Hans Journal of Agricultural Sciences
Vol. 09  No. 04 ( 2019 ), Article ID: 30039 , 8 pages
10.12677/HJAS.2019.94048

Molecular Mechanism Research Progress of Melatonin-Mediated Abiotic/Biotic Stress Response in Plant

Yongwei Xue1, Wenjuan Wang1, Juanjuan Fu2

1College of Desertification Prevention Engineering, Ningxia Technical College of Wine and Desertification Prevention, Yinchuan Ningxia

2Ningxia Desertification Prevention and Control Technical College, Yangling Shaanxi

Received: Apr. 11th, 2019; accepted: Apr. 23rd, 2019; published: Apr. 30th, 2019

ABSTRACT

Melatonin is a derivative of tryptophan and it is widely found in plants. Plant melatonin is an evolutionarily conserved molecule, involved in regulating multiple physiological processes including flowering, photosynthesis, senescence, rooting, seed germination, vegetative growth, and responses to various abiotic and/or biotic stresses. The present review covers the latest advances on the mechanistic roles of phytomelatonin and signaling transduction pathway. Meanwhile, we propose the possible research direction of plant melatonin-mediated stress responses in future. This will provide references for studying on molecular mechanism of plant melatonin mediated abiotic and biotic stress responses.

Keywords:Melatonin, Abiotic/Biotic Stress, Stress Response, Signaling Transduction Mechanism

褪黑素调控植物生物与非生物胁迫应答的分子机制研究进展

薛永伟1,王文娟1,付娟娟2

1宁夏葡萄酒与防沙治沙职业技术学院,宁夏 银川

2西北农林科技大学,草业与草原学院,陕西 杨凌

收稿日期:2019年4月11日;录用日期:2019年4月23日;发布日期:2019年4月30日

摘 要

褪黑素是一种色氨酸衍生物,广泛存在于植物体内。植物中褪黑素不仅能够调节开花、光合作用、凋亡、根的形态建成、种子萌发等生长发育过程,还参与调控植物对各种生物与生物胁迫应答过程。本文重点综述了褪黑素调控植物各种生物与非生物胁迫应答的生理和分子机制及其信号转导途径的研究进展。同时,对褪黑素调控植物胁迫应答研究中存在的主要问题及今后研究的重点进行讨论和展望,以期为进一步揭示褪黑素信号在植物生物与非生物胁迫应答中的调控机制提供参考。

关键词 :褪黑素,生物与非生物胁迫,胁迫应答,信号转导机制

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

自1995年褪黑素(N–乙酰–5–甲氧基色胺)在植物中首次被发现以来,一直受到国内外植物科研工作者的广泛关注。学者们研究表明,褪黑素几乎广泛存在于所有的高等植物中,其含量从0.1 pg∙g-1 FW至230 μg∙g-1 DW均有报道 [1] [2]。植物中褪黑素合成途径包括四步(见图1)。褪黑素由色氨酸经过色氨酸脱羧酶(TDH)、色氨酸羟化酶(TPH)、色胺5–羟化酶(T5H)、血清素5–乙酰转移酶(SNAT)、N–酰血清素–O–甲基转移酶(ASMT)和咖啡酸O–甲基转移酶(COMT)催化生成 [3]。褪黑素不仅能够调节植物的开花、光合作用、凋亡、生长节律、根的形态建成、种子萌发等生长发育过程,还参与调控植物的各种生物与非生物胁迫应答 [4] [5]。本文综述了近几年褪黑素调控植物各种生物与非生物胁迫应答的生理及分子机制,并对褪黑素信号转导途径进行归纳总结,以期为进一步解析褪黑素信号在植物生物与非生物胁迫应答中的调控机制提供参考。

Figure 1. The multiple pathways of melatonin biosynthesis in plants

图1. 植物中褪黑素合成途径 [41]

