没有使用心电图指标、体重指数,而加入了吸烟、糖尿病、冠心病等经典心血管危险因素,更便于临床评估。缺点在于房颤来自出院记录,因此可能遗漏;对于≥65岁的患者可能预测效果不佳;除了白人和黑人,其他种族或民族背景的可能不适用。

2.2.3. CHARGE-AF评分

Alonso等 [30] 在2013年使用美国3个队列——FHS、ARIC研究和CHS队列得出新的房颤预测模型,即CHARGE-AF评分,并在欧洲的2个队列——AGES和鹿特丹研究(RS)进行验证。该评分综合了Framingham房颤评分和ARIC评分的危险因素,将年龄、种族、身高、体重、收缩压、舒张压、吸烟、使用抗高血压药物、糖尿病、心肌梗死、心衰纳入简单预测评分。将PR间期、左室肥厚纳入增强预测评分。简单预测评分的预测效果良好,加入了心电图及彩超数据后未显著改善预测效能(AUC = 0.767 vs 0.765),但都优于Framingham房颤评分(AUC = 0.734)。

该评分进行了多个队列的验证,具有稳定的预测效能,但其在亚洲人群的预测价值仍需相关研究进行验证。

2.2.4. Mayo房颤评分

2014年,Kyle [31] 等使用Kirchhof的综述中所总结并验证的房颤危险因素,形成了一个新的房颤模型,即Mayo房颤评分,包括心力衰竭、瓣膜疾病、冠心病、高血压、糖尿病、男性、年龄。在Intermountain Healthcare门诊数据库的100,000患者中进行测试,房颤风险评分为1、2、3、4、5及以上的患者后续诊断房颤的OR值分别为3.05、12.9、22.8、34.0、48.0,AUC = 0.812。

该模型优点在于使用门诊人群,患者数量多,适用性及准确性较好,且纳入的因素简单易得,便于临床使用。但亚洲人群的适用性仍有待验证。

2.2.5. HARMS2-AF评分

Segan等 [32] 于2023年在英国生物库(UKB)和FHS中开发并验证了HARMS2-AF评分,包括高血压、年龄、Raised BMI ≥ 30 kg/m2;男性、睡眠呼吸暂停、吸烟和饮酒史。在5年的随访中,UKB队列中AUC = 0.782,FHS队列中验证AUC = 0.757。在本研究中,还综合比较了上述评分,Framingham房颤评分因缺少PR间期等心电图数据,导致预测效能较低(AUC = 0.568),ARIC评分取得了中度的预测效能(AUC = 0.713),CHARGE-AF评分(AUC = 0.754)与HARMS2-AF评分预测效能相当。

上述评分中,加入了心电图及心脏彩超等指标的增强评分未能显著增加评分的预测效能,而使用经典心血管危险因素的Mayo房颤评分及HARMS2-AF评分的预测效能良好,更适合临床大规模使用,但两种评分预测效能之间的比较,有待未来研究进行。房颤风险评分工具越简单,就越有可能被用于早期筛查,以确定患者进行进一步的房颤监测,这反过来又将帮助对房颤患者进行早期诊断。

2.3. 其他评分

除了上述评分外,还有一些评分应用于预测房颤发生。Chao等 [33] 在台湾人群中形成的评分(Taiwan AF score)。该包括年龄、男性和共病(高血压、心力衰竭、冠状动脉疾病、终末期肾病和酒精中毒)。该评分1年随访的AUC = 0.857,16年随访的AUC = 0.756。日本的Suita研究组 [34] 的评分危险因素包括性别、年龄、高血压、冠心病、心律失常、心脏杂音、超重、吸烟、饮酒,10年随访的AUC = 0.749。Suissa等 [35] 在法国一组卒中人群中随访并建立了STAF评分,包括:年龄 > 62岁、NIHSS评分 ≥ 8分、左房扩大、无症状性颅内外狭窄 ≥ 50%或临床–放射学腔隙综合征,其对≥5分的患者房颤诊断敏感性为89%,特异性为88%,但其评分内容如心脏彩超指标、血管狭窄程度等获取需经专门的仪器设备检查,较为麻烦,限制了其在临床的应用。

