Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61637 , 7 pages
10.12677/ACM.2023.132359

成纤维细胞生长因子在骨关节炎的研究进展

何子轩1,陈海啸2*

1浙江大学医学院,浙江 杭州

2浙江大学附属台州医院,浙江 临海

收稿日期:2023年1月19日;录用日期:2023年2月14日;发布日期:2023年2月22日

摘要

骨关节炎是一种退行性慢性关节疾病,目前临床治疗效果不佳,严重影响病人的生活质量。成纤维细胞生长因子信号通路不仅参与调节正常的生理过程,在骨关节炎的发生发展中也扮演关键角色,尤其是在软骨代谢及合成方面意义重大。本文就近年来FGF/FGFR信号通路参与骨关节炎发生发展、软骨及软骨下骨退变机制以及与该通路相关的靶点在骨关节炎治疗中的研究现状进行综述。

关键词

成纤维细胞生长因子,骨关节炎,软骨退化

Research Progress of Fibroblast Growth Factor Signalling in Osteoarthritis

Zixuan He1, Haixiao Chen2*

1Medical College of Zhejiang University, Hangzhou Zhejiang

2Taizhou Hospital Affiliated to Zhejiang University, Linhai Zhejiang

Received: Jan. 19th, 2023; accepted: Feb. 14th, 2023; published: Feb. 22nd, 2023

ABSTRACT

Osteoarthritis (OA) is a degenerative chronic joint disease. Although OA seriously affects the quality of life of patients, no effective treatment options are provided so far. Fibroblast growth factor signaling pathway is not only involved in regulating normal physiological processes, but also related to the occurrence and development of osteoarthritis, especially in cartilage metabolism and synthesis. In this review, recent studies about FGF/FGFR signaling pathway in the development of osteoarthritis, the mechanism of cartilage and subchondral bone degeneration, and the treatment of osteoarthritis related to this pathway were summarized.

Keywords:Fibroblast Growth Factor, Osteoarthritis, Cartilage Degeneration

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着我国进入老龄化社会,骨关节炎的发病率逐年上升,成为全世界中老年人群中最常见的慢性退行性疾病之一 [1] 。骨关节炎的主要病理改变包括关节软骨退变、软骨下骨增生硬化、滑膜组织炎症为主要特征的慢性关节疾病,可致关节的慢性疼痛以及功能障碍 [2] 。目前骨关节炎的发病机制尚不完全清楚,通常认为与衰老、代谢、损伤、炎症等因素相关。早期和中期骨关节炎的治疗策略是缓解关节疼痛和关节内注射等对症治疗为主,例如口服或者局部外用非甾体类消炎药以及口服氨基葡萄糖、关节腔内注射玻璃酸钠或糖皮质激素等;而晚期骨关节炎的治疗策略是关节置换手术,但仍要面临功能恢复不佳、人工关节寿命有限等不确定的因素 [3] 。

成纤维细胞生长因子(Fibroblast Growth Factors, FGFs)是一类结构相关的多肽家族,具有多种生物活性。成纤维细胞生长因子受体(FGF/FGFR)信号在早期软骨形成和成熟中有重要作用,同时也在关节软骨的生长修复及骨关节炎的进展中扮演关键角色 [4] 。在发育过程中FGF/FGFR信号异常会导致软骨发育不良或是成骨异常,而在成年期,它与关节软骨退化密切相关 [5] 。因此,FGF/FGFR信号的调节是治疗骨关节炎和软骨损伤的一种有前途的方法。我们描述了目前已知的FGF/FGFR信号系统在关节发育和稳态以及骨关节炎病因中的作用,进一步了解骨关节炎的发病机制,以期为软骨修复过程中FGF/FGFR信号通路的调控机制的研究奠定理论基础,为骨关节炎的防治提供新思路。