2. 褪黑素在植物生物与非生物胁迫应答中具有重要作用

2.1. 褪黑素作为一种抗氧化剂提高植物的生物与非生物胁迫抗性

许多研究发现,在响应各种生物与非生物胁迫过程中,植物体内的内源褪黑素含量发生改变,其功能是内源褪黑素作为一种次级信使参与调控植物的多种胁迫应答 [4]。在低温胁迫下内源褪黑素含量增加,抑制其合成基因SNAT的表达,其突变体植株表现为冷敏感表型 [6]。与之相似,Lee和Back [7] 也指出,过表达水稻褪黑素合成基因OsSNAT1提高了水稻的镉胁迫抗性。这些研究均表明,褪黑素作为一种信号分子在植物的胁迫应答中发挥关键作用。植物遭遇环境胁迫后,其体内产生大量的活性氧(ROS)/活性氮(RNS),从而导致植细胞内发生氧化损伤 [8]。褪黑素作为一种抗氧化剂能够有效地清除各种生物与非生物胁迫诱导地大量积累的ROS/RNS [9]。许多研究表明,在重金属、高温、NaHCO3和高盐等胁迫条件下,外源褪黑素显著降低了植物体内ROS含量和丙二醛的积累 [10] [11] [12] [13]。而且,外源褪黑素处理可以提高AsA-GSH循环、SOD、POD、CAT、APX等多种抗氧化酶活性及相关基因的表达,降低由于环境胁迫产生的过量的ROS和细胞膜损伤,从而增强植物的胁迫抗性 [14] [15] [16] [17] [18]。这说明外源褪黑素能够抑制多种胁迫条件下植物体内ROS的过量积累,提高抗氧化防御体系活性,降低膜质过氧化水平,保护脂膜的完整性,从而提高植物的胁迫抗性。

2.2. 褪黑素能够提高植物的光合效率

褪黑素除了作为抗氧化剂外,还能够缓解各种环境胁迫对植物光合作用的抑制作用。在盐胁迫下,外施褪黑素能够有效地提高番茄的光合效率,其机制是褪黑素通过平衡PSII的供体侧、受体侧和反应中心的电子传递来缓解盐胁迫对番茄PSII造成的伤害,从而提高番茄的耐盐性 [19]。Ding等 [20] 研究发现,低温导致最大光化学效率(Fv/Fm)下降,而外源施用褪黑素可以有效地提高Fv/Fm和非光化学猝灭(NPQ),从而缓解低温对西红柿幼苗PSII造成的损伤。相似地研究报道指出,褪黑素能够增加光合碳还原的电子流[Je(PCR)]和光呼吸电子流[Je(PCO)],降低O2依赖的可交替电子流(Ja),表明褪黑素能够通过调控光合电子流平衡来提高植物的抗性 [21] [22] [23] [24]。非生物胁迫降低叶绿素含量,而外源褪黑素处理能够显著提高植物的叶绿素含量 [18] [25] [26]。对低温胁迫下小麦叶绿素缺乏突变体ANK32B的研究发现,叶面积喷施1 mM褪黑素能够有效地提高ANK32B的光合效率,但是与野生型相比,Pn和Fv/Fm增加量较少 [27]。Li等 [16] 研究发现,外源褪黑素能够有效提高低温胁迫下干旱预处理的大麦Rubisco活性,然而大麦的ABA缺乏突变体Az34中则表现为不显著差异变化,这说明褪黑素可能通过ABA依赖的方式调控植物的光合响应。Ahammed等 [28] 研究显示,沉默褪黑素合成基因COMT1加剧了高温胁迫对番茄幼苗光合碳同化效率的抑制,这一研究证实了褪黑素作为一种保护物质能够提高胁迫条件植物的光合碳同化效率。

2.3. 褪黑素重新调整初生和次生代谢平衡来调控植物的胁迫应答

在胁迫条件下,外源褪黑素处理能够提高植物的多种渗透保护物质积累,如可溶性糖、脯氨酸、多胺等 [4] [14] [26] [29] ,这些渗透保护物质一方面可以维持或降低植物细胞内的渗透势,防止水分外渗造成的细胞膜损伤;另一方面作为抗氧化剂能够清除环境胁迫产生的过量的ROS,从而减轻环境胁迫对植物造成的氧化损伤 [30]。转录组研究发现,外源褪黑素处理狗牙根诱导2361个上调基因和1572个下调基因,进一步分析表明氮代谢、碳水化合物代谢和渗透保护物质代谢相关的基因显著富集。另外,代谢组研究显示外源褪黑素提高植物的抗性还可以通过诱导更高的氨基酸、有机酸、可溶性糖(葡萄糖、果糖、蔗糖、海藻糖、麦芽糖)和脯氨酸积累 [14]。不饱和脂肪酸的积累有利于维持细胞膜的流动性从而增强植物的抗性 [31]。Gao等 [32] 研究表明,0.1 mM外源褪黑素增加桃子中不饱和脂肪酸和饱和脂肪酸的比率和酚类物质的积累,从而缓解了低温伤害作用。褪黑素还能够调节植物次生代谢合成来调控植物的衰老。Liang等 [33] 研究发现,外源褪黑素通过增加类黄酮类物质积累提高猕猴桃叶片的衰老。这些研究表明褪黑素作为一种调节剂能够调节植物的初生和次生代谢平衡,从而调控植物的抗性。

