Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67839 , 8 pages
10.12677/ACM.2023.1361432

脓毒症相关急性肾损伤病理生理机制及生物标志物的研究进展

田雄1,吕荣华2

1青海大学研究生院,青海 西宁

2青海大学附属医院急诊内科,青海 西宁

收稿日期:2023年5月26日;录用日期:2023年6月21日;发布日期:2023年6月29日

摘要

脓毒症相关急性肾损伤(SA-AKI)是一种急性功能障碍和器官损伤综合征,在ICU中,占所有AKI的一半。其发病机制仍然不太清楚,多种机制在不同患者及病程中以不同的强度作用,最终导致组织耐受,或者进一步导致肾小管、肾小球、足细胞损伤,从而产生不同的分型。脓毒症性AKI的主要诊断,包括尿量减少和血清肌酐水平升高。然而,这些指标可能受到多种因素的影响,血清肌酐对损伤的反应较慢,在功能损失超过50%之前不会发生变化,此外,肌肉质量、饮食、药物和脱水等因素影响。尿量无特异性,容易受到液体摄入量、药物和脱水等影响。这些缺点促使研究人员寻找新型AKI生物标志物,以及脓毒症相关生物标志物,以更早地检测脓毒症导致的肾脏应激或损伤,并预测SA-AKI的发展。

关键词

脓毒症相关急性肾损伤,病理生理机制,生物标志物,肌酐

Research Progress on the Pathophysiological Mechanisms and Biomarkers of Acute Kidney Injury in Sepsis

Xiong Tian1, Ronghua Lv2

1Graduate School of Qinghai University, Xining Qinghai

2Department of Emergency Medicine, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: May 26th, 2023; accepted: Jun. 21st, 2023; published: Jun. 29th, 2023

ABSTRACT

Sepsis-associated acute kidney injury (SA-AKI) is a syndrome characterized by acute functional impairment and organ damage, accounting for half of all cases of acute kidney injury (AKI) in the ICU. The underlying mechanisms of SA-AKI are still not fully understood, as multiple mechanisms act with varying intensities in different patients and stages of the disease, ultimately leading to tissue tolerance or further injury to renal tubules, glomeruli, and podocytes, resulting in different subtypes. The primary diagnostic criteria for sepsis-related AKI include decreased urine output and elevated serum creatinine levels. However, these indicators may be influenced by various factors, and serum creatinine responds slowly to injury, not changing until functional loss exceeds 50%. Additionally, it is susceptible to factors such as muscle mass, diet, medications, and dehydration. Urine output lacks specificity and can be affected by factors such as fluid intake, medications, and dehydration. These limitations have prompted researchers to seek novel AKI biomarkers and sepsis-related biomarkers to detect renal stress or injury caused by sepsis earlier and predict the development of SA-AKI.

Keywords:Sepsis-Associated Acute Kidney Injury, Pathophysiological Mechanisms, Biomarkers, Creatinine

