Advances in Clinical Medicine
Vol. 14  No. 04 ( 2024 ), Article ID: 84883 , 7 pages
10.12677/acm.2024.1441173

18F-FDG PET/CT在神经母细胞瘤诊疗过程中的价值评估

甘恩,李时望*

华中科技大学同济医学院附属协和医院小儿外科,湖北 武汉

收稿日期:2024年3月19日;录用日期:2024年4月13日;发布日期:2024年4月19日

摘要

神经母细胞瘤(Neuroblastoma, NB)是婴幼儿最常见的颅外实体肿瘤,各患儿的临床表现、疗效及预后等方面存在较大差异,肿瘤可自然消退或广泛转移,约有半数患儿就诊时即存在多处转移,分期较晚。18F氟代脱氧葡萄糖正电子发射断层扫描(18F-FDG PET/CT)已经广泛应用于成人肿瘤的诊疗过程中,但在儿童实体肿瘤中的应用相对滞后。本文对近十年来NB的研究进行了文献综述,阐述了18F-FDG PET/CT在NB患儿从诊断、分期、预后、治疗到复发监测整个诊疗过程中的指导意义。

关键词

神经母细胞瘤,18F-FDG PET/CT,小儿实体瘤,诊断,分期,预后,复发监测

Evaluation of the Value of 18F-FDG PET/CT in the Diagnosis and Treatment of Neuroblastoma

En Gan, Shiwang Li*

Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei

Received: Mar. 19th, 2024; accepted: Apr. 13th, 2024; published: Apr. 19th, 2024

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid tumor in young children, and there are great differences in the clinical manifestations, efficacy and prognosis of each child. Tumors may resolve spontaneously or metastasize extensively, and about half of children present with multiple metastases and late stage. 18F fluorodeoxyglucose positron emission tomography (18F-FDG PET/CT) has been widely used in the diagnosis and treatment of adult tumors, but its application in pediatric solid tumors is relatively lagging behind. This article reviews the literature on NB in the past decade, and expounds the guiding significance of 18F-FDG PET/CT in the whole diagnosis and treatment of children with NB from diagnosis, staging, prognosis, to recurrence monitoring.

Keywords:Neuroblastoma, 18F-FDG PET/CT, Pediatric Solid Tumors, Diagnosis, Staging, Prognosis, Recurrence Monitoring

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 介绍

神经母细胞瘤(Neuroblastoma, NB)是小儿除白血病、淋巴瘤、中枢神经系统相关肿瘤外最常见的肿瘤,其发病率为1/100,000~2/100,000,高危患儿的5年生存率只有40%左右 [1] 。NB是一种起源于交感神经嵴的恶性肿瘤,可发生于任意交感神经分布的位置,常见部位以肾上腺、脊柱旁、颈部等为主 [2] 。NB具有高度异质性,预后差异非常大,从自发消退或未经治疗成熟到高度侵袭性。大约50%的神经母细胞瘤儿童患者在诊断时有转移,预后较差 [3] [4] [5] [6] 。神经母细胞瘤的治疗方案以“风险组”标准为指导。尽管多模式治疗(包括大剂量化疗、放疗和干细胞移植)有所改善,但高危疾病患者的5年无事件生存率低于50% [3] 。PET/CT广泛应用于肿瘤的诊疗过程,对于肿瘤的诊断、分期、治疗、预后、复发监测等都有十分重要的意义。

本文对近十年来探究18F-FDG PET/CT在NB患儿诊疗过程中的应用价值的文献进行了综述,以明确该技术在NB中的实用价值,进而为临床上NB患儿行18F-FDG PET/CT检查提供建议。

2. 18F-FDG PET/CT

18F-FDG是肿瘤学中最常用的正电子放射性药物,PET/CT在成人肿瘤中广泛应用 [7] [8] [9] ,但由于其电离辐射剂量较高等缺点而在儿童肿瘤诊疗过程中应用受限,随着许多优化技术可用于减少电离辐射及重复成像,PET/CT在儿童肿瘤的应用逐渐增加 [10] 。在多项指南中,将PET/CT作为血液系统肿瘤如淋巴瘤等、小儿实体肿瘤如骨肉瘤、软组织肉瘤等多种小儿恶性肿瘤的检查手段,对临床诊疗具有指导意义 [7] 。