3. 褪黑素信号转导研究进展

3.1. 褪黑素-ROS-RNS信号在植物生物与非生物胁迫应答中发挥关键作用

褪黑素作为一种重要的植物激素,其合成和代谢途径已经被阐明 [3] ,近年来其信号转导途径成为研究热点话题。在多种胁迫环境下褪黑素具有改变植物细胞内Ca2+浓度和调节细胞膜透性的作用 [34]。目前,学者们认为,褪黑素-ROS-RNS信号作为次级信使在植物低温等逆境应答中发挥关键作用。褪黑素信号调控植物生物与非生物胁迫应答的信号网络见图2。Gong等 [35] 研究发现,H2O2信号作为褪黑素的下游信号调控植物的非生物胁迫抗性。褪黑素通过抑制巯基亚硝基化酶活性,刺激NADPH氧化酶(RBOH)活性诱导H2O2产生,而H2O2的积累与植物的低温抗性增强正相关。抑制RBOH活性或者化学药剂清除H2O2阻碍了胁迫相关基因如CDPK1、MAPK1、ERF4、ERD15等表达,减弱了褪黑素诱导的防御作用。LEE和BACK [36] 研究指出,H2O2/NO–褪黑素–MAPK信号在植物免疫应答中的重要作用。其中,H2O2和NO信号在褪黑素调控的防御响应是必需的。褪黑素通过激活MAPKKK3和OXI1 (oxidative signal-inducible1)激酶活性,进一步诱导MAPK信号级联响应。NO作为褪黑素的下游信号调控植物胁迫应答已有许多报道 [37] [38]。在Fe缺乏胁迫下外源褪黑素诱导NO的释放,而在多胺缺乏突变体adc2-1中NO的释放量并未发生显著改变,说明褪黑素通过调控多胺诱导的NO产生来调节植物的Fe缺乏胁迫 [29]。与之相似,Kaur等 [39] 报道,NO和褪黑素相互作用调控GSH水平和GR活性,维持较低的H2O2积累,从而调控植物的盐胁迫抗性。

Figure 2. The signaling transduction mechanism of melatonin-regulated response to stress in plants

图2. 植物褪黑素信号转导模式图 [5]

3.2. 褪黑素与多种激素存在对话机制

ABA作为重要的胁迫信号参与调控植物的多种胁迫应答。褪黑素能够通过调控ABA信号途径来调节植物的胁迫响应。低温胁迫下转录组研究发现,外源褪黑素诱导ABA受体PYL5和PP2C的表达 [14]。Fu等 [40] 研究发现,低温胁迫下,叶面积喷施褪黑素能够提高垂穗披碱草叶片中内源ABA含量,然而外源ABA和ABA合成抑制剂处理并未改变内源褪黑素水平,这表明褪黑素可能作为ABA的上游信号调控植物的低温胁迫应答 [41]。细胞分裂素(CKs)在褪黑素调节的热胁迫应答中也发挥重要作用,表现为上调CKs合成基因和其信号转录因子type B ARRs的表达 [42]。其次,褪黑素也诱导其他激素如生长素(IAA)、赤霉素(GA)、水杨酸(SA)、茉莉酸(JA)、和乙烯(ETH)信号途径中基因的表达,进而调控植物的生长发育与胁迫抗性 [5]。SA和ETH信号参与褪黑素诱导的生物胁迫免疫,其机制在于诱导防御相关基因PR1、PR5和PDF1.2的表达 [43]。褪黑素与GA4相互作用调控植物的盐胁迫抗性,主要是通过诱导GA合成基因GA20xox和GA3ox表达 [44]。ABA和JA处理诱导水稻褪黑素合成基因ASMT表达,这也意味着褪黑素具有调控植物的多种胁迫应答的作用 [45]。近年来研究发现,褪黑素以浓度依赖的方式与IAA信号互作调控植物的生长发育。低浓度(50 µM)褪黑素增强IAA信号转导基因IAA19和IAA24以及IAA转运基因PIN1、PIN3和PIN7表达,高浓度(600 µM)褪黑素则抑制IAA的合成和转运。进一步研究发现NO作为褪黑素的下游信号参与调控IAA的合成、转运和信号转导 [46]。以上研究均表明,其他植物激素也参与褪黑素调控植物的生物与生物胁迫应答。然而,褪黑素与其他激素互作调控植物胁迫应答的机制仍需进一步挖掘。

