Advances in Applied Mathematics
Vol. 12  No. 06 ( 2023 ), Article ID: 67269 , 8 pages
10.12677/AAM.2023.126281

严格对角占优M-矩阵逆的无穷上界的新估计式

陈胜男,莫宏敏*,罗雨薇

吉首大学,数学与统计学院,湖南 吉首

收稿日期:2023年5月16日;录用日期:2023年6月9日;发布日期:2023年6月19日

摘要

基于严格对角占优M-矩阵和它的逆矩阵元素的关系,定义一组新的参数,结合不等式性质,得到了严格对角占优M-矩阵逆矩阵无穷范数上界的一个新估计式。理论分析证明新估计式优于现有文献的有关结果,数值例子亦表明新估计式具有可行性和有效性。

关键词

对角占优矩阵,M-矩阵,无穷范数,上界

A New Upper Bound Estimator of the Infinite Norm for the Inverse of Strictly Diagonally Dominant M-Matrix

Shengnan Chen, Hongmin Mo*, Yuwei Luo

College of Mathematics and Statistics, Jishou University, Jishou Hunan

Received: May 16th, 2023; accepted: Jun. 9th, 2023; published: Jun. 19th, 2023

ABSTRACT

Based on the relationship between the strictly diagonally dominant M-matrix and its inverse matrix elements, a new set of parameters is defined and a new estimator of the upper bound of the infinite norm for the inverse of the strictly diagonally dominant M-matrix is obtained. Theoretical analysis proves that the new estimator is superior to the results of the existing literatures, numerical examples also show that the new estimator is feasible and effective.

Keywords:Diagonally Dominant Matrix, M-Matrix, Infinite Norm, Upper Bound

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

M-矩阵在数值代数、计算几何、生物数学、经济数学等许多方面都具有广泛的应用价值,特别是其逆矩阵的无穷范数在上述领域的应用中尤其普遍。如将非奇异M-矩阵逆的无穷范数上界应用到一些特殊矩阵线性互补问题解的误差界的估计中,可以获得B-矩阵、BS-矩阵、弱链对角占优B-矩阵等特殊矩阵线性互补问题解的误差界估计式 [1] [2] 。近年来,众多学者对严格对角占优M-矩阵逆的无穷范数上界估计进行了研究,给出了一系列的估计式 [3] - [9] 。本文在上述工作的基础上,继续对严格对角占优M-矩阵逆的无穷范数上界估计展开研究,并给出一个改进的新估计式。

本文第2部分主要介绍相关符号、定义及引理;第3部分主要基于严格对角占优M-矩阵和它的逆矩阵元素的关系,定义一组新的参数,结合不等式性质,得到严格对角占优M-矩阵逆矩阵无穷范数上界的一个新估计式,并和文 [3] 中的结论作理论上的对比分析;第4部分主要通过数值算例验证新估计式的可行性和有效性。

2. 预备知识

为方便起见,先给出在本文中所用到的符号。设 A = ( a i j ) R n × n a i i 0 i N = { 1 , 2 , , n } 。记

R i ( A ) = j i | a i j | , d i ( A ) = R i ( A ) | a i i | , u i ( A ) = j = i + 1 | a i j | | a i i | ,

l k ( A ) = max k i n k < j < n | a i j | | a i i | , l n ( A ) = u n ( A ) = 0 .

m i , j , k n ,记

s i ( m ) = j i , m j n | a i j | | a i i | , r j i ( m ) = | a j i | + k j , i | a j k | s k ( m ) | a j j | , u j i ( m ) = | a j i | + k j , i | a j k | r k i ( m ) | a j j | ,

w j i ( m ) = | a j i | + k j , i | a j k | u k i ( m ) | a j j | , w ( m ) = max m j n { w j i ( m ) , j i } .