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脓毒症的特征是宿主对感染的反应失调,导致危及生命的器官功能障碍,通常包括急性肾损伤(AKI) [1] ,脓毒症相关急性肾损伤通常在早期就可以出现,表现为肾脏的滤过和清除氮质代谢产物能力明显受损或衰竭。脓毒症占危重患者所有AKI病例的45%~70% [2] [3] 。脓毒症相关急性肾损伤(SA-AKI)的病理生理学复杂,多种机制以不同的强度在不同患者之间和患者病程中均有贡献 [4] 。脓毒症相关急性肾损伤的预后不良,住院时间长,死亡率高 [5] 。因此早期识别脓毒症相关急性肾损伤,对提供支持性治疗和避免进一步损伤肾功能至关重要。目前临床上仍以血肌酐和尿量作为诊断标准 [6] ,在脓毒症的基础上,KDIGO标准定义了AKI的三个阶段,分别基于血清肌酐水平和尿量。第1阶段包括血清肌酐水平升高1.5~1.9倍基线或 ≥ 0.3 mg/dl (≥ 26.5 µmol/l)增加,或尿量 < 0.5 ml/kg/h持续6~12小时。第2阶段包括血清肌酐水平升高2.0~2.9倍基线或尿量 < 0.5 ml/kg/h持续 ≥ 12小时。第3阶段包括血清肌酐水平升高3倍基线或增加至 ≥ 4.0 mg/dl (353.6 µmol/l)或开始肾脏替代治疗,或在 < 18岁患者中,eGFR < 35 ml/min/1.73m2或尿量 < 0.3 ml/kg/h持续 ≥ 24小时或无尿持续 ≥ 12小时,但各有缺点,因此病理生理学和生物标记物的研究进展,对于脓毒症相关急性肾损伤十分重要,本文通过对于脓毒症相关急性肾损伤的病理生理学和生物标记物展开综述,以提高大家对脓毒症相关急性肾损伤的早期认识与治疗。

2. 脓毒症相关急性肾损伤的定义及诊断标准

脓毒症相关急性肾损伤(SA-AKI)定义为脓毒症发病后7天内发生的AKI,分别根据拯救脓毒症运动(Surviving Sepsis Campaign, SSC)于2016年发布了《脓毒症与脓毒性休克国际处理指南(Sepsis3.0)》 [7] ,以及肾脏疾病:改善整体预后标准(Kidney Disease: Improving Global Outcomes, KDIGO)于2012年发布了《KDIGO急性肾损伤临床实践指南》 [8] 共同诊断,因此,SA-AKI应描述为同时具有Sepsis-3和KDIGO标准的综合征。

Sepsis-3标准是用于诊断脓毒症的最新标准。根据Sepsis-3标准,脓毒症定义为生命威胁的器官功能障碍,由于机体对感染的反应而导致。器官功能障碍可以通过SOFA评分(Sequential Organ Failure Assessment)的急性变化 ≥ 2分来识别。

RIFLE标准(危险、损伤、衰竭、丧失和终末期肾衰竭)由急性透析质量倡议提出。最近,肾脏疾病:改善整体预后(KDIGO)小组提出了标准的统一版本,代表了全球共识。

KDIGO标准定义了AKI的三个阶段,分别基于血清肌酐水平和尿量。第1阶段包括血清肌酐水平升高1.5~1.9倍基线或 ≥ 0.3 mg/dl (≥26.5 µmol/l)增加,或尿量 < 0.5 ml/kg/h持续6~12小时。第2阶段包括血清肌酐水平升高2.0~2.9倍基线或尿量 < 0.5 ml/kg/h持续 ≥ 12小时。第3阶段包括血清肌酐水平升高3倍基线或增加至 ≥ 4.0 mg/dl (353.6 µmol/l)或开始肾脏替代治疗,或在 < 18岁患者中,eGFR < 35 ml/min/1.73 m2或尿量 < 0.3 ml/kg/h持续 ≥ 24小时或无尿持续 ≥ 12小时。

3. 脓毒症相关急性肾损伤病理生理机制

SA-AKI的病理生理机制仍然不明确,当脓毒症发生时,病原体相关分子模式(PAMP) (如脂多糖)和受损细胞和组织的损伤相关分子模式(DAMP) [4] 的释放可导致免疫系统激活失调,在这基础上不同背景易感性均可以导致SA-AKI的发生。如循环功能障碍与急性肾小管坏死、线粒体功能障碍与代谢重编程、细胞死亡、凝血作用等 [4] [5] 。SA-AKI存在多种机制,以不同的强度在不同患者之间和患者病程中均有贡献,最终导致组织耐受或者肾小管、肾小球、足细胞损伤产生不同的分型,以下为SA-AKI研究最多的机制。