3. 结语

本文从不同人种及不同合并症人群中应用的评分进行阐述,可指导临床医生在面临不同情况时进行更好的选择。通过表1可见,预测房颤的危险因素中,年龄、高血压、BMI、心衰、冠心病在一半或以上的研究中被纳入评分系统,其中,年龄是房颤最重要的危险因素,一项中国房颤流行病学研究报告 [2] 显示,房颤的患病率均随年龄增加而增加,从18~29岁的0.4%增加到80岁以上的5.9%。高血压是公认的危险因素,房颤人群合并高血压的比例高达60%~80%,高血压也显著增加房颤人群不良心血管事件风险 [36] 。肥胖会显著增加房颤患者的卒中及死亡风险,BMI每增加5个单位,房颤事件增加19%到29% [37] 。约1/3的心力衰竭患者会发生房颤,1/3的房颤患者会发生心力衰竭 [38] ,上述经典心血管危险因素之间相互作用、相互促进,使心肌结构重塑及心肌电重构,继而引起心脏功能障碍,使心房颤动的发生率大大增加。其中年龄在上述研究模型中均纳入为危险因素,其对心脏结构本身的影响及随年龄增加慢性病的发病可促进房颤发生,在不同人种、不同合并症中均有作用。

Table 1. Scoring system and risk factors

表1. 评分系统和风险因素

这些上述模型虽各具优势,但都有其自身的局限性,第一,一些评分纳入的危险因素较难准确获取,数据准确性有待验证,且有些数据获取较为困难,不适用于大规模临床初筛。第二,不同的评分模型是基于不同的种族及人群提出的,且多为国外人群,在不同的验证性研究中提示其预测效能存在差异,在国内临床上尚未得到普遍接受及使用,仍缺少一个被普遍接受,且适用于我国人群的预测评分系统。因此,后续应充分利用好我国临床病例丰富的优势,对既往评分进行外部验证,另一方面,中国房颤患者的流行病学特征与西方国家存在差别,我国人口基数大,医生数量少,使得进行系统性筛查房颤较为困难,建立适合我国患者特点的评分模型,是我们更需关注的研究方向。

文章引用

杨尚谕,殷跃辉. 新发心房颤动预测模型的研究进展——基于经典心血管危险因素
Advances in Prediction Model of New-Onset Atrial Fibrillation—Based on Classic Cardiovascular Risk Factors[J]. 临床医学进展, 2024, 14(04): 1337-1344. https://doi.org/10.12677/acm.2024.1441165

参考文献

  1. 1. Joglar, J.A., Chung, M.K., Armbruster, A.L., et al. (2024) 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 149, e167. https://doi.org/10.1161/CIR.0000000000001207

  2. 2. Shi, S., Tang, Y., Zhao, Q., et al. (2022) Prevalence and Risk of Atrial Fibrillation in China: A National Cross-Sectional Epidemiological Study. The Lancet Regional Health—Western Pacific, 23, Article 100439.https://doi.org/10.1016/j.lanwpc.2022.100439

  3. 3. Du, X., Guo, L., Xia, S., et al. (2021) Atrial Fibrillation Prevalence, Awareness and Management in a Nationwide Survey of Adults in China. Heart, 107, 535-541. https://doi.org/10.1136/heartjnl-2020-317915

  4. 4. Sgreccia, D., Manicardi, M., Malavasi, V.L., et al. (2021) Comparing Outcomes in Asymptomatic and Symptomatic Atrial Fibrillation: A Systematic Review and Meta-Analysis of 81,462 Patients. Journal of Clinical Medicine, 10, Article 3979. https://doi.org/10.3390/jcm10173979

  5. 5. Boriani, G., Laroche, C., Diemberger, I., et al. (2015) Asymptomatic Atrial Fibrillation: Clinical Correlates, Management, and Outcomes in the EORP-AF Pilot General Registry. American Journal of Medicine, 128, 509-518.https://doi.org/10.1016/j.amjmed.2014.11.026

  6. 6. Schnabel, R.B., Sullivan, L.M., Levy, D., et al. (2009) Development of a Risk Score for Atrial Fibrillation (Framingham Heart Study): A Community-Based Cohort Study. The Lancet, 373, 739-745.https://doi.org/10.1016/S0140-6736(09)60443-8

  7. 7. Patton, K.K., Heckbert, S.R., Alonso, A., et al. (2013) N-Terminal Pro-B-Type Natriuretic Peptide as a Predictor of Incident Atrial Fibrillation in the Multi-Ethnic Study of Atherosclerosis: The Effects of Age, Sex and Ethnicity. Heart, 99, 1832-1836. https://doi.org/10.1136/heartjnl-2013-304724

  8. 8. 朱晓庆, 陈韬, 沈娟, 等. 心房颤动预测: 从传统回归模型分析到人工智能模型[J]. 中国循环杂志, 2023, 38(12): 1305-1310.