在NB的诊疗过程中,国际现存指南仍较为推荐使用123I或131I标记的间碘苄胍(MIBG)闪烁显像进行其全身性评估,因间碘苄胍可以被去甲肾上腺素转运体特异性摄取,在NB细胞上表达,在识别NB全身转移灶具有较高的特异性 [11] 。但123I或131I标记的MIBG存在一定局限性,第一,部分NB肿瘤细胞MIBG摄取为阴性,导致产生假阴性结果;第二,MIBG的分辨率较低,经常在小病变和坏死病变中经常出现假阴性结果;第三,MIBG检查过程需要较长的时间(24~48小时);第四,由于MIBG制备的技术困难及其化学不稳定性,其使用在许多国家尤其是发展中国家受限等 [12] [13] 。

PET/CT在现有NB的治疗指南中,通常作为MIBG闪烁成像的补充检查,常用于MIBG摄取阴性的NB患儿中。但PET具有空间分辨率高、扫描时间更短,有可能减少镇静剂的数量等优势。一些研究称MIBG闪烁成像相较18F-FDG PET/CT在发现NB复发时更加敏感,同时不存在骨髓、脑部等生理性摄取等造成的骨髓、脑转移灶无法被发现等 [14] 。另一些研究发现PET在发现NB远处淋巴结转移、软组织转移灶较MIBG闪烁成像更加敏感,在低期神经母细胞瘤患者中,PET的效果优于MIBG闪烁显像,但在高危神经母细胞瘤患者中不能替代MIBG闪烁显像 [15] [16] 。

3. 18F-FDG PET/CT在儿童神经母细胞瘤诊疗中的应用

3.1. 诊断

NB的诊断是复杂的,现有的主要诊断措施多是影像学如联合腹部增强CT、123I标记的间碘苄胍(123I-MIBG)闪烁显像、18F-FDG PET/CT,血液指标检测如血神经元特异性烯醇化酶(NSE)、血铁蛋白、血乳酸脱氢酶(LDH),尿液指标检测如尿香草杏仁酸(VMA),及骨髓活检明确骨髓转移等多重检查进行术前诊断,原发病灶确诊则需要对手术后标本或活检组织进行病理检查以明确肿瘤类型和分型,转移灶确诊则需要进行相关组织活检或经临床随访明确可疑转移病灶是否为转移病灶。

以前,18F-FDG PET/CT常作为123I-MIBG闪烁显像阴性患儿的补充影像学资料,而随着近几年18F-FDG PET/CT在NB中应用逐渐增多,不断有临床试验发现,其与123I-MIBG显像相比较,对于NB的诊断率相差不多,甚至其诊断效果更好 [12] 。在一项近期涉及48项研究共580名患儿Meta分析研究中显示,就18F-FDG PET/CT诊断NB而言,其灵敏度、特异性、阳性似然比、阴性似然比、诊断优势比、受试者特征曲线下面积分别为91% (95%置信区间(CI)为86%~94%)、78% (95% CI为66%~86%)、4.07 (95% CI为2.54~6.50)、0.12 (95% CI为0.08~0.18)、27.43 (95% CI为14.45~52.07)、0.93 (95% CI为0.90~0.95) [17] 。由于骨髓、胸腺、棕色脂肪组织等生理性摄取可能会导致假阳性、假阴性等结果,应在检查时即予以保暖、禁食6小时以上、减少活动等措施减少其发生 [10] ,同时可以辅以随访观察、结合尿VMA、血NSE等检验数值帮助判断是否存在亚临床疾病低于功能影像学检查可检测到的程度等状态。

3.2. 分期

NB的分期涉及后续相关治疗的选择及预后的判断,因此准确进行分期对临床医师进行NB患儿个体化临床决策尤为重要。传统INSS分期依赖于手术切除范围和淋巴结取样,具有较大的局限性,现在多依据INRGSS分期。尽管PET具有图像分辨率较低、只进行功能性成像等劣势,对于原发灶有无涉及影像学危险因素评估能力较弱,但联合CT后,该缺点得到了较强的补充。18F-FDG PET/CT是一次性进行全身扫描,对于发现远处转移较其他检查手段具有较强的优势,尤其是对于检测NB骨髓转移、淋巴结转移方面较其他检查手段具有优势。