3.1. 循环功能障碍与急性肾小管坏死

循环功能障碍与急性肾小管坏死机制涉及多个过程,包括循环功能障碍与血管内皮细胞损伤,以及从而导致的肾小管上皮细胞损伤和功能障碍、补体激活、炎症与免疫细胞。

3.1.1. 循环功能障碍与血管内皮细胞损伤

传统上认为脓毒症相关急性肾损伤是由大循环障碍引起的,但现有研究表明,在脓毒症性急性肾损伤(AKI)中,部分存在肾血流量(RBF)不变或增加,但仍然会发生缺血。更多的实验研究表明,在脓毒症性AKI中,血流从肾髓质向肾皮质重新分布,导致髓质缺氧。这种改变意味着激活了肾内分流途径。

这种现象,即RBF与肾小球滤过率(GFR)分离 [6] ,肾内血液动力学(微血管)的变化可能提供这样的解释。例如,GFR可能会因为入球小动脉和出球小动脉之间关系的变化而减少,出球小动脉比入球小动脉扩张更大,导致滤过压下降。这一理论为SA-AKI中灌注与功能分离的现象提供了解释(这种现象也在人类身上看到),但仍未经过实证检验。

这也导致血管内皮细胞损伤 [7] ,除此之外,白细胞与内皮细胞相互作用 [8] ,以及其他炎症介质,也在内皮细胞损伤中产生作用,进而黏附分子上调 [9] ,促进白细胞及内皮细胞之间的作用,导致局部微循环血流改变、持续性缺血和肾小管损伤。

3.1.2. 肾小管上皮细胞损伤和功能障碍

近端小管起始段的细胞对缺血尤为敏感,在微循环缺血时,肾髓质通常处于濒临缺氧的状态,导致肾小管上皮细胞损伤,继而导致多种继发性损害,包括细胞内钙蓄积、活性氧的生成、ATP损耗及细胞凋亡 [10] ,这些因素可能导致细胞死亡或脱落进入肾小管管腔,从而应激诱导的整合素受体从基底侧膜向管腔膜的重新分布,在管腔膜上,整合素受体促进其他脱落细胞的黏附,进而导致小管内阻塞 [11] 。

3.1.3. 补体激活

直接或间接地引起肾脏损伤,补体激活后生成的C3a和C5a,与肾脏中的C3a和C5a受体结合,促发全身性炎症反应 [12] ,导致肾脏损伤。补体替代途径活化所形成的膜攻击复合物(C5~C9)也可引发肾脏损伤 [13] [14] 。

3.1.4. 炎症及免疫细胞

炎症是发病机制的一个重要因素。微循环功能障碍导致内皮细胞损伤,可导致黏附分子上调。这些黏附分子会促进炎症细胞与内皮细胞间的相互作用,进一步导致脓毒症相关急性肾损伤的发生。肾损伤会引发固有免疫系统的反应 [15] [16] [17] ,包括中性粒细胞、自然杀伤T细胞和巨噬细胞。微生物产物以及内源性分子也会导致树突状细胞和巨噬细胞产生非特异性免疫应答,进而激活自然杀伤T细胞 [18] ,炎症反应和免疫应答将会导致白细胞滞留于炎症部位及补体激活,以及通过细胞因子与补体/攻膜复合体及自然杀伤细胞清除病原。

3.2. 线粒体功能障碍及代谢重编程

在脓毒症患者中,心功能和肾功能障碍的发生不一定伴随着细胞死亡 [19] ,但可能与线粒体功能紊乱有关,例如线粒体代谢和动力学的改变、线粒体自噬降低和线粒体分裂增加等 [20] 。代谢重编程 [21] 目前的机制不明,主要使细胞能够执行抗性和耐受性途径,承受损伤,引导组织修复并促进器官恢复。