3.3. 褪黑素在转录水平和转录后水平调控植物的生物与非生物胁迫应答

褪黑素与多种转录因子构成互作网络调控植物的胁迫应答。转录组分析表明,褪黑素还能够诱导WRKY、MYB、NAC和HSF等转录因子表达,从而调控植物的生长发育及胁迫应答 [14]。Bajwa等 [47] 报道,在低温胁迫下褪黑素诱导低温应答关键转录因子CBF/DREBs和下游低温响应基因COR15a以及其他转录因子相关的基因CAMTA1、ZAT10和ZAT12表达。另外,ZAT6激活的CBF信号转导途径在褪黑素调节的植物低温胁迫应答中也具有关键作用,表现为低温胁迫下外源褪黑素处理上调了AtZAT6和AtCBFs的表达,而过表达AtZAT6增加了褪黑素诱导的抗低温能力,敲除AtZAT6则减弱了褪黑素的作用 [48]。褪黑素通过抑制miR159-5p、miR858、miR8029-3p和m0048-3p表达正向调控植物的低温抗性,这些miRNAs的靶基因CDPK、BHLH、WRKY、MYB和DREB上调表达 [49]。MKK4/5/7/9-MPK3/6信号途径在褪黑素激活的植物防御中发挥重要作用 [50]。蛋白质组学研究发现,褪黑素处理或过表达其合成基因ASMT能够增加HSPs表达和蛋白丰度,降低聚合蛋白积累 [51]。相似地研究表明,褪黑素处理通过抑制吞噬相关基因ATGs表达,降低蛋白的降解 [52]。这些研究表明,褪黑素能够在转录水平和转录后水平调控植物的生物与非生物胁迫应答。

4. 展望

目前,虽然关于褪黑素调控植物生物与非生物胁迫应答的研究已取得很大的进展,然而对于植物是如何感知褪黑素信号,并将其逐级放大传递到下游进一步在生理代谢水平上调控植物的胁迫应答尚未有定论。最近研究发现的褪黑素受体CAND2/PMTR1为学者们进一步探究褪黑素的信号转导奠定了基础 [53]。因此,在今后的研究中,褪黑素信号是如何与各种生物与非生物胁迫信号感受器作用,通过哪些途径进一步放大褪黑素与胁迫信号的相互作用将会是一个非常重要的研究领域。

1) 运用多种组学如蛋白修饰组学、代谢组学、转录组学结合CRISPR敲除及pull down、免疫共沉淀等蛋白互作方法将有助于我们进一步探究褪黑素受体信号及其合成基因的重要调控元件,这将会加快我们揭示褪黑素调控植物代谢通路的分子机制。

2) 褪黑素作为一种重要的次级信号,有关外援褪黑素是通过怎样的一系列信号转导途径影响其它激素含量及信号发生改变,进而诱导下游的一系列生理生化代谢响应的作用机理还不明确。因此,探索褪黑素受体信号与其它植物激素信号之间相互作用机制将对于我们进一步解析褪黑素信号调控植物的胁迫应答机理提供重要线索。

基金项目

宁夏自然科学基金项目(NZ16204),宁夏自然科学基金项目(NZ16201),中国博士后科学基金面上项目(2018M631208)资助。

文章引用

薛永伟,王文娟,付娟娟. 褪黑素调控植物生物与非生物胁迫应答的分子机制研究进展
Molecular Mechanism Research Progress of Melatonin-Mediated Abiotic/Biotic Stress Response in Plant[J]. 农业科学, 2019, 09(04): 323-330. https://doi.org/10.12677/HJAS.2019.94048

参考文献

  1. 1. Oladi, E., Mohamadi, M., Shamspur, T. and Mostafavi, A. (2014) Spectrofluorimetric Determination of Melatonin in Kernels of Four Different Pistacia Varieties after Ultrasound-Assisted Solid-Liquid Extraction. Spectrochimica Acta Part A—Molecular and Biomolecular Spectroscopy, 132, 326-329. https://doi.org/10.1016/j.saa.2014.05.010

  2. 2. Hardeland, R. (2016) Melatonin in Plants-Diversity of Levels and Multiplicity of Functions. Frontiers in Plant Science, 7, 198. https://doi.org/10.3389/fpls.2016.00198

