Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61634 , 407 pages
10.12677/ACM.2023.132357

二肽基肽酶-4 (DPP4)促进脂肪细胞氧化应激及炎症反应的分子机制研究

依力汗·依明1,艾克拜尔·艾力1,2*,买买提·依斯热依力1,3,艾合麦提·喀斯木3

1新疆医科大学研究生学院,新疆 乌鲁木齐

2新疆维吾尔自治区人民医院微创,疝和腹壁外科,新疆 乌鲁木齐

3新疆维吾尔自治区胃食管反流病及减重代谢外科临床研究中心,新疆 乌鲁木齐

收稿日期:2023年1月19日;录用日期:2023年2月14日;发布日期:2023年2月22日

摘要

肥胖症(Obesity)是世界范围内一个日益严重的健康问题。作为代谢综合征的标志,肥胖症常与慢性疾病的发展有关,包括2型糖尿病和脂代谢紊乱。脂肪组织是肥胖相关代谢紊乱进展的基础,其内分泌作用在致病环节中起关键作用:通过产生各种称为脂肪因子或脂肪细胞因子的因子,如瘦素、脂联素、单核细胞趋化蛋白-1 (MCP-1)、肿瘤坏死因子-α (TNF)和白细胞介素-6 (IL-6)。目前肥胖症的具体发病机制尚不明确,但脂肪细胞炎症学说和脂肪细胞氧化应激学已被广泛接受。本综述旨在对二肽基肽酶-4 (DPP4)与脂肪细胞氧化应激及炎症反应中的机制进行行总结叙述。

关键词

二肽基肽酶-4,氧化应激,脂肪细胞炎症反应,肥胖症

Molecular Mechanism of Dipeptidyl Peptidase-4 (DPP4) Promoting Oxidative Stress and Inflammatory Response of Adipocytes

Yilihan·Yiming1, Aikebaier·Aili1,2*, Maimaiti·Yisireyili1,3, Aihemaiti·Kasimu3

1Graduate School of Xinjiang Medical University, Urumqi Xinjiang

2Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi Xinjiang

3Clinical Research Center of Gastroesophageal Reflux Disease and Weight Loss and Metabolism Surgery of Xinjiang Uygur Autonomous Region, Urumqi Xinjiang

Received: Jan. 19th, 2023; accepted: Feb. 14th, 2023; published: Feb. 22nd, 2023

ABSTRACT

Obesity is an increasingly serious health problem all over the world. As a sign of metabolic syndrome, obesity is often associated with the development of chronic diseases, including type 2 diabetes and lipid metabolism disorders. Adipose tissue is the basis for the progress of obesity related metabolic disorders, and its endocrine role plays a key role in the pathogenesis: through the production of various factors called adipokines or adipocytokines, such as leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1) and tumor death factor-α (TNF) and interleukin-6 (IL-6). At present, the specific pathogenesis of obesity is not clear, but the theory of adipocyte inflammation and adipocyte oxidative stress has been widely accepted. This review aims to summarize the mechanism of dipeptidyl peptidase-4 (DPP4) and adipocyte oxidative stress and inflammatory response.

Keywords:Dipeptidyl Peptidase-4, Oxidative Stress, Adipocyte Inflammatory Reaction, Obesity

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肥胖症(Obesity)目前已成为严重影响人类生活质量及生命健康的全球流行性疾病。肥胖和糖尿病的流行促进了对脂肪和血糖稳态之间内分泌联系的研究,表明脂肪组织是释放各种脂肪因子的内分泌器官 [1] 。目前关于脂肪组织在肥胖中的作用的观点认为脂肪因子是肥胖和胰岛素抵抗之间的潜在联系。对脂肪细胞分泌组进行蛋白质组学分析,发现二肽基肽-4(dipeptidyl peptidase-4, DPP-4)在脂肪细胞分化过程中表达,确定DPP-4是一种新的脂肪因子。研究表明,DPP-4在内脏脂肪中的表达和分泌高于皮下脂肪 [2] 。ob/ob (瘦素缺陷型)小鼠肝脏重量是对照组B6小鼠的3.1倍,附睾脂肪组织重量是对照组B6小鼠的10.8倍。在ob/ob小鼠中,DPP-4在肝脏中的表达水平与B6小鼠相同,在附睾脂肪组织中的表达水平是B6小鼠的0.3倍。平均ob/ob小鼠每个器官中DPP-4的表达量分别是B6小鼠肝脏和附睾脂肪组织表达水平的3.2倍和3.5倍 [3] 。