3.3. 细胞死亡

在脓毒症期间,各种细胞死亡途径被激活,包括细胞凋亡、促炎性细胞死亡等,这可能会延迟或加重炎症反应,导致多器官衰竭。细胞凋亡是一种受调控的细胞死亡机制,是消除衰老细胞以功能失常细胞的主要机制。脓毒症也诱导广泛的淋巴细胞和树突状细胞凋亡,从而改变免疫反应,减弱对微生物的清除作用。抑制细胞凋亡可以减少器官功能障碍和死亡 [22] [23] 。炎症复合体能精密调节半胱天冬酶-1的激活,以及促炎细胞因子的生成与分泌,介导质膜快速破裂,即促炎性细胞死亡。

3.4. 凝血作用

DIC是脓毒症引起的一种获得性综合征,特征是全身性血管内凝血激活。随着脓毒症引起促炎刺激,内皮细胞失去抗凝功能,细胞表面血栓调节蛋白的表达减少,组织因子表达增加。凝血功能改变和炎症可导致器官功能障 [24] 。

4. 脓毒症相关急性肾损伤生物标志物

4.1. 与AKI相关的生物标志物

4.1.1. TIMP-2和IGFBP7

脓毒症及缺血引起的细胞损伤及修复与细胞周期调节有关,这两者在上皮细胞表达,能在AKI时以自分泌和旁分泌的方式使细胞周期停滞 [25] [26] 。远远先于临床表现(氮质血症和少尿)而改善AKI风险分层,旨在预测12小时内发生2~3的AKI。

4.1.2. KIM-1

肾损伤分子1 (Kidney injury molecule-1, KIM-1)是一种跨膜蛋白,在正常肾脏中较少,在肾损伤区近端小管上皮细胞中表达 [27] [28] 。它可能参与肾脏损伤或修复的进展。KIM-1水平在肾小管损伤后12~24小时增加,在2~3天达到峰值 [29] 。

4.1.3. 低分子量蛋白质

尿低分子量蛋白包括:α1-微球蛋白、β2-微球蛋白、视黄醇结合蛋白、腺苷脱氨酶结合蛋白及尿胱抑素C。它们在不同的部位产生,经肾小球滤过,被近端小管重吸收而不被分泌,有预测预后的前景。

4.1.4. L型脂肪酸结合蛋白

在肾脏中,L型脂肪酸结合蛋白在肾近端肾小管上皮细胞中表达,并反应肾脏损伤 [30] ,迅速脱落到尿液中。可辨别AKI的诊断,并能预测透析需求及院内死亡率 [31] 。

4.1.5. 中性粒细胞明胶酶相关脂质运载蛋白

缺血后的肾脏中,中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin, NGAL)显著上调且大量表达 [32] 。在这种情况下,NGAL可能通过减少细胞凋亡和增加肾小管细胞的正常增殖而抑制毒性。肾小管损伤后4~6小时达到峰值;在败血症和炎症中升高 [33] [34] 。

4.1.6. 胱抑素c

是一种非糖基化13 kda蛋白,是半胱氨酸蛋白酶抑制剂超家族成员。它由所有有核细胞定期产生,在肾小球自由过滤,最后分解代谢 [35] ,可用于临床GFR估计。

4.1.7. 呋塞米压力试验

呋塞米是危重患者最常用的利尿剂;呋塞米压力试验是一项用于评估AKI进展风险的临床检查 [36] 。具体方法是对血容量正常的1~2期AKI患者静脉注射呋塞米,未使用该药者剂量为1 mg/kg,已使用者为1.5 mg/kg。应用呋塞米后2小时的尿量 > 200 mL表示对FST有反应。观察性研究发现,对FST无反应可预测AKI进展至3期、需要肾脏替代治疗和院内死亡率高。