2. FGF信号通路

目前,哺乳动物中成纤维细胞生长因子家族共有22个成员,根据序列相似性、生化功能和进化关系可分为六个亚家族,即FGF1 (FGF1, 2)、FGF4 (FGF4, 5, 6)、FGF7 (FGF3, 7, 10, 22)、FGF8 (FGF8, 17, 18)、FGF9 (FGF9, 16, 20)和FGF19 (FGF19, 21, 23)亚家族 [4] 。前五个亚家族成员以旁分泌方式发出信号,而FGF19亚家族的成员以内分泌的方式发挥其生物学作用 [6] 。

成纤维细胞生长因子受体(FGFRs)现已鉴定出的有4种,即FGFR1、FGFR2、FGFR3和FGFR4。FGFRs由胞外配体结合区、跨膜螺旋区和胞内酪氨酸激酶结构域组成。FGFRs的胞外区域包含三个免疫球蛋白样结构域(D1-D3),在D1和D2结构域之间有一个富含丝氨酸序列的酸盒,协同D1结构域自动抑制FGFR,D2和D3负责特异性结合配体,D3结构域可进行选择性剪接 [6] [7] 。

FGFs配体通过硫酸乙酰肝素或Klotho依赖性途径与其同源细胞表面的FGFRs结合,激活FGFRs并促使FGFRs二聚体形成,再通过多条细胞内信号通路进行信号级联:二聚体FGFRs与成纤维细胞生长因子受体底物2 (fibroblast growth factor receptor substrate 2, FRS2)结合,后者发生磷酸化激活,与生长因子受体结合蛋白2 (growth factor receptor-bound protein 2, GRB2)结合,激活RAS-RAF-MEK-MAPK通路调控细胞增殖,GRB2也可与生长因子受体结合蛋白1 (growth factor receptor-bound protein 1, GRB1)结合激活PI3K-AKT-mTOR通路抑制细胞凋亡促进细胞存活 [8] [9] 。FGFRs也被发现可与磷脂酶C-γ (PLC-γ)连接,后续激活蛋白激酶C (protein kinase C, PKC)从而调控细胞反应 [10] 。

3. FGFRs对软骨细胞及在骨关节炎中的作用

3.1. 成纤维细胞生长因子受体1

研究表明退行性软骨中FGFR1的水平明显上调,且FGFR1的激活会导致软骨细胞肥大,这被认为是关节软骨变性启动和进展的关键步骤 [11] 。FGFR1信号通路通过RAF-MEK - ERK通路诱导转录因子RUNX2和ELK1的表达,上调MMP13、ADAMTS-5等蛋白表达水平加速关节软骨细胞的分解代谢活动,同时激活PKCδ-p38通路抑制软骨细胞中的蛋白聚糖合成 [12] 。此外,FGFR1的抑制剂可以抑制FGF2激活的软骨细胞分解代谢活动,并在DMM诱导的骨关节炎小鼠模型中减缓骨关节炎进展 [13] 。有文献报道,FGFR1条件缺失可促进关节软骨自噬活性,从而延缓了颞下颌关节骨关节炎模型中骨关节炎的进展,FGFR1信号的失活可上调FGFR3表达水平且抑制MMPs的形成,保护关节软骨免受损害 [14] [15] 。因此,FGFR1通过上调基质金属蛋白酶(MMPs)的产生,促进细胞外基质(ECM)退变,加速软骨破坏及骨关节炎的进展。

3.2. 成纤维细胞生长因子受体3

FGFR3在正常关节软骨细胞中大量表达,但在骨关节炎患者中显著降低 [16] 。Gladys等研究表明FGFR3敲除的小鼠发展为早发性关节炎并表现出异常的骨骼发育 [17] 。而条件敲除FGFR3和FGFR3 GOF突变的骨关节炎小鼠模型中进行的研究表明,FGFR3可能是通过下调关节软骨细胞中的IHH信号通路,进而实现延缓膝关节和颞下颌关节的骨关节炎进展 [18] [19] 。此外,Kuang等人提出髓系细胞中的FGFR3缺陷可上调CXC-趋化因子受体7 (CXCR7)的表达促进的巨噬细胞趋化作用,从而加剧小鼠关节破坏 [20] 。因此,多项研究表明FGFR3发挥软骨保护作用,在骨关节炎的调控中起到积极的保护作用。