DPP-4是一种丝氨酸蛋白酶,作为膜锚定的胞外肽酶,可从含有脯氨酸或丙氨酸的多肽的N端分离出二肽,在生理和病理条件下降解大量的细胞因子、趋化因子、激素和生长因子,此外在T细胞的活化和增殖中起作用。DPP-4在脂肪细胞分化过程中表达,可能直接损害脂肪、骨骼和平滑肌细胞的胰岛素敏感性胰岛素,如胰高血糖素样肽-1 (GLP-1)和葡萄糖依赖的促胰岛素多肽(GIP)这两种激素都是DPP-4的靶蛋白,可被DPP-4水解酶迅速降解和失活 [4] 。DPP-4又是一种普遍表达的跨膜糖蛋白,它在通过分解糖降血糖素,如葡萄糖依赖性促胰岛素多肽(glucose-dependent insulinotropic ploypeptide, GIP)和胰高血糖素样肽-1 (glucagon-like peptide-1, GLP-1)。GLP-1是一种多肽激素,在营养物质摄入后从肠道细胞释放出来,诱导胰岛β细胞分泌葡萄糖依赖的胰岛素。GLP-1的半衰期小于2分钟,这是由于DPP-4的快速分裂和失活,而DPP-4抑制剂有效地促进胰岛素分泌 [5] 。除了作用于GIP和GLP-1等激素外,DPP-4还负责处理几种以自分泌/旁分泌方式产生和局部作用的趋化因子。

2. DPP-4在诱导脂肪炎症反应中的作用

巨噬细胞的招募和极化在肥胖诱导的炎症和胰岛素抵抗中起关键作用

动物实验发现,与NC小鼠相比,高脂喂养的小鼠代谢类疾病模型(DIO)脂肪组织巨噬细胞(Adipose tissue macrophages, ATMs)总数增加,其血浆DPP-4含量也显著增加。使用DPP-4抑制利格列汀后采用荧光激活细胞分选技术(FACS)分析,发现ATMs的迁移、小鼠的肝脏脂肪变性及甘油三酯积聚显著减少,DPP-4底物巨噬细胞炎症蛋白-1α (Macrophage inflammatory protein-1α, MIP-1α)在DIO小鼠内脏脂肪中的表达明显减少,肥胖引起的炎症反应和胰岛素抵抗明显减轻,而在MIP-1α缺陷小鼠中,利格列汀的明显保护作用被消除,这表明DPP-4可能加重肥胖相关炎症 [6] 。此外与NC小鼠相比,DIO小鼠白色脂肪组织和肝脏中的CD3、CD4和CD8 T细胞总数增加,利格列汀显著降低了这种效应。这项研究为DPP-4在调节巨噬细胞介导的肥胖炎症反应和胰岛素抵抗发挥关键作用提供了确凿的证据。

巨噬细胞(Macrophages) M1/M2极化失调被认为是肥胖和胰岛素抵抗及非酒精性脂肪肝等疾病的发病的机制之一。M1巨噬细胞的缺失使肥胖小鼠对胰岛素的敏感性恢复正常,M2巨噬细胞的减少使NC小鼠易于产生胰岛素抵抗 [7] 。因此,抑制M2活化可能具有减轻脂肪炎症和胰岛素抵抗,并减缓脂肪性肝炎的进展的潜力。DPP-4抑制剂引起抗炎巨噬细胞极化的ATMs,这有助于减弱全身胰岛素抵抗,此外,DPP-4本身能诱导巨噬细胞M1极化 [8] 。Th1和CD8+ T细胞的浸润发生在M1极化巨噬细胞聚集之前,T细胞与巨噬细胞之间的相互作用构成了一种前馈环,从而导致脂肪炎症和胰岛素抵抗 [9] 。因此,DPP-4可以促进肥胖患者T细胞的积累和巨噬细胞M1的活化,减轻胰岛素抵抗和脂肪炎症反应。这些研究为DPP-4在调节巨噬细胞介导的肥胖炎症反应和胰岛素抵抗发挥关键作用提供了确凿的证据。