定义1 [5] :设矩阵 A = ( a i j ) R n × n ,如果满足以下条件:

1) 任意 i N | a i i | R i ( A )

2) 任意 i N i J ( A ) = { i N : d i ( A ) < 1 } ϕ ,均存在非零元素链 a i i 1 a i 1 i 2 a i r k 0 ,这里 i i 1 i 1 i 2 i r k k J ( A ) ,则称A为弱链对角占优矩阵。

定义2 [5] :设矩阵 A = ( a i j ) R n × n ,如果 J ( A ) = N ,则称矩阵A为严格对角占优矩阵。

定义3 [6] :设 A = ( a i j ) R n × n ,若对任意的 i , j N ,且 i j ,都有 a i i > 0 a i j 0 ,则称矩阵A为非奇异M-矩阵。

引理1 [5] :设 A = ( a i j ) R n × n 为弱链对角占优M-矩阵, B = A ( 2 , n ) A 1 = ( α i j ) i , j = 1 n B 1 = ( β i j ) i , j = 2 n ,则

α 11 = 1 Δ , α i 1 = 1 Δ k = 2 n β i k ( a k 1 ) , α 1 j = 1 Δ k = 2 n β k j ( a 1 k ) ,

α i j = β i j + α i j k = 2 n β k j ( a 1 k ) ,

其中

Δ = α 11 k = 2 n α 1 j [ k = 2 n β k i α i 1 ] > 0 .

引理2 [5] :设 A = ( a i j ) R n × n 是弱链对角占优M-矩阵, A 1 = ( α i j ) i , j = 1 n ,令 q = q ( A ) 表示A的最小特征值,则

q min i N { a i i } , q max i N { j N a i j } , 1 M q 1 m ,

其中

M = max i N { j N α i j } = A 1 , m = min i N { j N α i j } .

引理3 [5] :设 A = ( a i j ) R n × n 为严格对角占优M-矩阵,那么

Δ a 11 ( 1 d 1 l 1 ) a 11 ( 1 d 1 ) . (1)

引理4 [3] :设 A = ( a i j ) R n × n 为严格对角占优M-矩阵, A 1 = ( α i j ) i , j = 1 n ,那么

| α j i | | a j i | + k i , j | a j k | u k i ( m ) | a j j | | α i i | = w j i ( m ) | α i i | w ( m ) | α i i | l m < | α i i | , (2)

特别地,当 i = 1 时,有

| α j 1 | | a j 1 | + k 1 , j | a j k | u k 1 ( m ) | a j j | | α 11 | = w j 1 ( m ) | α 11 | w ( m ) | α 11 | l m | α 11 | .

引理5 [3] :设 A = ( a i j ) R n × n 为严格对角占优M-矩阵, A 1 = ( α i j ) i , j = 1 n ,那么

α i i 1 a i i j i | a i j | w j i ( m ) = 1 a i i ( 1 d i w j i ( m ) ) 1 a i i ( 1 d i w ( m ) ) 1 a i i ( 1 d i l i ) . (3)

3. 主要结论

2016年,在文 [7] 中给出了严格对角占优M-矩阵逆的无穷范数的一个上界估计式:设 A = ( a i j ) R n × n 为严格对角占优M-矩阵,有

A 1 1 a 11 j = 2 n | a 1 j | u j 1 ( 1 ) + i = 2 n [ ( 1 a i i k = i + 1 n | a i k | u k i ( 1 ) ) j = 1 i 1 1 1 u j l j ] . (4)

2021年,文 [3] 得到了一个优于(4)的上界新估计式

A 1 1 w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + w ( 1 ) a 11 ( 1 u 1 w ( 1 ) ) + i = 2 n [ ( 1 w ( i ) a i i k = i _ 1 n | a i k | w k i ( i ) + w ( i ) a i i ( 1 u i w ( i ) ) ) j = 1 i 1 1 1 u j w ( j ) ] . (5)

本文将对严格对角占优M-矩阵逆的无穷范数上界估计继续展开研究,得到严格对角占优M-矩阵逆的无穷范数上界的一个新估计式,并在理论上证明新的估计式改进了现有文献的有关结果,数值实例亦表明新估计式是可行的和有效的。

定理1:设 A = ( a i j ) R n × n 为严格对角占优M-矩阵, B = A ( 2 , n ) A 1 = ( α i j ) i , j = 1 n B 1 = ( β i j ) i , j = 2 n ,那么

A 1 max { 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + d 1 1 d 1 w ( 1 ) M B , w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + 1 1 d 1 w ( 1 ) M B } , (6)

其中 M A = A 1 M B = B 1

证明:设 η i = j = 1 n α i j ,则 M A = max i N { η i } M B = max 2 i n { j = 2 n β i j } ,由引理1及(3)式可得

η 1 = α 11 + j = 2 n α 1 j 1 Δ + 1 Δ k = 2 n ( a 1 k ) j = 2 n β i j 1 Δ + 1 Δ k = 2 n ( a 1 k ) M B 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + d 1 1 d 1 w ( 1 ) M B . (7)

2 i n 时,由引理1和(2)式可得

k = 2 n β i k ( a k 1 ) = Δ α 11 Δ w ( 1 ) α 11 = 1 α 11 w ( 1 ) α 11 = w ( 1 ) < 1 .