18F-FDG PET/CT在评估NB患儿是否有骨髓侵犯具有较高的价值 [18] [19] [20] [21] 。NB作为恶性程度较高的小儿肿瘤,最常见的转移部位即为骨髓,存在骨髓转移往往是预后不良的标志。常用评估骨髓是否受累的检查手段为单侧髂骨骨髓穿刺活检 [22] ,其存在具有只能进行单位点或少数位点骨髓是否累及评估、入侵性检查手段等缺点。研究表明,当18F-FDG PET/CT图像上表现为骨髓被临近肿瘤组织包围或侵袭、局部单一或多位点灶状异常摄取、弥散不均状异常摄取、异常摄取灶与肝脏标准摄取最大值之间的比值 > 2.08的弥散均匀摄取等4种摄取模式即判定为NB骨髓转移阳性时,与骨髓活检对比,18F-FDG PET/CT的敏感度、特异度、阳性预测值、阴性预测值分别为97%、83.9%、92.9%、92.9% [23] 。有少量早期研究表明,在评估NB患儿骨髓是否受侵犯时,18F-FDG PET/CT不如123I-MIBG准确 [24] ,但现在越来越多的研究探究18F-FDG PET/CT在评估骨髓转移中具有非侵入性、原材料较易获得、获取图像时间较短、可评估全身骨髓受累情况等诸多优势。18F-FDG PET/CT同时可以评估NB患儿周围及远处淋巴结转移情况。一项研究表明,与全身磁共振成像(全身DWIBS)相比,在被检测的13名患者中,共探测94个淋巴结,是否有转移则根据后续随访的MIBG及CT图像确定(两者均为阳性则认定有转移,为阴性则认定无转移,结果不一致则不予分析),而18F-FDG PET/CT图像显示19/19为阳性(灵敏度100%),74/75为阴性(特异度98.7%),相对全身DWIBS阳性18/19 (94.7%),阴性64/75 (85.3%)具有较好的诊断价值 [25] 。

3.3. 预后

NB现分层根据国际NB瘤风险组分期系统(INRGSS),其根据INRG分期、年龄、组织学类别、肿瘤分化分级、MYCN状态、是否存在11q畸变和肿瘤细胞倍性,INRG的风险组分为极低、低、中和高风险组,不同风险组的5年生存率由高到低为:极低风险组为 > 85%,低风险组为75%~85%,中风险组为50%~75%,高风险组为 < 50%。在该分期系统中,组织学类别、肿瘤分化分级、MYCN状态、是否存在11q畸变和肿瘤细胞倍性等都需要行手术或活检获得肿瘤组织后方可判断,手术及活检均为侵入性检查手段,对儿童存在较大风险,同时对于暂时无法行手术或活检等检查的患儿,该风险分层具有较大的局限性,因此,探究应用于非侵入性、无创伤的风险分层及预后判断的检查检验尤为重要。

18F-FDG PET/CT可区分出NB中高危患儿,从而优化个体化临床诊疗方案 [26] [27] 。一项涉及139名NB患儿的研究表明,基于确诊时的年龄、NSE等临床数据,联合18F-FDG PET/CT的放射组学列线图评估患儿是否为高风险组的受试者曲线下面积在实验组和对照组中为0.988、0.971,对患儿风险分层具有较好的预测性能 [20] 。同时有研究表明,以18F-FDG PET/CT为基础建立影像放射组学列线图可以预测肿瘤组织是否涉及MYCN扩增、1p畸变、11q畸变,该研究将所有患儿分为了测试组和检验组,18F-FDG PET/CT影像模型预测MYCN扩增、1p畸变、11q畸变三者的测试组AUC曲线下面积分别为0.96、0.89和0.89,而检测组的AUC曲线下面积为0.92、0.85和0.84,表明以18F-FDG PET/CT为基础建立影像放射组学列线图对NB肿瘤组织是否涉及MYCN扩增、1p畸变、11q畸变具有很好的预测作用,而此3者则是评估NB患儿预后的重要指标 [28] 。对于18F-FDG PET/CT传统半定量PET/CT参数,如最大标准化摄取值(SUVmax)、代谢肿瘤体积(MTV)和总病变糖酵解(TLG)等,呈现出对立结果,部分研究表明SUVmax、MTV、TLG可以作为NB预后独立因子,另一部分研究表明,SUVmax、MTV、TLG并没有独立预测功能,而需联合MYCN扩增等因素而起到预测作用 [29] [30] 。