  3. 3. Back, K., Tan, D.X. and Reiter, R.J. (2016) Melatonin Biosynthesis in Plants: Multiple Pathways Catalyze Tryptophan to Melato-nin in the Cytoplasm or Chloroplasts. Journal of Pineal Research, 61, 426-437. https://doi.org/10.1111/jpi.12364

  4. 4. Arnao, M.B. and Hernández-Ruiz, J. (2019) Melatonin: A New Plant Hor-mone and/or a Plant Master Regulator? Trends in Plant Science, 24, 38-48. https://doi.org/10.1016/j.tplants.2018.10.010

  5. 5. Kanwar, M.K., Yu, J.Q. and Zhou, J. (2018) Phytomelatonin: Recent Advances and Future Prospects. Journal of Pineal Research, 65, e12526. https://doi.org/10.1111/jpi.12526

  6. 6. Byeon, Y. and Back, K. (2016) Low Melatonin Production by Suppression of Either Serotonin N-Acetyltransferase or N-Acetylserotonin Methyltransferase in Rice Causes Seedling Growth Retar-dation with Yield Penalty, Abiotic Stress Susceptibility, and Enhanced Coleoptile Growth under Anoxic Conditions. Journal of Pineal Research, 60, 348-359. https://doi.org/10.1111/jpi.12317

  7. 7. Lee, K. and Back, K. (2017) Overexpression of Rice Serotonin N-Acetyltransferase1 Intransgenic Rice Plants Confers Resistance to Cadmium and Senescence and Increases Grain Yield. Journal of Pineal Research, 62, e12392. https://doi.org/10.1111/jpi.12392

  8. 8. Mittler, R. (2002) Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 7, 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9

  9. 9. Manchester, L.C., Coto-Montes, A., Boga, J.A., Andersen, L.P., Zhou, Z., Galano, A., Vriend, J., Tan, D.X. and Reiter, R.J. (2015) Melatonin: An Ancient Molecule That Makes Oxygen Metabolically Tolerable. Journal of Pineal Research, 59, 403-419.

  10. 10. 付晴晴, 谭雅中, 翟衡, 杜远鹏. 葡萄中褪黑素对NaHCO3胁迫的响应及外源褪黑素缓解NaHCO3胁迫的作用机制[J]. 植物生理学报, 2017, 53(12): 2114-2124.

  11. 11. 吴雪霞, 张圣美, 张爱冬, 朱宗文, 田守波, 李贤, 姚静, 查丁石. 外源褪黑素对高温胁迫下茄子幼苗光合和生理特性的影响[J]. 植物生理学报, 2019, 55(1): 49-60.

  12. 12. 黄益宗, 蒋航, 王农, 刘岩. 外源褪黑素对不同价态砷胁迫下水稻种子萌发和生理指标的影响[J]. 生态学杂志, 2018, 37(6): 1730-1737.

  13. 13. 高青海, 郭远远, 吴燕, 贾双双. 盐胁迫下外源褪黑素和Ca2+对甜瓜幼苗的缓解效应[J]. 应用生态学报, 2017, 28(6): 1925-1931.

  14. 14. Shi, H.T., Jiang, C., Ye, T.T., Tan, D.X., Russel, J.R., Liu, R. and Chan, Z.L. (2015) Comparative Physiological, Metabolomic, and Transcriptomic Analyses Reveal Mechanisms of Improved Abiotic Stress Resistance in Bermudagrass [Cynodon dactylon (L). Pers.] by Exogenous Melatonin. Journal of Experimental Botany, 66, 681-694. https://doi.org/10.1093/jxb/eru373

  15. 15. Bałabusta, M., Szafrańska, K. and Posmyk, M.M. (2016) Exogenous Mel-atonin Improves Antioxidant Defense in Cucumber Seeds (Cucumis sativus L.) Germinated under Chilling Stress. Fron-tiers in Plant Science, 7, 575. https://doi.org/10.3389/fpls.2016.00575

  16. 16. Li, X.N., Tan, D.X., Jiang, D. and Liu, F.L. (2016) Melatonin En-hances Cold Tolerance in Drought-Primed Wild-Type and Abscisic Acid-Deficient Mutant Barley. Journal of Pineal Re-search, 61, 328-339. https://doi.org/10.1111/jpi.12350

  17. 17. Cui, G.B., Zhao, X.X., Liu, S.D., Sun, F.L., Zhang, C. and Xi, Y.J. (2017) Beneficial Effects of Melatonin in Overcoming Drought Stress in Wheat Seedlings. Plant Physiology and Biochemistry, 118, 138-149. https://doi.org/10.1016/j.plaphy.2017.06.014