趋化因子影响脂肪细胞中葡萄糖和脂肪的代谢

趋化因子是一组不同的小分子多肽,它们选择性地招募和激活几种细胞类型,并通过招募各种免疫细胞引起白色脂肪组织的炎症,并影响脂肪细胞中葡萄糖和脂肪的代谢 [10] 。DPP-4裂解补充表1中列出的几种趋化因子 [10] [11] 。在ob/ob小鼠脂肪组织中,CCL11和CCL22在附睾中表达降低,而在皮下脂肪组织中表达上调。CCL11是一种有效的嗜酸性粒细胞趋化剂,它通过加速M2巨噬细胞极化而具有抗炎特性。此外,CCL22主要由M2巨噬细胞产生 [12] 。肥胖症导致巨噬细胞的激活状态从M2极化的抗炎状态转变为M1致炎状态,与皮下脂肪相比,CCL11和CCL22的减少可能与脂肪细胞的炎症反应增强有关 [13] 。CXCL12是淋巴细胞、内皮祖细胞(EPC)和间充质干细胞(MSC)产生的趋化因子,DPP-4缺陷小鼠具有高水平的循环活性CXCL12表达,肥胖小鼠脂肪组织中DPP-4基因表达下调,这种变化可能协同诱导趋化因子活性,导致免疫细胞向脂肪组织渗透增强 [14] 。DPP-4的下调可能在肥胖脂肪组织的发生发展中起重要作用,调节多种细胞因子及信号通路,导致脂肪细胞炎症反应,参与肥胖症发展过程。

3. DPP-4对NF-κB、PI3K/Akt、MAPK/Erk信号通路及脂肪细胞氧化应激的影响

3.1. 氧化应激在肥胖症的发病机制中起着关键作用

在病理条件下,氧化应激损害肌肉和脂肪的葡萄糖摄取,并减少胰腺β细胞的胰岛素分泌,通过直接影响脂肪细胞,氧化应激增加也是病态肥胖症病理生理学的基础 [15] 。游离脂肪酸(FFA)、活性氧(ROS)和反应性氮(RNS)水平的增加使体内平衡系统超负荷,导致肥胖的促炎性脂肪因子分泌、免疫激活和慢性炎症。胞对氧化应激的防御机制是由核转录因子红细胞系2p45相关因子2 (Nrf2)调控。脂肪细胞内过量的氧化应激激活NRF2,NRF2上调编码主要细胞保护酶的基因,如NAD(P)H:醌氧化还原酶1 (NQO1)、血红素加氧酶1(HO1)和谷胱甘肽S转移酶(GST) [16] 。通过NADPH氧化酶的增加和抗氧化酶的减少,积累的脂肪中的氧化应激增加,导致局部脂肪细胞因子的失调产生,累积脂肪产生的ROS增加也会导致血液中氧化应激的增加。在脂肪组织中,FFA和ROS水平升高会导致促炎脂肪因子分泌、免疫激活,并导致慢性炎症,脂肪组织中的巨噬细胞(ATM)主要将其表型从M2转变为促炎类M1,并进一步加剧脂肪组织的炎症环境 [17] 。持续的营养过剩,导致全身脂肪组织促炎性脂肪因子的产生,Kim CY等 [18] 得出结论,脂肪组织中巨噬细胞的浸润会因核因子κB (nuclear factor kappa-B, NF-κB)水平升高而加剧,这会导致活化的促炎巨噬细胞寿命延长,并形成炎症的恶性循环。此外,病态条件,营养过载持续时间长,在某些时候会超过脂肪组织的生理能力,并导致全身糖毒性、脂毒性和促炎脂肪因子的产生增加,这些都是肥胖的标志。脂肪因子产生的平衡受损与氧化反应增加有关。脂肪细胞的炎性分泌谱包括瘦素、肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)、白细胞介素-6 (IL-6)和白细胞介素-8 (IL-8)、单核细胞趋化蛋白-1相关的凋亡诱导配体等 [19] 。此外,过量的甘油三酯使脂肪细胞激活ATM分泌肿瘤坏死因子-α (TNF-α),反过来,TNF-α诱导肥大脂肪细胞释放游离脂肪酸,导致氧化环境。