3.4. 治疗

根据儿童神经母细胞瘤诊疗专家共识(CCCG-NB-2021) [31] ,NB治疗多为综合治疗为主,以手术治疗、化学治疗为主,以造血干细胞移植、免疫治疗、放射治疗为辅。以INRGSS风险分层为依据,极低危、低危NB的治疗是以手术 + 观察为主;中危NB的治疗是在化疗前或化疗中(约4个疗程)行择期手术,术后化疗至部分缓解继续行4个疗程化疗,总疗程 ≤ 8个,必要时行二次手术;高危NB治疗计划包括3个阶段,即诱导期(化疗和手术)、巩固期(序贯移植及针对原发肿瘤以及残余转移部位的放射治疗)和巩固期后的维持治疗(免疫治疗和13-CRA治疗)。

近年来NB治疗手段发展迅速,包括免疫治疗如抗GD2抗体投入使用,大大改善了NB患儿的预后,但是高危NB患儿的五年生存率仍低于50% [32] ,因此,加强监测NB患儿治疗反应尤为重要。有少量文献指出,在治疗后,PET/CT作为NB唯一影像学检查方式是足够的 [33] 。同时有病例报告指出,在NB患儿治疗后,患儿达缓解状态,MIBG闪烁成像仍表现为假阳性,可能是由于神经母细胞瘤细胞分化为神经节神经瘤细胞过程中产生的儿茶酚胺引起的。同时PET显像为阴性,这具有指导患儿治疗方案的意义 [34] 。

3.5. 复发监测

根据儿童NB诊疗专家共识(CCCG-NB-2021),在NB规范化治疗后,定期监测过程中,需要完成体格检查和血清肿瘤标志物检查,第一年每3个月复查,第二年每4个月复查,第三、四年每6个月复查;停止治疗前行骨髓细胞学检查;原发部位的影像学检查,第一年每3个月复查,第二年每4个月,第三、四年每6个月复查;脏器功能和(或)远期毒性,肾小球滤过率评估时间点为停药第二年和第五年,需排除肾功能损害的情况;对应用铂类药物患儿进行听力检查,评估时间点为停药后第二年、第五年和第十年;心电图检查和心脏彩色多普勒超声检查,评估时间点为停药后第二年、第五年和第十年 [31] 。

可以看出,专家共识并未将PET-CT作为常规复查必备项目,然而如上文所诉,PET-CT较骨髓活检评估患儿骨髓受累情况更加准确,同时可以减轻患儿痛苦,PET-CT是一项全身性检查,可以明确多部位转移情况。同时,有研究表明,18F-FDG PET/CT可以作为NB复发监测的常规手段,其具有较高的准确率 [35] 。一项针对84名NB患儿的回顾性研究发现,联合临床特征及PET-CT的放射学特征(RC模型)构建临床放射学组图评估患儿复发情况时,其灵敏度、特异性、准确度、AUC曲线下面积较单独临床特征(C模型)或放射学特征(R模型)更高,其分别为0.806、0.800、0.804、0.889,C模型则分别为0.645、0.700、0.677、0.744,R模型则分别为0.774、0.700、0.745、0.813 [36] 。该实验表明18F-FDG PET/CT可以作为常规检查手段监测NB患儿复发情况,尽量做到早发现、早干预、早治疗,提高复发/难治性NB患儿的生存率。

4. 结论

本综述讨论了近十年来18F-FDG PET/CT在NB诊疗过程中的应用,总体来说,该检查对于NB的诊断、分期、治疗、预后及复发监测过程均有指导价值。但由于NB的相对罕见,各研究的患儿数目均较少,因此也需要扩大研究患儿数目,进一步评估18F-FDG PET/CT在NB整个诊疗过程中的指导作用。

文章引用

甘 恩,李时望. 18F-FDG PET/CT在神经母细胞瘤诊疗过程中的价值评估
Evaluation of the Value of 18F-FDG PET/CT in the Diagnosis and Treatment of Neuroblastoma[J]. 临床医学进展, 2024, 14(04): 1395-1401. https://doi.org/10.12677/acm.2024.1441173

参考文献

  1. 1. 龙俊汕, 张京, 苏小霞, 等. 儿童神经母细胞瘤靶向治疗的研究进展[J]. 临床小儿外科杂志, 2023, 22(7): 619-624.