  9. 9. Gage, B.F., Waterman, A.D., Shannon, W., et al. (2001) Validation of Clinical Classification Schemes for Predicting Stroke: Results from the National Registry of Atrial Fibrillation. JAMA, 285, 2864-2870.https://doi.org/10.1001/jama.285.22.2864

  10. 10. Atrial Fibrillation Investigators (1994) Risk Factors for Stroke and Efficacy of Antithrombotic Therapy in Atrial Fibrillation. Analysis of Pooled Data from Five Randomized Controlled Trials. Archives of Internal Medicine, 154, 1449-1457. https://doi.org/10.1001/archinte.154.13.1449

  11. 11. Hart, R.G., Pearce, L.A., McBride, R., et al. (1999) Factors Associated with Ischemic Stroke during Aspirin Therapy in Atrial Fibrillation: Analysis of 2012 Participants in the SPAF I-III Clinical Trials. Stroke, 30, 1223-1229.https://doi.org/10.1161/01.STR.30.6.1223

  12. 12. Lip, G.Y.H., Nieuwlaat, R., Pisters, R., et al. (2010) Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach: The Euro Heart Survey on Atrial Fibrillation. Chest, 137, 263-272. https://doi.org/10.1378/chest.09-1584

  13. 13. Chao, T.F., Lin, Y.J., Tsao, H.M., et al. (2011) CHADS2 and CHA2DS2-VASc Scores in the Prediction of Clinical Outcomes in Patients with Atrial Fibrillation after Catheter Ablation. Journal of the American College of Cardiology, 58, 2380-2385. https://doi.org/10.1016/j.jacc.2011.08.045

  14. 14. Teodorovich, N., Gandelman, G., Jonas, M., et al. (2023) The CHA2DS2-VASc Score Predicts Mortality in Patients Undergoing Coronary Angiography. Life, 13, Article 2026.

  15. 15. Lahad, K., Maor, E., Klempfner, R., et al. (2022) CHA2DS2-VASc Score Predicts the Risk of Stroke in Patients Hospitalized to the Internal Medicine Department without Known Atrial Fibrillation. Journal of General Internal Medicine, 37, 3355-3360. https://doi.org/10.1007/s11606-021-07262-x

  16. 16. Chao, T.F., Liu, C.J., Chen, S.J., et al. (2013) CHADS2 Score and Risk of New-Onset Atrial Fibrillation: A Nationwide Cohort Study in Taiwan. International Journal of Cardiology, 168, 1360-1363. https://doi.org/10.1016/j.ijcard.2012.12.011

  17. 17. Guo, Y., Tian, Y., Wang, H., et al. (2015) Prevalence, Incidence, and Lifetime Risk of Atrial Fibrillation in China: New Insights into the Global Burden of Atrial Fibrillation. Chest, 147, 109-119. https://doi.org/10.1378/chest.14-0321

  18. 18. Saliba, W., Gronich, N., Barnett-Griness, O. and Rennert, G. (2016) Usefulness of CHADS2 and CHA2DS2-VASc Scores in the Prediction of New-Onset Atrial Fibrillation: A Population-Based Study. The American Journal of Medicine, 129, 843-849. https://doi.org/10.1016/j.amjmed.2016.02.029

  19. 19. De Vos, C.B., Pisters, R., Nieuwlaat, R., et al. (2010) Progression from Paroxysmal to Persistent Atrial Fibrillation: Clinical Correlates and Prognosis. Journal of the American College of Cardiology, 55, 725-731.https://doi.org/10.1016/j.jacc.2009.11.040

  20. 20. Suenari, K., Chao, T.F., Liu, C.J., et al. (2017) Usefulness of HATCH Score in the Prediction of New-Onset Atrial Fibrillation for Asians. Medicine, 96, e5597. https://doi.org/10.1097/MD.0000000000005597

  21. 21. Hsieh, C.Y., Lee, C.H., Wu, D.P., et al. (2018) Prediction of New-Onset Atrial Fibrillation after First-Ever Ischemic Stroke: A Comparison of CHADS2, CHA2DS2-VASc and HATCH Scores and the Added Value of Stroke Severity. Atherosclerosis, 272, 73-79. https://doi.org/10.1016/j.atherosclerosis.2018.03.024

  22. 22. Hu, W.S. and Lin, C.L. (2017) Comparison of CHA2DS2-VASc, CHADS2 and HATCH Scores for the Prediction of New-Onset Atrial Fibrillation in Cancer Patients: A Nationwide Cohort Study of 760,339 Study Participants with Competing Risk Analysis. Atherosclerosis, 266, 205-211. https://doi.org/10.1016/j.atherosclerosis.2017.10.007

  23. 23. Li, Y.G., Pastori, D., Farcomeni, A., et al. (2019) A Simple Clinical Risk Score (C2HEST) for Predicting Incident Atrial Fibrillation in Asian Subjects: Derivation in 471,446 Chinese Subjects, with Internal Validation and External Application in 451,199 Korean Subjects. Chest, 155, 510-518. https://doi.org/10.1016/j.chest.2018.09.011