  18. 18. Han, Q.H., Huang, B., Ding, C.B., Zhang, Z.W., Chen, Y.E., Hu, C., Zhou, L.J., Huang, Y., Liao, J.Q., Yuan, S. and Yuan, M. (2017) Effects of Melatonin on Anti-Oxidative Systems and Photosystem II in Cold-Stressed Rice Seedling. Frontiers in Plant Science, 8, 785. https://doi.org/10.3389/fpls.2017.00785

  19. 19. 尹赜鹏, 王珍琪, 齐明芳, 孟思达, 李天来. 外施褪黑素对盐胁迫下番茄幼苗光合功能的影响[J]. 生态学杂志, 2019, 38(2): 467-475.

  20. 20. Ding, F., Wang, M., Liu, B. and Zhang, S. (2017) Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-Photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling. Frontiers in Plant Science, 8, 244. https://doi.org/10.3389/fpls.2017.00244

  21. 21. Zhao, H., Ye, L., Wang, Y., Zhou, X., Yang, J., Wang, J., Cao, K. and Zou, Z. (2016) Melatonin Increases the Chilling Tolerance of Chloroplast in Cucumber Seedlings by Regulating Photosynthetic Electron Flux and the Ascorbate-Glutathione Cycle. Frontiers in Plant Science, 7, 1814. https://doi.org/10.3389/fpls.2016.01814

  22. 22. Chen, L., Fan, J.B., Hu Z.R., Huang, X.B., Erick, A., Liu, A., Bi, A.Y., Chen, K., Xie, Y. and Fu, J.M. (2017) Melatonin Is Involved in Regulation of Bermudagrass Growth and Devel-opment and Response to Low K+ Stress. Frontiers in Plant Science, 8, 2038. https://doi.org/10.3389/fpls.2017.02038

  23. 23. Li, H., Chang, J.J., Chen, H.J., Wang, Z.Y., Gu, X.R., Wei, C.H., Zhang, Y., Ma, J.X., Yang, J.Q. and Zhang, X. (2017) Exogenous Melatonin Confers Salt Stress Tolerance to Water-melon by Improving Photosynthesis and Redox Homeostasis. Frontiers in Plant Science, 8, 295. https://doi.org/10.3389/fpls.2017.00295

  24. 24. 卞凤娥, 肖秋红, 郝桂梅, 孙永江, 陆文利, 杜远鹏, 翟衡. 根施褪黑素对NaCl胁迫下葡萄内源褪黑素及叶绿素荧光特性的影响[J]. 中国农业科学, 2018, 51(5): 952-963.

  25. 25. Chen, Y.E., Mao, J.J., Sun, L.Q., Huang, B., Ding, C.B., Gu, Y., Liao, J.Q., Hu, C., Zhang, Z.W., Yuan, S. and Yuan, M. (2018) Exogenous Melatonin Enhances Salt Stress Tolerance in Maize Seedlings by Improving Anti-oxidant and Photosynthetic Capacity. Physiologia Plantarum, 164, 349-363. https://doi.org/10.1111/ppl.12737

  26. 26. Ke, Q., Ye, J., Wang, B., Ren, J., Yin, L., Deng, X. and Wang, S. (2018) Melatonin Mitigates Salt Stress in Wheat Seedlings by Modulating Polyamine Metabolism. Frontiers in Plant Science, 9, 914. https://doi.org/10.3389/fpls.2018.00914

  27. 27. Li, X., Brestic, M., Tan, D.X., Zivcak, M., Zhu, X., Liu, S., Song, F., Reiter, R.J. and Liu, F. (2018) Melatonin Alleviates Low PS I-Limited Carbon Assimilation Underelevated CO2 and En-hances the Cold Tolerance of Offspring Inchlorophyll b-Deficient Mutant Wheat. Journal of Pineal Research, 64, e12453. https://doi.org/10.1111/jpi.12453

  28. 28. Ahammed, G.J., Xu, W., Liu, A. and Chen, S. (2018) COMT1 Silencing Aggravates Heat Stress-Induced Reduction in Photosynthesis by Decreasing Chlorophyll Content, Photosystem II Activ-ity, and Electron Transport Efficiency in Tomato. Frontiers in Plant Science, 9, 998. https://doi.org/10.3389/fpls.2018.00998

  29. 29. Zhou, C., Liu, Z., Zhu, L., Ma, Z., Wang, J. and Zhu, J. (2016) Ex-ogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide. International Journal of Molecular Sciences, 17, 1777. https://doi.org/10.3390/ijms17111777