  2. 2. Liu, J., Si, Y., Zhou, Z., et al. (2022) The Prognostic Value of 18F-FDG PET/CT Intra-Tumoural Metabolic Heterogeneity in Pretreatment Neuroblastoma Patients. Cancer Imaging, 22, Article No. 32. https://doi.org/10.1186/s40644-022-00472-4

  3. 3. Pinto, N.R., Applebaum, M.A., Volchenboum, S.L., et al. (2015) Advances in Risk Classification and Treatment Strategies for Neuroblastoma. Journal of Clinical Oncology, 33, 3008-3017. https://doi.org/10.1200/JCO.2014.59.4648

  4. 4. Nolan, J.C., Frawley, T., Tighe, J., Soh, H., Curtin, C. and Piskareva, O. (2020) Preclinical Models for Neuroblastoma: Advances and Challenges. Cancer Letters, 474, 53-62. https://doi.org/10.1016/j.canlet.2020.01.015

  5. 5. Brodeur, G.M. (2018) Spontaneous Regression of Neuroblastoma. Cell and Tissue Research, 372, 277-286. https://doi.org/10.1007/s00441-017-2761-2

  6. 6. Feng, L., Li, S., Wang, C. and Yang, J. (2023) Current Status and Future Perspective on Molecular Imaging and Treatment of Neuroblastoma. Seminars in Nuclear Medicine, 53, 517-529. https://doi.org/10.1053/j.semnuclmed.2022.12.004

  7. 7. Chambers, G., Frood, R., Patel, C. and Scarsbrook, A. (2019) 18F-FDG PET-CT in Paediatric Oncology: Established and Emerging Applications. British Journal of Radiology, 92, Article ID: 20180584. https://doi.org/10.1259/bjr.20180584

  8. 8. Howard, B.A. and Wong, T.Z. (2021) 18F-FDG-PET/CT Imaging for Gastrointestinal Malignancies. Radiologic Clinics, 59, 737-753. https://doi.org/10.1016/j.rcl.2021.06.001

  9. 9. Paydary, K., Seraj, S.M., Zadeh, M.Z., et al. (2019) The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer. Molecular Imaging and Biology, 21, 1-10. https://doi.org/10.1007/s11307-018-1181-3

  10. 10. Vali, R., Alessio, A., Balza, R., et al. (2021) SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. Journal of Nuclear Medicine, 62, 99-110. https://doi.org/10.2967/jnumed.120.254110

  11. 11. Taggart, D.R., Han, M.M., Quach, A., et al. (2009) Comparison of Iodine-123 Metaiodobenzylguanidine (MIBG) Scan and [18F]Fluorodeoxyglucose Positron Emission Tomography to Evaluate Response after Iodine-131 MIBG Therapy for Relapsed Neuroblastoma. Journal of Clinical Oncology, 27, 5343-5349. https://doi.org/10.1200/JCO.2008.20.5732

  12. 12. Xia, J., Zhang, H., Hu, Q., et al. (2017) Comparison of Diagnosing and Staging Accuracy of PET (CT) and MIBG on Patients with Neuroblastoma: Systemic Review and Meta-Analysis. Current Medical Science, 37, 649-660. https://doi.org/10.1007/s11596-017-1785-x

  13. 13. Wang, Y., Xu, Y., Kan, Y., Wang, W. and Yang, J. (2021) Diagnostic Value of Seven Different Imaging Modalities for Patients with Neuroblastic Tumors: A Network Meta-Analysis. Contrast Media & Molecular Imaging, 2021, Article ID: 5333366. https://doi.org/10.1155/2021/5333366