故对 2 i n ,由引理1、(2)式和(7)式可得

η i = α i 1 + j = 2 n α i j α 11 w ( 1 ) + j = 2 n ( β i j + α 1 j w ( 1 ) ) = η 1 w ( 1 ) + j = 2 n β i j η 1 w ( 1 ) + M B . (8)

如果 η 1 η i ,由(7)式和(8)式可得

M A = max 2 i n { η i } η 1 w ( 1 ) + M B w ( 1 ) ( 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + d 1 1 d 1 w ( 1 ) M B ) + M B w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + 1 1 d 1 w ( 1 ) M B . (9)

如果 η 1 > η i ,由(7)式可得

M A = η 1 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + d 1 1 d 1 w ( 1 ) M B . (10)

再由(8)式和(9)式可得

A 1 max { η 1 , η i : 1 i n } max { 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + d 1 1 d 1 w ( 1 ) M B , w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + 1 1 d 1 w ( 1 ) M B } .

对定理1的结论使用迭代法,可以得到下面定理2。

定理2:设 A = ( a i j ) R n × n 为严格对角占优M-矩阵, B = A ( 2 , n ) A 1 = ( α i j ) i , j = 1 n B 1 = ( β i j ) i , j = 2 n ,那么

A 1 max { 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + i = 2 n ( 1 a i i k = i + 1 n | a i k | w k i ( i ) j = 1 i 1 u j 1 u j w ( j ) ) , w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + i = 2 n ( w ( i ) a i i k = i + 1 n | a i k | w k i ( i ) j = 1 i 1 1 1 u j w ( j ) ) } . (11)

证明:对(6)式的 A ( k , n ) 应用关于k的诱导,可以得到上述结果。

定理3:设 A = ( a i j ) R n × n 为严格对角占优M-矩阵,有

A 1 max { 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + i = 2 n ( 1 a i i k = i + 1 n | a i k | w k i ( i ) j = 1 i 1 u j 1 u j w ( j ) ) , w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + i = 2 n ( w ( i ) a i i k = i + 1 n | a i k | w k i ( i ) j = 1 i 1 1 1 u j w ( j ) ) } 1 w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + w ( 1 ) a 11 ( 1 u 1 w ( 1 ) ) + i = 2 n [ ( 1 w ( i ) a i i k = i _ 1 n | a i k | w k i ( i ) + w ( i ) a i i ( 1 u i w ( i ) ) ) j = 1 i 1 1 1 u j w ( j ) ] .

证明:由于 A = ( a i j ) R n × n 为一个严格对角占优M-矩阵,根据符号的定义不难得到

0 u j , l j < 0 , 0 < w j i ( m ) w ( m ) u j i ( m ) r j i ( m ) s i ( m ) d m l m < 1 ,

于是有

u j 1 u j w ( j ) 1 1 u j w ( j ) 1 1 u j l j .

由引理5可得,

1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) = 1 w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) 1 w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + w ( 1 ) a 11 ( 1 u 1 w ( 1 ) ) ,

w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) 1 w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + w ( 1 ) a 11 ( 1 u 1 w ( 1 ) ) .

综上定理3得证。

推论1:设 A = ( a i j ) R n × n 为一个严格对角占优M-矩阵,那么A的最小特征值

q ( A ) { max { 1 a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + i = 2 n ( 1 a i i k = i + 1 n | a i k | w k i ( i ) j = 1 i 1 u j 1 u j w ( j ) ) , w ( 1 ) a 11 j = 2 n | a 1 j | w j 1 ( 1 ) + i = 2 n ( w ( i ) a i i k = i + 1 n | a i k | w k i ( i ) j = 1 i 1 1 1 u j w ( j ) ) } } 1 .