4.1.8. 肾内静脉血流

多普勒超声测定,新兴的非侵入性标记物,用于评估由于右侧心脏充盈压增加、容量超负荷、腹内压升高引起的肾充血 [37] 。

4.2. 与脓毒症相关的生物标志物

4.2.1. 可溶性髓系细胞触发受体-1

sTREM-1 (可溶性髓系细胞触发受体-1)是一种跨膜受体,表达在先天免疫细胞中,包括内皮细胞和血小板。sTREM-1是脓毒性休克的关键介质,通过与Toll样受体(TLRs)协同作用,放大对病原体的炎症反应,从而促进脓毒症引起的免疫失调和器官功能障碍 [38] [39] ,sTREM-1用于早期脓毒症识别,以及估计其严重程度和预后;也用于预测SA-AKI [40] 。

4.2.2. 肝素结合蛋白

HBP (肝素结合蛋白)是一种由中性粒细胞分泌的与肝素亲和性强的蛋白质,被认为是炎症反应中的一个重要调节因子,可以刺激血管通透性和白细胞黏附,进而促进炎症的发展。HBP的浓度在感染和炎症等疾病的患者中明显升高,因此被广泛作为一种炎症指标和预后评估指标使用。在AKI 0、1、2和3阶段的患者中 [41] ,中位血浆HBP为14 ng/ml (IQR 7~28 ng/ml)、19 ng/ml (IQR 9~37 ng/ml)、26 ng/ml (IQR 11~70 ng/ml)和30 ng/ml (IQR 15~76 ng/ml)。

4.2.3. 降钙素原

血清降钙素原(procalcitonin, PCT)是一种由甲状腺C细胞合成的多肽前体,在正常情况下,PCT水平很低,但在感染和炎症等疾病状态下,PCT水平会显著升高。因此,血清PCT水平已成为一种常用的炎症指标和感染诊断指标,入院时血清降钙素原的截止水平为52.59 ng/ml时,预测AKI敏感性和特异性值分别为50%和84% [42] 。

4.2.4. IL- 6及IL-8

IL-6由天然免疫细胞,如巨噬细胞,在遇到损伤相关分子模式(DAMP)或病原体相关分子模式(PAMPs)后迅速表达,作为宿主防御策略的一部分,以清除感染细胞或受损组织。IL-8是巨噬细胞和上皮细胞等分泌的细胞因子,对中性粒细胞有细胞趋化作用,从而实现其对炎症反应的调节。两者均在SA-AKI血清中升高。

5. 总结与展望

脓毒症患者存在AKI的现象很常见,SA-AKI由脓毒症共识标准和AKI标准定义,早期 SA-AKI发生在脓毒症诊断后48小时内,晚期SA-AKI发生在脓毒症诊断后48小时至7天内。多种机制可以促进SA-AKI的发展,它们的相对贡献可能定义不同的SA-AKI类型。这些类型可以通过使用AKI生物标志物来识别,包括功能、压力和组织损伤相关的生物标志物,以及脓毒症相关生物标志物与临床信息。虽然近年来在病理生理机制和生物标志物方面的研究取得了重要进展,但目前缺乏有效的预测及治疗方法,需要更多的前瞻性研究来研究确定新的预测标志物和治疗策略,并进行更深入的基础研究来理解不同的病因和病理生理机制。

文章引用

田 雄,吕荣华. 脓毒症相关急性肾损伤病理生理机制及生物标志物的研究进展
Research Progress on the Pathophysiological Mechanisms and Biomarkers of Acute Kidney Injury in Sepsis[J]. 临床医学进展, 2023, 13(06): 10232-10239. https://doi.org/10.12677/ACM.2023.1361432

参考文献

  1. 1. Singer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287

  2. 2. Uchino, S., et al. (2005) Acute Renal Failure in Criti-cally Ill Patients: A Multinational, Multicenter Study. JAMA, 294, 813-818. https://doi.org/10.1001/jama.294.7.813

  3. 3. Hoste, E.A.J., et al. (2015) Epidemiology of Acute Kidney Injury in Critically Ill Patients: The Multinational AKI-EPI Study. Intensive Care Medicine, 41, 1411-1423. https://doi.org/10.1001/jama.294.7.813