4. FGFs对软骨细胞及在骨关节炎中的作用

4.1. 成纤维细胞生长因子1

FGF1是FGF家族的经典成员,在骨关节炎患者分离的软骨细胞中表达 [21] 。骨关节炎晚期患者滑膜组织及关节液中FGF1的表达和分泌显著增加,并与疾病晚期的骨关节炎进展相关 [22] 。结缔组织生长因子(Connective tissue growth factor, CTGF)在关节软骨发育、再生中起着关键作用 [23] ,Abdellatif等先后研究发现FGF1可与CTGF结合 [24] ,而FGF1处理的人软骨细胞中可观察到CTGF的表达下调。在骨关节炎大鼠模型中,FGF1可抑制CCN2蛋白的产生,并刺激MMP13的表达,加速软骨破坏 [25] 。这些研究的结果表明FGF1对软骨细胞具有分解代谢作用,因此可能是一种软骨破坏分子。

4.2. 成纤维细胞生长因子2

目前对FGF2在骨关节炎调控作用仍有很大的争议,其对关节软骨的作用既有保护作用又有危害作用。FGF2在骨关节炎患者的滑液中高度表达,受损的软骨会释放出来大量的FGF2,因此提示了FGF2作为组织损伤信号的可能性,随后激活细胞外信号调节的激酶信号通路 [26] 。FGF2更多地激活FGFR1,并通过RUNX2和ADAMTS5活化抑制关节软骨细胞中蛋白聚糖的积累 [11] [27] 。FGF2上调人关节软骨细胞MMP1和MMP13的表达水平,促进软骨细胞外基质的降解,这表明FGF2可能对人骨关节炎软骨诱导分解代谢作用 [28] 。因此,FGF2可能会促进骨关节炎的进程。 但是有研究结果表明FGF2可诱导金属蛋白酶抑制因子(TIMP1)在小鼠软骨中的表达,并可抑制IL-1诱导的ADAMTS4和ADAMTS5的表达和活性,起着软骨保护作用 [28] [29] 。FGF2敲除会导致小鼠出现自发性骨关节炎,且可以通过重组FGF2治疗来挽救,并且可能具有作为鼠骨关节炎软骨修复剂的潜力 [30] [31] 。FGF2在关节软骨稳态中看似矛盾的作用,其原因目前尚不清楚。矛盾结果可能与多种因素有关,包括使用的物种和模型的差异,以及FGF2应用的剂量、时间和持续时间的差异等,仍需进一步探索。

4.3. 成纤维细胞生长因子8

FGF8作为雄激素诱导的生长因子被分离出来,参与肢体形态发生和软骨发育 [32] 。Uchii等人发现,在半月板部分切除的骨关节炎兔模型中,FGF8增生的滑膜细胞和成纤维细胞中表达上调,而在正常兔中检测到很少的表达。在培养的软骨细胞中,FGF8诱导MMP3和前列腺素E2的释放,并引起ECM的降解。大鼠膝关节注射FGF8可导致加速ECM的降解,而注射抗FGF8抗体减缓ECM的降解 [33] 。因此,这表明FGF8可能在骨关节炎患者软骨分解代谢和合成代谢活性的平衡中发挥作用,促进软骨的退化和骨关节炎的加重。

4.4. 成纤维细胞生长因子9

研究表明与健康关节软骨相比,骨关节炎患者关节软骨中的FGF9表达显著减少。FGF9与FGFR3具有高度亲和性,可能可用于预防骨关节炎。关节内注射重组FGF9可减弱DMM处理小鼠骨关节炎模型中的软骨退化,并促进软骨细胞中II型胶原的表达以及减弱MMP13的表达。这些结果表明,FGF9在骨关节炎发育过程中对受损的关节软骨具有保护作用,部分原因是通过延缓软骨细胞的肥大。然而,FGF9治疗会加重骨赘的形成,从而产生不良反应,因此,需要采取进一步的研究,优化FGF9的剂量以获得更好的结果 [34] 。