3.2 .DPP-4与脂肪细胞氧化应激的关系

脂肪细胞释放游离脂肪酸,导致氧化环境。在一项研究中观察到DPP-4抑制剂吉格列汀治疗降低了脂肪生成相关基因的蛋白表达水平,增加了脂肪酸氧化相关基因的mRNA的表达。吉格列汀处理诱导了小鼠肝脏AMPK的磷酸化 [20] 。AMPK在抑制新生脂肪生成和增加脂肪酸氧化,阻止NAFLD 12的发生和进展方面发挥重要作用。吉格列汀治疗后肝脏中AMPK的激活可能是其抗脂肪变性作用的原因。在前成脂肪细胞(3T3-L1)进行常规培养中加入内质网氧化应激诱导剂衣霉素(Tunicamycin, TM),通过T-PCR 和Western Blot法检测DPP-4及其底物,发现氧化应激增加了小鼠的血浆DPP-4水平还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶-4 (Nox-4)的mRA及蛋白表达水平升高,氧化应激和炎症相关基因的表达随之上升 [21] 。这种变化还导致脂肪组织蛋白酶家族成员以及细胞损伤相关靶向分子的表达增加,从而产生有害的氧化应激变化。在我们的实验条件下,抑制DPP4可改善氧化应激相关损伤。在体外实验中,DPP-4抑制剂通过激PI3K/Akt信号通路减轻氧化应激诱导的一氧化氮合成酶(eNOS)表达 [22] 。

越来越多的证据支持氧化应激可以诱导促炎性细胞因子聚集并导致脂肪细胞氧化损伤,促炎性细胞因子包括MCP-1、IL-6、IL1β、TNF-α。而DPP-4抑制剂可以减轻氧化应激诱导的脂肪细胞炎症反应及损伤 [23] 。既往研究表明DPP-4可以通过激活NRF-2/HO-1途径诱导脂肪细胞炎症反应和凋亡中起着至关重要的作用 [23] [24] 。总的来说,这些观察表明DPP-4在氧化应激诱导的细胞损伤具有促进作用。

4. DPP-4抑制剂与炎症因子及氧化应激

近年来DPP-4抑制剂已被证实具有促进胰岛素分泌、抑制内源性葡萄糖的生成进而降低血糖的作用,但DPP-4与肥胖患者的相关研究较少。Ottobelli等 [25] 研究发现DPP-4抑制西格列汀通过减少DPP4的表达来破坏脂质积聚。此外,西格列汀可降低脂多糖(LPS)诱导的RINm细胞中白细胞介素(IL)-6、IL-1b的表达、细胞外释放和凋亡 [26] 。既往研究者发现在载脂蛋白E缺陷小鼠中,西他列汀诱导的促炎蛋白表达减少和单核细胞迁移减少,其机制可能通过降低NFκB减少单核细胞迁移并发挥抗炎作用 [27] 。另外,在肥胖动物模型中亦可检测到血清及附睾脂肪中脂肪因子水平升高,西格列汀干预后能显著降低肥胖大鼠血清及脂肪组织炎症水平 [28] ,并可改善糖脂代谢。

已知ROS参与各种信号转导级联和适应性应激反应,在生理条件下,ROS的细胞毒性受多种线粒体、胞质和过氧化物酶体抗氧化系统的控制,包括超氧化物歧化酶(SODs)、过氧化物酶、过氧化还原蛋白、硫氧还蛋白、谷胱甘肽(GSH)和含硫醇蛋白 [29] 。然而,一旦ROS水平超过对多种刺激反应的缓冲能力,一系列与炎症反应结合的适应性反应以及随后的细胞内损伤被激活,这进一步导致进行性线粒体功能障碍和细胞死亡 [30] 。根据最新研究,在脂肪细胞中,DPP4抑制剂下调衰竭心脏中NOX4 (烟酰胺腺嘌呤二核苷酸磷酸氧化酶4,ROS的主要来源)的表达 [31] 。DPP-4抑制剂通过脂肪细胞氧化应激、脂毒性、炎症因子等途径改善其功能,这些研究为以上观点提供了充分证据。