  4. 4. Zarbock, A., Nadim, M.K., Pickkers, P., et al. (2023) Sep-sis-Associated Acute Kidney Injury: Consensus Report of the 28th Acute Disease Quality Initiative Workgroup. Nature Reviews Nephrology, 19, 401-417. https://doi.org/10.1038/s41581-023-00683-3

  5. 5. Schrier, R.W. and Wang, W. (2004) Acute Renal Failure and Sepsis. New England Journal of Medicine, 351, 159-169. https://doi.org/10.1056/NEJMra032401

  6. 6. Khwaja, A. (2012) KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clinical Practice, 120, c179-c184. https://doi.org/10.1159/000339789

  7. 7. Molitoris, B.A. and Sutton, T.A. (2004) Endothelial Injury and Dysfunction: Role in the Extension Phase of Acute Renal Failure. Kidney International, 66, 496-499. https://doi.org/10.1111/j.1523-1755.2004.761_5.x

  8. 8. Li, L., Huang, L., Sung, S.-S., et al. (2008) The Chemokine Receptors CCR2 and CX3CR1 Mediate Monocyte/Macrophage Trafficking in Kidney Is-chemia-Reperfusion Injury. Kidney International, 74, 1526-1537. https://doi.org/10.1038/ki.2008.500

  9. 9. Kelly, K.J., Williams Jr., W.W., Colvin, R.B., et al. (1996) Intercellular Adhesion Molecule-1-Deficient Mice Are Protected against Ischemic Renal Injury. Journal of Clinical Investigation, 97, 1056-1063. https://doi.org/10.1172/JCI118498

  10. 10. Kaushal, G.P., Basnakian, A.G. and Shah, S.V. (2004) Apoptotic Path-ways in Ischemic Acute Renal Failure. Kidney International, 66, 500-506. https://doi.org/10.1111/j.1523-1755.2004.761_6.x

  11. 11. Noiri, E., Romanov, V., Forest, T., et al. (1995) Patho-physiology of Renal Tubular Obstruction: Therapeutic Role of Synthetic RGD Peptides in Acute Renal Failure. Kidney International, 48, 1375-1385. https://doi.org/10.1038/ki.1995.426

  12. 12. Mathern, D.R. and Heeger, P.S. (2015) Molecules Great and Small: The Complement System. Clinical Journal of the American Society of Nephrology, 10, 1636-1650. https://doi.org/10.2215/CJN.06230614

  13. 13. Zhou, W., Farrar, C.A., Abe, K., et al. (2000) Predominant Role for C5b-9 in Renal Ischemia/Reperfusion Injury. Journal of Clinical Investigation, 105, 1363-1371. https://doi.org/10.1172/JCI8621

  14. 14. Thurman, J.M., Lucia, M.S., Ljubanovic, D. and Holers, V.M. (2005) Acute Tubular Necrosis Is Characterized by Activation of the Alternative Pathway of Complement. Kidney International, 67, 524-530. https://doi.org/10.1111/j.1523-1755.2005.67109.x

  15. 15. Bonventre, J.V. and Zuk, A. (2004) Ischemic Acute Renal Failure: An Inflammatory Disease? Kidney International, 66, 480-485. https://doi.org/10.1111/j.1523-1755.2004.761_2.x

  16. 16. Matzinger, P. (2002) The Danger Model: A Renewed Sense of Self. Science, 296, 301-305. https://doi.org/10.1126/science.1071059

  17. 17. Li, L. and Okusa, M.D. (2006) Blocking the Immune Response in Ischemic Acute Kidney Injury: The Role of Adenosine 2A Agonists. Nature Clinical Practice Nephrology, 2, 432-444. https://doi.org/10.1038/ncpneph0238

  18. 18. Li, L., Huang, L., Vergis, A.L., et al. (2010) IL-17 Produced by Neu-trophils Regulates IFN-γ-Mediated Neutrophil Migration in Mouse Kidney Ischemia-Reperfusion Injury. Journal of Clinical Investigation, 120, 331-342. https://doi.org/10.1172/JCI38702