  30. 30. Turk, H., Erdal, S., Genisel, M., Atici, O., Demir, Y. and Yanmis, D. (2014) The Regulatory Effect of Melatonin on Physiological, Biochemical and Molecular Parameters in Cold-Stressed Wheat Seedlings. Plant Growth Regulation, 74, 139-152. https://doi.org/10.1007/s10725-014-9905-0

  31. 31. Leyva-Pérez, M.D., Valverde-Corredor, A., Valderrama, R., Ji-ménez-Ruiz, J., Muñoz-Merida, A., Trelles, O., Barroso, J.B., Mercado-Blanco, J. and Luque, F. (2015) Early and De-layed Long-Term Transcriptional Changes and Short-Term Transient Responses during Cold Acclimation in Olive Leaves. DNA Research, 22, 1-11. https://doi.org/10.1093/dnares/dsu033

  32. 32. Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M. and Cao, W. (2018) Melatonin Treatment Reduces Chilling Injury in Peach Fruit through Its Regulation of Membrane Fatty Acid Contents and Phenolic Metabolism. Food Chemistry, 245, 659-666. https://doi.org/10.1016/j.foodchem.2017.10.008

  33. 33. Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin L., Wang, J., Lv, X. and Xia, H. (2018) Exogenous Melatonin Application Delays Senescence of Kiwifruit Leaves by Regulating the Antioxidant Capacity and Biosynthesis of Flavonoids. Frontiers in Plant Science, 9, 426. https://doi.org/10.3389/fpls.2018.00426

  34. 34. Li, C., Liang, B., Chang, C., Wei, Z., Zhou, S. and Ma, F. (2016) Exogenous Melatonin Improved Potassium Content in Malus under Different Stress Conditions. Journal of Pineal Re-search, 61, 218-229. https://doi.org/10.1111/jpi.12342

  35. 35. Gong, B., Yan, Y., Wen, D. and Shi, Q. (2017) Hy-drogen Peroxide Produced by NADPH Oxidase: A Novel Downstream Signaling Pathway in Melatonin-Induced Stress Tolerance in Solanum lycopersicum. Physiologia Plantarum, 160, 396-409. https://doi.org/10.1111/ppl.12581

  36. 36. Lee, H.Y. and Back, K. (2017) Melatonin Is Required for H2O2- and NO-Mediated Defense Signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. Journal of Pineal Research, 62, e12379. https://doi.org/10.1111/jpi.12379

  37. 37. Arora, D. and Bhatla, S.C. (2017) Melatonin and Nitric Oxide Regulate Sun-flower Seedling Growth under Salt Stress Accompanying Differential Expression of Cu/Zn SOD and MnSOD. Free Radical Biology and Medicine, 106, 315-328. https://doi.org/10.1016/j.freeradbiomed.2017.02.042

  38. 38. Zhao, G., Zhao, Y., Yu, X., Kiprotich, F., Han, H., Guan, R., Wang, R. and Shen, W. (2018) Nitric Oxide Is Required for Melatonin-Enhanced Tolerance against Salinity Stress in Rapeseed (Brassica napus L.) Seedlings. International Journal of Molecular Sciences, 19, 1912. https://doi.org/10.3390/ijms19071912

  39. 39. Kaur, H. and Bhatla, S.C. (2016) Melatonin and Nitric Oxide Modulate Glutathione Content and Glutathione Reductase Activity in Sunflower Seedling Cotyledons Accompanying Salt Stress. Nitric Oxide, 59, 42-53. https://doi.org/10.1016/j.niox.2016.07.001

  40. 40. Fu, J.J., Wu, Y., Miao, Y.J., Xu, Y.M., Zhao, E.H., Wang, J., Sun, H.E., Liu, Q., Xue, Y.W., Xu, Y.F. and Hu, T.M. (2017) Improved Cold Tolerance in Elymus nutans by Exogenous Application of Melatonin May Involve ABA-Dependent and ABA-Independent Pathways. Scientific Reports, 7, Article No. 39865. https://doi.org/10.1038/srep39865

  41. 41. Arnao, M.B. and Hernández-Ruiz, J. (2018) Melatonin and Its Relationship to Plant Hormones. Annals of Botany, 121, 195-207. https://doi.org/10.1093/aob/mcx114