  14. 14. Uslu, L., Donig, J., Link, M., Rosenberg, J., Quon, A. and Daldrup-Link, H.E. (2015) Value of 18F-FDG PET and PET/CT for Evaluation of Pediatric Malignancies. Journal of Nuclear Medicine, 56, 274-286. https://doi.org/10.2967/jnumed.114.146290

  15. 15. Choi, Y.J., Hwang, H.S., Kim, H.J., et al. (2014) 18F-FDG PET as a Single Imaging Modality in Pediatric Neuroblastoma: Comparison with Abdomen CT and Bone Scintigraphy. Annals of Nuclear Medicine, 28, 304-313. https://doi.org/10.1007/s12149-014-0813-1

  16. 16. Sharp, S.E., Shulkin, B.L., Gelfand, M.J., Salisbury, S. and Furman, W.L. (2009) 123I-MIBG Scintigraphy and 18F-FDG PET in Neuroblastoma. Journal of Nuclear Medicine, 50, 1237-1243. https://doi.org/10.2967/jnumed.108.060467

  17. 17. Li, H.F., Mao, H.J., Zhao, L., Guo, D.L., Chen, B. and Yang, J.F. (2020) The Diagnostic Accuracy of PET(CT) in Patients with Neuroblastoma: A Meta-Analysis and Systematic Review. Journal of Computer Assisted Tomography, 44, 111-117. https://doi.org/10.1097/RCT.0000000000000973

  18. 18. Yağci-Küpeli, B., Koçyiğit-Deveci, E., Adamhasan, F. and Küpeli, S. (2019) The Value of 18F-FDG PET/CT in Detecting Bone Marrow Involvement in Childhood Cancers. Journal of Pediatric Hematology/Oncology, 41, 438-441. https://doi.org/10.1097/MPH.0000000000001499

  19. 19. Zapata, C.P., Cuglievan, B., Zapata, C.M., et al. (2018) PET/CT versus Bone Marrow Biopsy in the Initial Evaluation of Bone Marrow Infiltration in Various Pediatric Malignancies. Pediatric Blood & Cancer, 65, e26814. https://doi.org/10.1002/pbc.26814

  20. 20. Feng, L., Yang, X., Lu, X., et al. (2022) 18F-FDG PET/CT-Based Radiomics Nomogram Could Predict Bone Marrow Involvement in Pediatric Neuroblastoma. Insights into Imaging, 13, Article No. 144. https://doi.org/10.1186/s13244-022-01283-8

  21. 21. Shah, S., Purandare, N., Kembhavi, S., et al. (2022) FDG PETCT for Assessing Marrow Involvement at Staging Pediatric Nonhematological Round Cell Malignancies. Nuclear Medicine Communications, 43, 56-63. https://doi.org/10.1097/MNM.0000000000001491

  22. 22. Monclair, T., Brodeur, G.M., Ambros, P.F., et al. (2009) The International Neuroblastoma Risk Group (INRG) Staging System: An INRG Task Force Report. Journal of Clinical Oncology, 27, 298-303. https://doi.org/10.1200/JCO.2008.16.6876

  23. 23. Liu, J., Li, C., Yang, X., et al. (2022) The Diagnostic Value of 18F-FDG PET/CT Bone Marrow Uptake Pattern in Detecting Bone Marrow Involvement in Pediatric Neuroblastoma Patients. Contrast Media & Molecular Imaging, 2022, Article ID: 7556315. https://doi.org/10.1155/2022/7556315

  24. 24. Dhull, V.S., Sharma, P., Patel, C., et al. (2015) Diagnostic Value of 18F-FDG PET/CT in Paediatric Neuroblastoma: Comparison with 131I-MIBG Scintigraphy. Nuclear Medicine Communications, 36, 1007-1013. https://doi.org/10.1097/MNM.0000000000000347

  25. 25. Ishiguchi, H., Ito, S., Kato, K., et al. (2018) Diagnostic Performance of 18F-FDG PET/CT and Whole-Body Diffusion-Weighted Imaging with Background Body Suppression (DWIBS) in Detection of Lymph Node and Bone Metastases from Pediatric Neuroblastoma. Annals of Nuclear Medicine, 32, 348-362. https://doi.org/10.1007/s12149-018-1254-z