  19. 19. Takasu, O., Gaut, J.P., Watanabe, E., et al. (2013) Mechanisms of Cardiac and Renal Dysfunction in Patients Dying of Sepsis. American Journal of Respiratory and Critical Care Medicine, 187, 500-517. https://doi.org/10.1164/rccm.201211-1983OC

  20. 20. Durand, A., Duburcq, T., Dekeyser, T., et al. (2017) Involve-ment of Mitochondrial Disorders in Septic Cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 4076348. https://doi.org/10.1155/2017/4076348

  21. 21. Gómez, H., Kellum, J. and Ronco, C. (2017) Metabolic Re-programming and Tolerance during Sepsis-Induced AKI. Nature Reviews Nephrology, 13, 143-151. https://doi.org/10.1038/nrneph.2016.186

  22. 22. Marshall, J.C. and Watson, R.W.G. (1997) Apoptosis in the Resolu-tion of Systemic Inflammation. In: Vincent, J.-L., Ed., Yearbook of Intensive Care and Emergency Medicine 1997. Year-book of Intensive Care and Emergency Medicine, Vol. 1997, Springer, Berlin, 100-108. https://doi.org/10.1007/978-3-662-13450-4_10

  23. 23. Coopersmith, C.M., Stromberg, P.E., Dunne, W.M., et al. (2002) Inhibition of Intestinal Epithelial Apoptosis and Survival in a Murine Model of Pneumonia-Induced Sepsis. JAMA, 287, 1716-1721. https://doi.org/10.1001/jama.287.13.1716

  24. 24. Iba, T., Levi, M. and Levy, J.H. (2020) Sepsis-Induced Coagulopa-thy and Disseminated Intravascular Coagulation. Seminars in Thrombosis and Hemostasis, 46, 89-95. https://doi.org/10.1055/s-0039-1694995

  25. 25. Witzgall, R., Brown, D., Schwarz, C. and Bonventre, J.V. (1994) Localization of Proliferating Cell Nuclear Antigen, Vimentin, C-Fos, and Clusterin in the Postischemic Kidney. Evidence for a Heterogenous Genetic Response among Nephron Segments, and a Large Pool of Mitotically Active and Dedifferen-tiated Cells. Journal of Clinical Investigation, 93, 2175-2188. https://doi.org/10.1172/JCI117214

  26. 26. Yang, Q.-H., Liu, D.-W., Long, Y., et al. (2009) Acute Renal Failure during Sepsis: Potential Role of Cell Cycle Regulation. Journal of Infection, 58, 459-464. https://doi.org/10.1016/j.jinf.2009.04.003

  27. 27. Vaidya, V.S., Ramirez, V., Ichimura, T., et al. (2006) Urinary Kidney Injury Molecule-1: A Sensitive Quantitative Biomarker for Early Detection of Kidney Tub-ular Injury. American Journal of Physiology-Renal Physiology, 290, F517-F529. https://doi.org/10.1152/ajprenal.00291.2005

  28. 28. Han, W.K., Bailly, V., Abichandani, R., et al. (2002) Kidney In-jury Molecule-1 (KIM-1): A Novel Biomarker for Human Renal Proximal Tubule Injury. Kidney International, 62, 237-244. https://doi.org/10.1046/j.1523-1755.2002.00433.x

  29. 29. Ismail, O.Z., et al. (2015) Kidney Injury Molecule-1 Pro-tects against Gα12 Activation and Tissue Damage in Renal Ischemia-Reperfusion Injury. The American Journal of Pa-thology, 185, 1207-1215. https://doi.org/10.1016/j.ajpath.2015.02.003