笔者认为肥胖本身可能导致全身氧化应激,脂肪细胞中氧化应激的增加少部分是脂肪细胞因子调节失调和代谢综合征发生的潜在原因。作为肥胖相关代谢综合征的早期,这些结果可能有助于确定与肥胖相关的炎症所涉及的通路,因此有助于预防与肥胖相关的并发症。

5. 总结与展望

总而言之,DPP-4在肥胖诱导的炎症和胰岛素抵抗中起着关键作用。DPP-4在肥胖症发病机制中,尤其促进致炎性脂肪因子在脂肪细胞内积聚是主要的分子机制,在脂肪细胞氧化损伤中也发挥至关重要的作用,而DPP-4受抑制导致脂肪组织和肝脏中巨噬细胞向抗炎表型分化,从而减轻肥胖诱导的炎症和胰岛素抵抗。目前关于GLP-1/DPP-4通路在脂肪ROS产生、炎症及其胰岛素抵抗发生中的分子机制尚需进一步研究,笔者认为此机制在治疗肥胖症和代谢综合征方面具有潜在临床效用。

文章引用

依力汗·依明,艾克拜尔·艾力,买买提·依斯热依力,艾合麦提·喀斯木. 二肽基肽酶-4 (DPP4)促进脂肪细胞氧化应激及炎症反应的分子机制研究
Molecular Mechanism of Dipeptidyl Peptidase-4 (DPP4) Promoting Oxidative Stress and Inflammatory Response of Adipocytes[J]. 临床医学进展, 2023, 13(02): 2529-2935. https://doi.org/10.12677/ACM.2023.132357

参考文献

  1. 1. 赛米•赛麦提, 买买提•依斯热依力, 艾克拜尔•艾力. 肥胖与2型糖尿病关系的研究进展[J]. 中华肥胖与代谢病电子杂志, 2020, 6(2): 130-134.

  2. 2. Schuetz, C.A., Ong, S.H. and Blüher, M. (2015) Clinical Trial Simulation Methods for Estimating the Impact of DPP-4 Inhibitors on Cardiovascular Disease. ClinicoEconomics and Outcomes Research, 7, 313-323. https://doi.org/10.2147/CEOR.S75935

  3. 3. Shin, J., Fukuhara, A., Onodera, T., et al. (2017) Regulation of Dipep-tidyl Peptidase-4, Its Substrate Chemokines, and Their Receptors in Adipose Tissue of ob/ob Mice. Hormone and Meta-bolic Research, 49, 380-387. https://doi.org/10.1055/s-0043-100115

  4. 4. Jiang, S., Wu, X., Wang, Y., et al. (2020) The Potential DPP-4 Inhib-itors from Xiao-Ke-An Improve the Glucolipid Metabolism via the Activation of AKT/GSK-3β Pathway. European Journal of Pharmacology, 882, Article ID: 173272. https://doi.org/10.1016/j.ejphar.2020.173272

  5. 5. Nauck, M.A., Kahle, M., Baranov, O., Deacon, C.F. and Holst, J.J. (2017) Addition of a Dipeptidyl Peptidase-4 Inhibitor, Sitagliptin, to Ongoing Therapy with the Glucagon-Like Pep-tide-1 Receptor Agonist Liraglutide: A Randomized Controlled Trial in Patients with Type 2 Diabetes. Diabetes, Obesity and Metabolism, 19, 200-207. https://doi.org/10.1111/dom.12802

  6. 6. Zilleßen, P., Celner, J., Kretschmann, A., et al. (2016) Metabolic Role of Dipeptidyl Peptidase 4 (DPP4) in Primary Human (Pre)Adipocytes. Scientific Reports, 6, Article No. 23074. https://doi.org/10.1038/srep23074

  7. 7. Rius, J., Guma, M., Schachtrup, C., et al. (2008) NF-κB Links Innate Im-munity to the Hypoxic Response through Transcriptional Regulation of HIF-1α. Nature, 453, 807-811. https://doi.org/10.1038/nature06905

  8. 8. Kojta, I., Chacińska, M. and Błachnio-Zabielska, A. (2020) Obesity, Bio-active Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients, 12, Article No. 1305. https://doi.org/10.3390/nu12051305