4.5. 成纤维细胞生长因子18

据报道FGF18对软骨有显著的合成代谢作用以及关节软骨修复,而FGF18也是骨关节炎疾病中研究最多的成纤维细胞生长因子 [35] 。Moore等人证明,半月板手术处理大鼠骨关节炎模型中体内软骨厚度随FGF18注射后的剂量依赖性增加,进而导致软骨退变显着减少 [36] 。FGF18可能通过上调TIMP1表达促进软骨中II型胶原蛋白和蛋白聚糖的积累,并促进软骨发生和软骨修复 [37] 。此外,Li等人研究表明在FGF2处理后,noggin表达随剂量依赖性方式增加,而FGF18抑制noggin表达并促进人类软骨中的软骨形成活性。因此,由FGF2和FGF18介导的noggin信号平衡可能作为软骨稳态的潜在机制 [38] 。FGF18重组蛋白Sprifermin在骨关节炎治疗中的临床研究也正在进行中 [39] 。

5. FGFs/FGFRs在治疗骨关节炎的应用价值

FGFs/FGFRs信号系统在软骨发育和维持中发挥重要作用,靶向FGFs/FGFRs信号通路是治疗骨性关节炎和软骨损伤的一种有前途的方法。多项实验结果证明了FGF18对OA发生和进展的潜在保护作用。Sprifermin是目前唯一基于FGF信号的用于临床试验治疗骨关节炎药物——既能增加软骨厚度,又能减少软骨损失,没有明显的局部或全身安全问题 [37] [39] 。此外,2019年的一项随机对照试验通过观察2年的Sprifermin的疗效,每6或12个月关节内给药100 μg Sprifermin试验组对比安慰剂组膝关节软骨厚度有明显增加 [39] 。因此,FGF18是一种很有前途的骨关节炎治疗药物,同样也需要更长的观察时间,更深入地分析FGF18对其他关节成分和功能的影响。其他FGFs在骨关节炎治疗中的应用还不太成熟,发仍需要在基础实验中得到更加明确的药理作用与分子机制。FGFR1和FGFR3也是很有前途的骨关节炎替代药物靶点。最近的研究开始寻找减缓或逆转软骨降解的潜在生物制剂。FGFR3的激动剂,包括配体类似物和配体模拟抗体,也可能是有价值的骨关节炎治疗药物,这为未来的潜在治疗策略提供方向。

6. 总结

目前已经明确FGFs和FGFRs信号系统在骨关节炎发生、发展中密切相关,现有的研究也不断地揭示FGFs、FGFRs及其下游通路在生理和病理情况下的详细和复杂的作用,但仍需要更深入地完善其作用机制。例如,使用FGF18、FGF9和FGF2等作为骨关节炎的治疗方法的主要障碍之一是它们混杂激活FGFR1和FGFR3,从而对软骨维持产生伴随的分解代谢和合成代谢双重作用。此外,FGFs还具有浓度依赖性,从而使治疗时机、间隔时间和剂量都需要更精确地管理。对FGF、FGFRs和其他相关信号通路进行精确、有针对性的研究,为临床治疗骨关节炎提供新思路,也为治疗骨关节炎的药物研究提供理论支持。

文章引用

何子轩,陈海啸. 成纤维细胞生长因子在骨关节炎的研究进展
Research Progress of Fibroblast Growth Factor Signalling in Osteoarthritis[J]. 临床医学进展, 2023, 13(02): 2543-2549. https://doi.org/10.12677/ACM.2023.132359

参考文献

  1. 1. Bannuru, R.R., Osani, M.C., Vaysbrot, E.E., et al. (2019) OARSI Guidelines for the Non-Surgical Management of Knee, Hip, and Polyarticular Osteoarthritis. Osteoarthritis and Cartilage, 27, 1578-1589. https://doi.org/10.1016/j.joca.2019.06.011

  2. 2. Metcalfe, D., Perry, D.C., Claireaux, H.A., et al. (2019) Does This Patient Have Hip Osteoarthritis? The Rational Clinical Examination Systematic Review. JAMA, 322, 2323. https://doi.org/10.1001/jama.2019.19413