  42. 42. Zhang, J., Shi, Y., Zhang, X., Du, H.M., Xu, B. and Huang, B.R. (2017) Melatonin Suppression of Heat-Induced Leaf Senescence Involves Changes in Abscisic Acid and Cytokinin Biosynthesis and Signaling Pathways in Perennial Ryegrass (Lolium perenne L.). Environmental and Experimental Botany, 138, 36-45. https://doi.org/10.1016/j.envexpbot.2017.02.012

  43. 43. Lee, H.Y., Byeon, Y. and Back, K. (2014) Melatonin as a Signal Molecule Triggering Defense Responses against Pathogen Attack in Arabidopsis and Tobacco. Journal of Pineal Research, 57, 262-268. https://doi.org/10.1111/jpi.12165

  44. 44. Zhang, H.J., Zhang, N., Yang, R.C., Wang, L., Sun, Q.Q., Li, D.B., Cao, Y.Y., Weeda, S., Zhao, B., Ren, S.X. and Guo, Y.D. (2015) Melatonin Promotes Seed Germination under High Salinity by Regulating Antioxidant Systems, ABA and GA4 Interaction in Cucumber (Cucumis sativus L.). Journal of Pineal Research, 57, 269-279. https://doi.org/10.1111/jpi.12167

  45. 45. Park, S., Byeon, Y. and Back, K. (2013) Functional Analyses of Three ASMT Gene Family Members in Rice Plants. Journal of Pineal Research, 55, 409-415. https://doi.org/10.1111/jpi.12088

  46. 46. Wen, D., Gong, B., Sun, S., Liu, S., Wang, X., Wei, M., Yang, F., Li, Y. and Shi, Q. (2016) Promoting Roles of Melatonin in Adventitious Root Development of Solanum lycopersicum L. by Regulating Auxin and Nitric Oxide Signaling. Frontiers in Plant Science, 7, 718. https://doi.org/10.3389/fpls.2016.00718

  47. 47. Bajwa, V.S., Shukla, M.R., Sherif, S.M., Murch, S.J. and Saxena, P.K. (2014) Role of Melatonin in Alleviating Cold Stress in Arabidopsis thaliana. Journal of Pineal Research, 56, 238-245. https://doi.org/10.1111/jpi.12115

  48. 48. Shi, H.T. and Chan, Z.L. (2014) The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER Of ARABIDOPSIS THALIANA 6-Activated C-REPEAT-BINDING FACTOR Pathway Is Essential for Melatonin-Mediated Freezing Stress Resistance in Arabidopsis. Journal of Pineal Research, 57, 185-191. https://doi.org/10.1111/jpi.12155

  49. 49. Li, H., Dong, Y., Chang, J., He, J., Chen, H., Liu, Q., Wei, C., Ma, J., Zhang, Y., Yang, J. and Zhang, X. (2016) High-Throughput Microrna and Mrna Sequencing Reveals That Micrornas May Be Involved in Melatonin-Mediated Cold Tolerance in Citrullus lanatus L. Frontiers in Plant Science, 7, 1231. https://doi.org/10.3389/fpls.2016.01231

  50. 50. Lee, H.Y. and Back, K. (2016) Mitogen-Activated Protein Kinase Pathways Are Required for Melatonin-Mediated Defense Responses in Plants. Journal of Pineal Research, 60, 327-335. https://doi.org/10.1111/jpi.12314

  51. 51. Xu, W., Cai, S.Y., Zhang, Y., Wang, Y., Ahammed, G.J., Xia, X.J., Shi, K., Zhou, Y.H., Yu, J.Q., Reiter, R.J. and Zhou, J. (2016) Melatonin Enhances Thermotolerance by Promoting Cellular Pro-tein Protection in Tomato Plants. Journal of Pineal Research, 61, 457-469. https://doi.org/10.1111/jpi.12359

  52. 52. Wang, P., Sun, X., Chang, C., Feng, F., Liang, D., Cheng, L. and Ma, F. (2013) Delay in Leaf Senescence of Malus hupehensis by Long-Term Melatonin Application Is Associated with Its Reg-ulation of Metabolic Status and Protein Degradation. Journal of Pineal Research, 55, 424-434. https://doi.org/10.1111/jpi.12091

  53. 53. Wei, J., Li, D.X., Zhang, J.R., Shan, C., Rengel, Z., Song, Z.B. and Chen, Q. (2018) Phytomelatonin Receptor PMTR1-Mediated Signaling Regulates Stomatal Closure in Arabidopsis thaliana. Journal of Pineal Research, 65, e12500. https://doi.org/10.1111/jpi.12500

期刊菜单