  9. 9. Del Chierico, F., Manco, M., Gardini, S., et al. (2021) Fecal Microbiota Signatures of Insulin Resistance, Inflammation, and Metabolic Syndrome in Youth with Obesity: A Pilot Study. Acta Diabetologica, 58, 1009-1022. https://doi.org/10.1007/s00592-020-01669-4

  10. 10. Liddle, D.M., Hutchinson, A.L., Wellings, H.R., et al. (2017) Integrated Immunomodulatory Mechanisms through Which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients, 9, Article No. 1289. https://doi.org/10.3390/nu9121289

  11. 11. Mortier, A., Gouwy, M., Van Damme, J., Proost, P. and Struyf, S. (2016) CD26/Dipeptidylpeptidase IV—Chemokine Interactions: Double-Edged Regulation of Inflammation and Tumor Biology. Journal of Leukocyte Biology, 99, 955-969. https://doi.org/10.1189/jlb.3MR0915-401R

  12. 12. Lin, Y.-C., Huang, M.-Y., Lee, M.-S., et al. (2018) Effects of Montelukast on M2-Related Cytokine and Chemokine in M2 Macrophages. Journal of Microbiology, Immunology and Infection, 51, 18-26. https://doi.org/10.1016/j.jmii.2016.04.005

  13. 13. 买买提∙依斯热依力, 艾克拜尔∙艾力, 买买提艾力•艾则孜, 等. 心理应激对小鼠脂肪组织黄嘌呤氧化酶表达、活性及相关指标的影响[J]. 中国应用生理学杂志, 2019, 35(6): 537-542.

  14. 14. Kojta, I., Chacińska, M. and Błachnio-Zabielska, A. (2020) Obesity, Bioactive Lipids, and Adipose Tis-sue Inflammation in Insulin Resistance. Nutrients, 12, 1305.

  15. 15. Shen, B., Zhao, C., Wang, Y., et al. (2019) Aucubin Inhibited Lipid Accumulation and Oxidative Stress via Nrf2/HO-1 and AMPK Signalling Pathways. Journal of Cellular and Molecular Medicine, 23, 4063-4075. https://doi.org/10.1111/jcmm.14293

  16. 16. Xie, Y., Zhou, W., Zhong, Z., et al. (2021) Metabolic Syndrome, Hyper-tension, and Hyperglycemia Were Positively Associated with Knee Osteoarthritis, While Dyslipidemia Showed No As-sociation with Knee Osteoarthritis. Clinical Rheumatology, 40, 711-724. https://doi.org/10.1007/s10067-020-05216-y

  17. 17. Arner, P., Bernard, S., Appelsved, L., et al. (2019) Adipose Li-pid Turnover and Long-Term Changes in Body Weight. Nature Medicine, 25, 1385-1389. https://doi.org/10.1038/s41591-019-0565-5

  18. 18. Kim, C.Y., Kang, B., Suh, H.J. and Choi, H.-S. (2019) Par-thenolide, a Feverfew-Derived Phytochemical, Ameliorates Obesity and Obesity-Induced Inflammatory Responses via the Nrf2/Keap1 Pathway. Pharmacological Research, 145, Article ID: 104259. https://doi.org/10.1016/j.phrs.2019.104259

  19. 19. Xin, M., Jin, X., Cui, X., et al. (2019) Dipeptidyl Peptidase-4 In-hibition Prevents Vascular Aging in Mice under Chronic Stress: Modulation of Oxidative Stress and Inflammation. Chemico-Biological Interactions, 314, Article ID: 108842. https://doi.org/10.1016/j.cbi.2019.108842

  20. 20. Sharma, A., Singh, S., Ahmad, S., et al. (2021) NOD1 Activation Induces Oxidative Stress via NOX1/4 in Adipocytes. Free Radical Biology and Medicine, 162, 118-128. https://doi.org/10.1016/j.freeradbiomed.2020.11.036

  21. 21. Hasegawa, Y., Hayashi, K., Takemoto, Y., et al. (2017) DPP-4 Inhibition with Linagliptin Ameliorates the Progression of Premature Aging in Klotho-/- Mice. Cardiovascular Diabetology, 16, Article No. 154. https://doi.org/10.1186/s12933-017-0639-y