  3. 3. Kolasinski, S.L., Neogi, T., Hochberg, M.C., et al. (2020) 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis & Rheumatology, 72, 220-233. https://doi.org/10.1002/art.41142

  4. 4. Beenken, A. and Mohammadi, M. (2009) The FGF Family: Biology, Path-ophysiology and Therapy. Nature Reviews Drug Discovery, 8, 235-253. https://doi.org/10.1038/nrd2792

  5. 5. Nishimura, R., Hata, K., Takahata, Y., et al. (2020) Role of Signal Transduc-tion Pathways and Transcription Factors in Cartilage and Joint Diseases. International Journal of Molecular Sciences, 21, 1340. https://doi.org/10.3390/ijms21041340

  6. 6. Itoh, N. and Ornitz, D.M. (2011) Fibroblast Growth Factors: From Molecular Evolution to Roles in Development, Metabolism and Disease. Journal of Biochemistry, 149, 121-130. https://doi.org/10.1093/jb/mvq121

  7. 7. Ornitz, D.M., Itoh, N. (2015) The Fibroblast Growth Factor Signaling Pathway. WIREs Developmental Biology, 4, 215-266. https://doi.org/10.1002/wdev.176

  8. 8. Gotoh, N. (2008) Regulation of Growth Factor Signaling by FRS2 Family Docking/Scaffold Adaptor Proteins. Cancer Science, 99, 1319-1325. https://doi.org/10.1111/j.1349-7006.2008.00840.x

  9. 9. Krejci, P., Masri, B., Salazar, L., et al. (2007) Bisindol-ylmaleimide I Suppresses Fibroblast Growth Factor-Mediated Activation of Erk MAP Kinase in Chondrocytes by Pre-venting Shp2 Association with the Frs2 and Gab1 Adaptor Proteins. Journal of Biological Chemistry, 282, 2929-2936. https://doi.org/10.1074/jbc.M606144200

  10. 10. Ong, S.H., Hadari, Y.R., Gotoh, N., et al. (2001) Stimulation of Phosphatidylinositol 3-Kinase by Fibroblast Growth Factor Receptors Is Mediated by Coordinated Recruitment of Multi-ple Docking Proteins. Proceedings of the National Academy of Sciences, 98, 6074-6079. https://doi.org/10.1073/pnas.111114298

  11. 11. Yan, D., Chen, D., Cool, S.M., et al. (2011) Fibroblast Growth Fac-tor Receptor 1 Is Principally Responsible for Fibroblast Growth Factor 2-Induced Catabolic Activities in Human Articu-lar Chondrocytes. Arthritis Research & Therapy, 13, R130. https://doi.org/10.1186/ar3441

  12. 12. Ellman, M.B., Yan, D., Ahmadinia, K., et al. (2013) Fibroblast Growth Factor Control of Cartilage Homeostasis. Journal of Cellular Bio-chemistry, 114, 735-742. https://doi.org/10.1002/jcb.24418

  13. 13. Xu, W., Xie, Y., Wang, Q., et al. (2016) A Novel Fibroblast Growth Factor Receptor 1 Inhibitor Protects against Cartilage Degradation in a Murine Model of Osteoarthritis. Scientific Reports, 6, Article No. 24042. https://doi.org/10.1038/srep24042

  14. 14. Weng, T., Yi, L., Huang, J., et al. (2012) Genetic Inhibition of Fibroblast Growth Factor Receptor 1 in Knee Cartilage Attenuates the Degeneration of Articular Cartilage in Adult Mice. Arthritis & Rheumatism, 64, 3982-3992. https://doi.org/10.1002/art.34645

  15. 15. Wang, Z., Huang, J., Zhou, S., et al. (2018) Loss of Fgfr1 in Chondrocytes Inhibits Osteoarthritis by Promoting Autophagic Activity in Temporomandibular Joint. Journal of Biological Chemistry, 293, 8761-8774. https://doi.org/10.1074/jbc.RA118.002293