证明:由引理2可得。

4. 数值算例

例1:设

A = [ 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 ] .

易知A是严格对角占优M-矩阵。

由(4)式计算得

A 1 16.8245 .

由(5)式计算得

A 1 8.3796 .

应用本文(11)式计算得

A 1 2.6248 .

实际上, A 1 = 2.5 。可见(11)式计算结果优于(4)和(5)式计算结果。

例2:设

A = [ 32 1 3 1 2 4 2 3 1 4 4 28 1 2 3 4 0 1 1 3 1 3 27 4 0 2 3 2 4 4 3 5 3 40 1 2 3 4 2 5 5 2 4 5 27.01 5 0 1 4 1 2 0 2 1 4 30 5 2 5 3 0 3 1 1 2 4 36 2 3 4 1 3 2 4 2 1 2 38 4 1 3 4 3 1 3 3 4 0 28 3 2 1 0 2 4 3 1 1 3 26 ] .

易知A是严格对角占优M-矩阵。

应用(4)式计算得

A 1 1.2708 .

由(5)式计算得

A 1 0.87 .

应用本文(11)式得

A 1 0.4453 .

实际上, A 1 = 0.1626 。应用(11)式计算结果要优于(4)和(5)式计算结果。

5. 总结

本文理论证明新估计式是优于文 [3] 和文 [7] 中的有关结论的,数值例子亦表明新估计式具有可行性和有效性。这是M-矩阵对于逆的无穷范数的上界估计式的进一步拓展。

致谢

本篇论文在莫宏敏老师的细心指导和耐心帮忙下完成,在此对老师表示由衷的感激!

基金项目

吉首大学研究生科研项目(JDY21012)。

文章引用

陈胜男,莫宏敏,罗雨薇. 严格对角占优M-矩阵逆的无穷上界的新估计式
A New Upper Bound Estimator of the Infinite Norm for the Inverse of Strictly Diagonally Dominant M-Matrix[J]. 应用数学进展, 2023, 12(06): 2802-2809. https://doi.org/10.12677/AAM.2023.126281

参考文献

  1. 1. Zhao, R., Zheng, B. and Liang, M. (2020) A New Error Bound for Linear Complementarity Problems with Weakly Chained Diagonally Dominant B-Matrices. Applied Mathematics and Computation, 367, Article ID: 124788. https://doi.org/10.1016/j.amc.2019.124788

  2. 2. Zhou, C. and Mo, H. (2021) New Estimate of Error Bounds for Linear Complementarity Problems of BS-Matrices. Journal of Jishou University (Natural Sciences Edition), 42, 31-37.

  3. 3. 赵仁庆, 郑伟, 李云奎. 严格对角占优M-矩阵的逆矩阵的无穷大范数的上界估计[J]. 贵州师范学院学报, 2021, 37(9): 16-20.

  4. 4. Varga, R.S. (1976) On Diagonal Dominance Arguments for Bounding . Linear Algebra and Its Applications, 14, 211-217. https://doi.org/10.1016/0024-3795(76)90067-7

  5. 5. Shivakumar, P.N., Williams, J.J., Ye, Q., et al. (1996) On Two-Sided Bounds Related to Weakly Diagonally Dominant M-Matrices with Application to Digital Circuit Dynamics. SIAM Journal on Matrix Analysis and Applications, 17, 298-312. https://doi.org/10.1137/S0895479894276370

  6. 6. 陈公宁. 矩阵理论与应用[M]. 北京: 高等教育出版社, 1990.

  7. 7. 王峰. 严格对角占优M-矩阵的逆矩阵无穷范数的新上界[J]. 吉林大学学报(理学版), 2016, 54(1): 61-65.

  8. 8. Wang, P. (2009) An Upper Bound for of Strictly Diagonally Dominant M-Matrices. Linear Alge-bra and Its Applications, 431, 511-517. https://doi.org/10.1016/j.laa.2009.02.037

  9. 9. Huang, Z., Xu, Z. and Lu, Q. (2016) Some New Inequalities for the Hadamard Product of a Nonsingular M-Matrix and Its Inverse. Linear and Multi-linear Algebra, 64, 1362-1378. https://doi.org/10.1080/03081087.2015.1083529

期刊菜单