  22. 22. Darsalia, V., Klein, T., Nyström, T. and Patrone, C. (2018) Glu-cagon-Like Receptor 1 Agonists and DPP-4 Inhibitors: Anti-Diabetic Drugs with Anti-Stroke Potential. Neuropharma-cology, 136, 280-286. https://doi.org/10.1016/j.neuropharm.2017.08.022

  23. 23. Lee, M.M.Y., Petrie, M.C., McMurray, J.J.V. and Sattar, N. (2020) How Do SGLT2 (Sodium-Glucose Cotransporter 2) Inhibitors and GLP-1 (Glucagon-Like Peptide-1) Receptor Agonists Reduce Cardiovascular Outcomes?: Completed and Ongoing Mechanistic Trials. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 506-522. https://doi.org/10.1161/ATVBAHA.119.311904

  24. 24. Wang, Z., Ka, S.-O., Lee, Y., Park, B.-H. and Bae, E.J. (2017) Butein Induction of HO-1 by p38 MAPK/Nrf2 Pathway in Adipocytes Attenuates High-Fat Diet Induced Adi-pose Hypertrophy in Mice. European Journal of Pharmacology, 799, 201-210. https://doi.org/10.1016/j.ejphar.2017.02.021

  25. 25. Ottobelli Chielle, E., de Souza, W.M., da Silva, T.P., Moresco, R.N. and Moretto, M.B. (2016) Adipocytokines, Inflammatory and Oxidative Stress Markers of Clinical Relevance Al-tered in Young Overweight/Obese Subjects. Clinical Biochemistry, 49, 548-553. https://doi.org/10.1016/j.clinbiochem.2016.01.003

  26. 26. 夏莉, 胡红琳, 戚仁娟, 等. 西格列汀对肥胖大鼠血清内脏脂肪素水平的影响研究[J]. 安徽医学, 2016, 37(3): 262-265.

  27. 27. Wang, X., Ke, J., Zhu, Y.-J., Cao, B., Yin, R.-L., Wang, Y., Wei, L.-L., Zhang, L.-J., Yang, L.-Y. and Zhao, D. (2021) Dipeptidyl Peptidase-4 (DPP4) Inhibitor Sitagliptin Alleviates Liver Inflammation of Diabetic Mice by Acting as a ROS Scavenger and Inhibiting the NFκB Pathway. Cell Death Discovery, 7, Article No. 236. https://doi.org/10.1038/s41420-021-00625-7

  28. 28. Shiraki, A., Oyama, J., Shimizu, T. and Node, N. (2022) The DPP4 Inhibitor Linagliptin Exacerbated Heart Failure due to Energy Deficiency via Downregulation of Glucose Absorp-tion and Utilization in Mice. European Heart Journal, 43, Article ID: ehac544.2682. https://doi.org/10.1093/eurheartj/ehac544.2682

  29. 29. Li, R., Zeng, X., Yang, M., Xu, X., Feng, J., Bao, L., Xue, B., Wang, X. and Huang, Y. (2021) Antidiabetic Agent DPP-4i Facilitates Murine Breast Cancer Metastasis by Oncogenic ROS-NRF2-HO-1 Axis via a Positive NRF2-HO-1 Feedback Loop. Frontiers in Oncology, 11, Article ID: 679816. https://doi.org/10.3389/fonc.2021.679816

  30. 30. Cao, Q., Xu, D., Chen, Y., Long, Y., Dai, F., Gui, L. and Lu, Y. (2021) Sitagliptin Reduces Endothelial Dysfunction and Apoptosis Induced by High-Fat Diet and Palmitate in Thoracic Aortas and Endothelial Cells via ROS-ER Stress- CHOP Pathway. Frontiers in Pharmacology, 12, Article ID: 670389. https://doi.org/10.3389/fphar.2021.670389

  31. 31. Ishibashi, Y., Matsui, T., Maeda, S., Higashimoto, Y. and Yamag-ishi, S. (2013) Advanced Glycation End Products Evoke Endothelial Cell Damage by Stimulating Soluble Dipeptidyl Peptidase-4 Production and Its Interaction with Mannose 6-Phosphate/Insulin-Like Growth Factor II Receptor. Cardio-vascular Diabetology, 12, 125.

  32. NOTES

    *通讯作者。

期刊菜单