  16. 16. Li, X., Ellman, M.B., Kroin, J.S., et al. (2012) Species-Specific Biological Effects of FGF-2 in Articular Cartilage: Implication for Distinct Roles within the FGF Receptor Family. Jour-nal of Cellular Biochemistry, 113, 2532-2542. https://doi.org/10.1002/jcb.24129

  17. 17. Valverde-Franco, G. (2003) Defective Bone Mineralization and Osteopenia in Young Adult FGFR3-/- Mice. Human Molecular Genetics, 13, 271-284. https://doi.org/10.1093/hmg/ddh034

  18. 18. Tang, J., Su, N., Zhou, S., et al. (2016) Fibroblast Growth Factor Recep-tor 3 Inhibits Osteoarthritis Progression in the Knee Joints of Adult Mice: FGFR-3 Protects Articular Cartilage against Degeneration. Arthritis & Rheumatology, 68, 2432-2443. https://doi.org/10.1002/art.39739

  19. 19. Zhou, S., Xie, Y., Li, W., et al. (2016) Conditional Deletion of Fgfr3 in Chondrocytes Leads to Osteoarthritis-Like Defects in Temporo-mandibular Joint of Adult Mice. Scientific Reports, 6, Article No. 24039. https://doi.org/10.1038/srep24039

  20. 20. Kuang, L., Wu, J., Su, N., Qi, H., Chen, H., et al. (2020) FGFR3 Defi-ciency Enhances CXCL12-Dependent Chemotaxis of Macrophages via Upregulating CXCR7 and Aggravates Joint De-struction in Mice. Annals of Rheumatic Diseases, 79, 112-122. https://doi.org/10.1136/annrheumdis-2019-215696

  21. 21. Sahni, M., Ambrosetti, D.C., Mansukhani, A., et al. (1999) FGF Signaling Inhibits Chondrocyte Proliferation and Regulates Bone Development through the STAT-1 Pathway. Genes & Development, 13, 1361-1366. https://doi.org/10.1101/gad.13.11.1361

  22. 22. Li, R., Wang, B., He, C.Q., et al. (2015) Upregulation of Fibroblast Growth Factor 1 in the Synovial Membranes of Patients with Late Stage Osteoarthritis. Genetics and Molecular Research, 14, 11191-11199. https://doi.org/10.4238/2015.September.22.13

  23. 23. Nishida, T., Kubota, S., Fukunaga, T., et al. (2003) CTGF/Hcs24, Hypertrophic Chondrocyte-Specific Gene Product, Interacts with Perlecan in Regulating the Proliferation and Differentiation of Chondrocytes. Journal of Cellular Physiology, 196, 265-275. https://doi.org/10.1002/jcp.10277

  24. 24. Abd El Kader, T., Kubota, S., Anno, K., et al. (2014) Direct Interaction be-tween CCN Family Protein 2 and Fibroblast Growth Factor 1. Journal of Cell Communication and Signaling, 8, 157-163. https://doi.org/10.1007/s12079-014-0232-z

  25. 25. El-Seoudi, A., Abd El Kader, T., Nishida, T., et al. (2017) Cata-bolic Effects of FGF-1 on Chondrocytes and Its Possible Role in Osteoarthritis. Journal of Cell Communication and Signaling, 11, 255-263. https://doi.org/10.1007/s12079-017-0384-8

  26. 26. Vincent, T., Hermansson, M., Bolton, M., et al. (2002) Basic FGF Mediates an Immediate Response of Articular Cartilage to Mechanical Injury. Proceedings of the National Academy of Sciences, 99, 8259-8264. https://doi.org/10.1073/pnas.122033199

  27. 27. Im, H.J., Muddasani, P., Natarajan, V., et al. (2007) Basic Fibroblast Growth Factor Stimulates Matrix Metalloproteinase-13 via the Molecular Cross-Talk between the Mitogen-Activated Protein Kinases and Protein Kinase Cδ Pathways in Human Adult Articular Chondrocytes. Journal of Biological Chem-istry, 282, 11110-11121. https://doi.org/10.1074/jbc.M609040200