  30. 30. Kamijo, A., Sugaya, T., Hikawa, A., et al. (2004) Urinary Excre-tion of Fatty Acid-Binding Protein Reflects Stress Overload on the Proximal Tubules. The American Journal of Patholo-gy, 165, 1243-1255. https://doi.org/10.1016/S0002-9440(10)63384-6

  31. 31. Susantitaphong, P., Siribamrungwong, M., Doi, K., et al. (2013) Performance of Urinary Liver-Type Fatty Acid-Binding Protein in Acute Kidney Injury: A Meta-Analysis. Amer-ican Journal of Kidney Diseases, 61, 430-439. https://doi.org/10.1053/j.ajkd.2012.10.016

  32. 32. Herget-Rosenthal, S. (2005) One Step Forward in the Early Detec-tion of Acute Renal Failure. Lancet, 365, 1205-1206. https://doi.org/10.1016/S0140-6736(05)74787-5

  33. 33. Bagshaw, S.M., et al. (2010) Plasma and Urine Neutrophil Gelatinase-Associated Lipocalin in Septic versus Non-Septic Acute Kidney Injury in Critical Illness. Intensive Care Medicine, 36, 452-461. https://doi.org/10.1007/s00134-009-1724-9

  34. 34. de Geus, H.R.H., Bakker, J., Lesaffre, E.M.H. and le Noble, J.L.M.L. (2011) Neutrophil Gelatinase-Associated Lipocalin at ICU Admission Predicts for Acute Kidney Injury in Adult Patients. American Journal of Respiratory and Critical Care Medicine, 183, 907-914. https://doi.org/10.1164/rccm.200908-1214OC

  35. 35. Leem, A.Y., Park, M.S., Park, B.H., et al. (2017) Value of Se-rum Cystatin C Measurement in the Diagnosis of Sepsis-Induced Kidney Injury and Prediction of Renal Function Re-covery. Yonsei Medical Journal, 58, 604-612. https://doi.org/10.3349/ymj.2017.58.3.604

  36. 36. Chawla, L.S., Davison, D.L., Brasha-Mitchell, E., et al. (2013) Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury. Critical Care, 17, Article No. R207. https://doi.org/10.1186/cc13015

  37. 37. Husain-Syed, F., et al. (2021) Congestive Nephropathy: A Neglected Entity? Proposal for Diagnostic Criteria and Future Perspectives. ESC Heart Failure, 8, 183-203. https://doi.org/10.1002/ehf2.13118

  38. 38. Bouchon, A., Dietrich, J. and Colonna, M. (2000) Cutting Edge: Inflam-matory Responses Can Be Triggered by TREM-1, a Novel Receptor Expressed on Neutrophils and Monocytes. The Journal of Immunology, 164, 4991-4995. https://doi.org/10.4049/jimmunol.164.10.4991

  39. 39. Jolly, L., Carrasco, K., Derive, M., Lemarié, J., Boufenzer, A. and Gibot, S. (2018) Targeted Endothelial Gene Deletion of Triggering Receptor Expressed on Myeloid Cells-1 Protects Mice during Septic Shock. Cardiovascular Research, 114, 907-918. https://doi.org/10.1093/cvr/cvy018

  40. 40. Su, L.-X., et al. (2011) Diagnostic Value of Urine sTREM-1 for Sepsis and Relevant Acute Kidney Injuries: A Prospective Study. Critical Care, 15, Article No. R250. https://doi.org/10.1186/cc10508

  41. 41. Tverring, J., et al. (2017) Hepa-rin-Binding Protein (HBP) Improves Prediction of Sepsis-Related Acute Kidney Injury. Annals of Intensive Care, 7, Ar-ticle No. 105. https://doi.org/10.1186/s13613-017-0330-1

  42. 42. Hu, Q., et al. (2021) Association between Admis-sion Serum Procalcitonin and the Occurrence of Acute Kidney Injury in Patients with Septic Shock: A Retrospective Co-hort Study. Science Progress, 104. https://doi.org/10.1177/00368504211043768

期刊菜单