  26. 26. Ko, K.Y., Yen, R.F., Ko, C.L., et al. (2022) Prognostic Value of Interim 18F-DOPA and 18F-FDG PET/CT Findings in Stage 3-4 Pediatric Neuroblastoma. Clinical Nuclear Medicine, 47, 21-25. https://doi.org/10.1097/RLU.0000000000003972

  27. 27. Sung, A.J., Weiss, B.D., Sharp, S.E., Zhang, B. and Trout, A.T. (2021) Prognostic Significance of Pretreatment F-FDG Positron Emission Tomography/Computed Tomography in Pediatric Neuroblastoma. Pediatric Radiology, 51, 1400-1405. https://doi.org/10.1007/s00247-021-05005-y

  28. 28. Qian, L., Yang, S., Zhang, S., et al. (2022) Prediction of MYCN Amplification, 1p and 11q Aberrations in Pediatric Neuroblastoma via Pre-Therapy 18F-FDG PET/CT Radiomics. Frontiers in Medicine, 9, Article 840777. https://doi.org/10.3389/fmed.2022.840777

  29. 29. Man, S., Yan, J., Li, J., et al. (2021) Value of Pretreatment 18F-FDG PET/CT in Prognosis and the Reflection of Tumor Burden: A Study in Pediatric Patients with Newly Diagnosed Neuroblastoma. International Journal of Medical Sciences, 18, 1857-1865. https://doi.org/10.7150/ijms.58263

  30. 30. Li, C., Zhang, J., Chen, S., et al. (2018) Prognostic Value of Metabolic Indices and Bone Marrow Uptake Pattern on Preoperative 18F-FDG PET/CT in Pediatric Patients with Neuroblastoma. European Journal of Nuclear Medicine and Molecular Imaging, 45, 306-315. https://doi.org/10.1007/s00259-017-3851-9

  31. 31. 中国抗癌协会小儿肿瘤专业委员会, 中华医学会小儿外科学分会肿瘤学组. 儿童神经母细胞瘤诊疗专家共识CCCG-NB-2021方案[J]. 中华小儿外科杂志, 2022, 43(7): 588-598.

  32. 32. Wienke, J., Dierselhuis, M.P., Tytgat, G.A.M., Künkele, A., Nierkens, S. and Molenaar, J.J. (2021) The Immune Landscape of Neuroblastoma: Challenges and Opportunities for Novel Therapeutic Strategies in Pediatric Oncology. European Journal of Cancer, 144, 123-150. https://doi.org/10.1016/j.ejca.2020.11.014

  33. 33. Kushner, B.H., Yeung, H.W., Larson, S.M., Kramer, K. and Cheung, N.K. (2001) Extending Positron Emission Tomography Scan Utility to High-Risk Neuroblastoma: Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography as Sole Imaging Modality in Follow-Up of Patients. Journal of Clinical Oncology, 19, 3397-3405. https://doi.org/10.1200/JCO.2001.19.14.3397

  34. 34. Sato, Y., Kurosawa, H., Sakamoto, S., et al. (2015) Usefulness of 18F-Fluorodeoxyglucose Positron Emission Tomography for Follow-Up of 13-Cis-Retinoic Acid Treatment for Residual Neuroblastoma after Myeloablative Chemotherapy. Medicine, 94, e1290. https://doi.org/10.1097/MD.0000000000001290

  35. 35. Skoura, E., Oikonomopoulos, G., Vasileiou, S., Kyprianou, D., Koumakis, G. and Datseris, I.E. (2014) 18F-FDG-PET/CT, (123)I-MIBG and (99m)Tc-MDP Whole-Body Scans, in Detecting Recurrence of an Adult Adrenal Neuroblastoma. Hellenic Journal of Nuclear Medicine, 17, 58-61.

  36. 36. Feng, L., Qian, L., Yang, S., et al. (2022) Clinical Parameters Combined with Radiomics Features of PET/CT Can Predict Recurrence in Patients with High-Risk Pediatric Neuroblastoma. BMC Medical Imaging, 22, Article No. 102. https://doi.org/10.1186/s12880-022-00828-z

  37. NOTES

    *通讯作者。

期刊菜单