  24. 24. Hu, W.S. and Lin, C.L. (2020) Prediction of New-Onset Atrial Fibrillation for General Population in Asia: A Comparison of C2HEST and HATCH Scores. International Journal of Cardiology, 313, 60-63.https://doi.org/10.1016/j.ijcard.2020.03.036

  25. 25. Li, Y.G., Bisson, A., Bodin, A., et al. (2019) C2 HEST Score and Prediction of Incident Atrial Fibrillation in Poststroke Patients: A French Nationwide Study. Journal of the American Heart Association, 8, e012546.https://doi.org/10.1161/JAHA.119.012546

  26. 26. Bekiaridou, A., Kartas, A., Moysidis, D.V., et al. (2022) The Bidirectional Relationship of Thyroid Disease and Atrial Fibrillation: Established Knowledge and Future Considerations. Reviews in Endocrine and Metabolic Disorders, 23, 621-630. https://doi.org/10.1007/s11154-022-09713-0

  27. 27. Aronson, D., Shalev, V., Katz, R., et al. (2018) Risk Score for Prediction of 10-Year Atrial Fibrillation: A Community-Based Study. Thrombosis and Haemostasis, 118, 1556-1563. https://doi.org/10.1055/s-0038-1668522

  28. 28. Schnabel, R.B., Aspelund, T., Li, G., et al. (2010) Validation of an Atrial Fibrillation Risk Algorithm in Whites and African Americans. Archives of Internal Medicine, 170, 1909-1917. https://doi.org/10.1001/archinternmed.2010.434

  29. 29. Chamberlain, A.M., Agarwal, S.K., Folsom, A.R., et al. (2011) A Clinical Risk Score for Atrial Fibrillation in a Biracial Prospective Cohort (From the Atherosclerosis Risk in Communities [ARIC] Study). The American Journal of Cardiology, 107, 85-91. https://doi.org/10.1016/j.amjcard.2010.08.049

  30. 30. Alonso, A., Krijthe, B.P., Aspelund, T., et al. (2013) Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: The CHARGE-AF Consortium. Journal of the American Heart Association, 2, e000102. https://doi.org/10.1161/JAHA.112.000102

  31. 31. Brunner, K.J., Bunch, T.J., Mullin, C.M., et al. (2014) Clinical Predictors of Risk for Atrial Fibrillation: Implications for Diagnosis and Monitoring. Mayo Clinic Proceedings, 89, 1498-1505. https://doi.org/10.1016/j.mayocp.2014.08.016

  32. 32. Segan, L., Canovas, R., Nanayakkara, S., et al. (2023) New-Onset Atrial Fibrillation Prediction: The HARMS2-AF Risk Score. European Heart Journal, 44, 3443-3452. https://doi.org/10.1093/eurheartj/ehad375

  33. 33. Chao, T.F., Chiang, C.E., Chen, T.J., et al. (2021) Clinical Risk Score for the Prediction of Incident Atrial Fibrillation: Derivation in 7 220 654 Taiwan Patients with 438 930 Incident Atrial Fibrillations during a 16-Year Follow-Up. Journal of the American Heart Association, 10, e020194. https://doi.org/10.1161/JAHA.120.020194

  34. 34. Kokubo, Y., Watanabe, M., Higashiyama, A., et al. (2017) Development of a Basic Risk Score for Incident Atrial Fibrillation in a Japanese General Population―The Suita Study. Circulation Journal, 81, 1580-1588.https://doi.org/10.1253/circj.CJ-17-0277

  35. 35. Suissa, L., Bertora, D., Lachaud, S., et al. (2009) Score for the Targeting of Atrial Fibrillation (STAF) a New Approach to the Detection of Atrial Fibrillation in the Secondary Prevention of Ischemic Stroke. Stroke, 40, 2866-2868.https://doi.org/10.1161/STROKEAHA.109.552679

  36. 36. Verdecchia, P., Angeli, F. and Reboldi, G. (2018) Hypertension and Atrial Fibrillation: Doubts and Certainties from Basic and Clinical Studies. Circulation Research, 122, 352-368. https://doi.org/10.1161/CIRCRESAHA.117.311402

  37. 37. Wong, C.X., Sullivan, T., Sun, M.T., et al. (2015) Obesity and the Risk of Incident, Post-Operative, and Post-Ablation Atrial Fibrillation: A Meta-Analysis of 626,603 Individuals in 51 Studies. JACC: Clinical Electrophysiology, 1, 139-152. https://doi.org/10.1016/j.jacep.2015.04.004

  38. 38. Cha, Y.M., Redfield, M.M., Shen, W.K., et al. (2004) Atrial Fibrillation and Ventricular Dysfunction: A Vicious Electromechanical Cycle. Circulation, 109, 2839-2843. https://doi.org/10.1161/01.CIR.0000132470.78896.A8

期刊菜单