  28. 28. Muddasani, P., Norman, J.C., Ellman, M., et al. (2007) Basic Fibro-blast Growth Factor Activates the MAPK and NFκB Pathways That Converge on Elk-1 to Control Production of Matrix Metalloproteinase-13 by Human Adult Articular Chondrocytes. Journal of Biological Chemistry, 282, 31409-31421. https://doi.org/10.1074/jbc.M706508200

  29. 29. Sawaji, Y., Hynes, J., Vincent, T., et al. (2008) Fibroblast Growth Factor 2 Inhibits Induction of Aggrecanase Activity in Human Articular Cartilage. Arthritis & Rheumatism, 58, 3498-3509. https://doi.org/10.1002/art.24025

  30. 30. Chong, K., Chanalaris, A., Burleigh, A., et al. (2013) Fibroblast Growth Factor 2 Drives Changes in Gene Expression Following Injury to Murine Cartilage in Vitro and in Vivo. Arthritis & Rheumatism, 65, 2346-2355. https://doi.org/10.1002/art.38039

  31. 31. Chia, S.L., Sawaji, Y., Burleigh, A., et al. (2009) Fibroblast Growth Factor 2 Is an Intrinsic Chondroprotective Agent That Suppresses ADAMTS-5 and Delays Cartilage Degradation in Murine Osteoarthritis. Arthritis & Rheumatism, 60, 2019-2027. https://doi.org/10.1002/art.24654

  32. 32. Schmidt, L., Taiyab, A., Melvin, V.S., et al. (2018) Increased FGF8 Signaling Promotes Chondrogenic Rather than Osteogenic Development in the Embryonic Skull. Disease Models & Mechanisms, 11, dmm.031526. https://doi.org/10.1242/dmm.031526

  33. 33. Uchii, M., Tamura, T., Suda, T., et al. (2008) The Role of Fibroblast Growth Factor-8 (FGF8) in Animal Models of Osteoarthritis. Arthritis Research & Therapy, 10, R90. https://doi.org/10.1186/ar2474

  34. 34. Pei, W., Huang, X., Ni, B., et al. (2021) Selective STAT3 Inhibitor Alantolac-tone Ameliorates Osteoarthritis via Regulating Chondrocyte Autophagy and Cartilage Homeostasis. Frontiers in Phar-macology, 12, Article ID: 730312. https://doi.org/10.3389/fphar.2021.730312

  35. 35. Ellsworth, J.L., Berry, J., Bukowski, T., et al. (2002) Fibroblast Growth Factor-18 Is a Trophic Factor for Mature Chondrocytes and Their Progenitors. Osteoarthritis and Cartilage, 10, 308-320. https://doi.org/10.1053/joca.2002.0514

  36. 36. Moore, E.E., Bendele, A.M., Thompson, D.L., et al. (2005) Fibroblast Growth Factor-18 Stimulates Chondrogenesis and Cartilage Repair in a Rat Model of Injury-Induced Osteoarthritis. Os-teoarthritis and Cartilage, 13, 623-631. https://doi.org/10.1016/j.joca.2005.03.003

  37. 37. Mori, Y., Saito, T., Chang, S.H., et al. (2014) Identification of Fi-broblast Growth Factor-18 as a Molecule to Protect Adult Articular Cartilage by Gene Expression Profiling. Journal of Biological Chemistry, 289, 10192-10200. https://doi.org/10.1074/jbc.M113.524090

  38. 38. Li, X., An, H.S., Ellman, M., et al. (2008) Action of Fibroblast Growth Factor-2 on the Intervertebral Disc. Arthritis Research & Therapy, 10, R48. https://doi.org/10.1186/ar2407

  39. 39. Lohmander, L.S., Hellot, S., Dreher, D., et al. (2014) Intraarticular Sprifermin (Recombinant Human Fibroblast Growth Factor 18) in Knee Osteoarthritis: A Randomized, Double-Blind, Place-bo-Controlled Trial: Sprifermin Effects in Knee Osteoarthritis. Arthritis & Rheumatology, 66, 1820-1831. https://doi.org/10.1002/art.38614

  40. NOTES

    *通讯作者。

期刊菜单