﻿ 基于风险的三级检验通道数据分析与优化策略 Data Analysis and Optimization Strategy for a Risk-Based Three-Level Inspection Channel

Modern Management
Vol. 09  No. 01 ( 2019 ), Article ID: 28754 , 15 pages
10.12677/MM.2019.91002

Data Analysis and Optimization Strategy for a Risk-Based Three-Level Inspection Channel

Chia-Hung Wang1,2, Jinman Lan1

1College of Information Science and Engineering, Fujian University of Technology, Fuzhou Fujian

2Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fuzhou Fujian

Received: Jan. 9th, 2019; accepted: Jan. 24th, 2019; published: Jan. 31st, 2019

ABSTRACT

In order to study the service management of passenger clearance and security-check process, this paper develops a simulation model for risk-based three-level inspection queuing system. In the proposed simulation model, passengers to be inspected are classified to three risk classes based on their assessed risk value, and each of them is assigned to the inspection channel corresponding to his/her risk value for security check. We evaluate the data obtained from computer simulation experiments, and conduct a sensitivity analysis on the security level and average waiting time of the studied inspection system. An executable optimization strategy is presented in the paper for selecting the model variables through a series of data analysis.

Keywords:Risk Management, Queuing System, Simulation Experiment, Security Screening, Data Analysis

1福建工程学院信息科学与工程学院，福建 福州

2福建省大数据挖掘与应用技术重点实验室，福建 福州

1. 引言

2. 基于旅客风险的三安检通道排队安检流程

Figure 1. A security-check queuing system with three-level inspection channels

$SL=100%-\left(通过常规安检与快速通关安检的“危险分子”人数占总通关旅客人数的比例\right)$

Table 1. Definition of notations

3. Arena仿真建模

1) 使用流程图工具，将三通道安检模型的具体流程表示出来；

2) 使用Arena软件相应模块，构建与三通道安检流程图相符的仿真模型；

3) 给Arena仿真模型中各个模块和运行环境设置相对应的参数；

4) 测试模型的功能性与准确性，及时更正仿真模型中的错误；

5) 查看模型的运行结果与报告；

6) 分析实验数据报告。

4. 实验方案与数据分析

4.1. 实验环境与模型参数设置

Table 2. Statistics of departure flights at Narita Airport

Table 3. Parameter setting of the queuing model for three-level inspection channels

4.2. 决策参数对系统表现指标的影响

Figure 2. Data graph of the average waiting time W with respect to the fast-pass threshold ${a}_{f}$

Figure 3. Data graph of the security level SL with respect to the fast-pass threshold ${a}_{f}$

Figure 4. Data graph of the average waiting time W with respect to the strict security-check threshold ${a}_{s}$

Figure 5. Data graph of the security level SL with respect to the strict security-check threshold ${a}_{s}$

Figure 6. Data graph of the average waiting time W with respect to the queue threshold ${Q}_{n}$ of normal inspection channel

Figure 7. Data graph of the security level SL with respect to the queue threshold ${Q}_{n}$ of normal inspection channel

Figure 8. Data graph of the average waiting time W with respect to the queue threshold ${Q}_{s}$ of strict inspection channel

Figure 9. Data graph of the security level SL with respect to the queue threshold ${Q}_{s}$ of strict inspection channel

Figure 10. Data graph of the average waiting time W with respect to the sampling probability ${P}_{n}$ of entering normal inspection channel

Figure 11. Data graph of the security level SL with respect to the sampling probability ${P}_{n}$ of entering normal inspection channel

Figure 12. Data graph of the average waiting time W with respect to the sampling probability ${P}_{s}$ of entering strict inspection channel

4.3. 实验数据分析总结

Figure 13. Data graph of the security level SL with respect to the sampling probability ${P}_{s}$ of entering strict inspection channel

5. 优化策略

1) 选择一个决策变量，结合之前预期跑过的实验数据，提出该决策变数对实验指标的影响，通过与机场实际运行环境的对比，确认决策变量的灵敏度分析范围。

2) 合理选择各组中决策变量数据点的采集间隔。过大的数据点间隔可能影响对优化结果的趋势判断，也可能会在实验流程中错过最佳值的数据点，则将对后续选取决策变量的最佳值产生影响。

3) 实验数据的运行。在完成步骤1与步骤2的基础上，进行仿真模型的输出数据记录，并观察实验结果的灵敏度分析数据图形是否有出现最佳值的趋势。

4) 观察实验指标图行变化，得出一个当前决策变量的最佳数值，同时记录该叁数值与相对应的系统表现指标，并代入下一组决策变量的选取组合中。

5) 选择下一个待定的决策变量，重复进行步骤1到步骤4，直至所有决策变量在本优化流程中运行完毕，则停止运行。

Figure 14. Flow chart of optimizing the selection of model variables

Figure 15. The optimal value of average waiting time W corresponds to the optimal selection of six decision variables

Figure 16. The optimal value of security level SL corresponds to the optimal selection of six decision variables

6. 总结与展望

Data Analysis and Optimization Strategy for a Risk-Based Three-Level Inspection Channel[J]. 现代管理, 2019, 09(01): 9-23. https://doi.org/10.12677/MM.2019.91002

1. 1. 王嘉宏. 通关安全检查系统的运作模式与仿真研究综述[J]. 计算机科学与应用, 2017, 7(11): 1067-1078. https://doi.org/10.12677/csa.2017.711121

2. 2. Zhang, Z.G., Luh, H. and Wang, C.-H. (2011) Modeling Securi-ty-Check Queue. Management Science, 57, 1979-1995. https://doi.org/10.1287/mnsc.1110.1399

3. 3. Luh, H., Zhang, Z.G. and Wang, C.-H. (2013) A Computing Ap-proach to Two Competing Services with a Finite Buffer Effect. Proceedings of the 8th International Conference on Queueing Theory and Network Applications (QTNA2013), Taichung City, Taiwan, July 30-August 2 2013, 15-21.

4. 4. Wang, C.-H. (2015) A Modelling Framework for Managing Risk-Based Checkpoint Screening Systems with Two-Type Inspection Queues. Proceedings of the Third International Conference on Robot, Vision and Signal Processing (RVSP 2015), Kaohsiung, Taiwan, 18-20 November 2015, 220-223. https://doi.org/10.1109/RVSP.2015.59

5. 5. Wang, C.-H., Wu, M.-E. and Chen, C.-M. (2015) Inspection Risk and Delay for Screening Cargo Containers at Security Checkpoints. Proceedings of the Eleventh International Conference on Intelligent Information Hiding and Multi-Media Signal Processing (IIH-MSP-2015), Adelaide, Australia, 23-25 September 2015, 211-214. https://doi.org/10.1109/IIH-MSP.2015.29

6. 6. 中国民用航空局发展计划司. 2017年民航机场生产统计公报[EB/OL]. http://www.caac.gov.cn/XXGK/XXGK/TJSJ/201803/t20180307_55600.html, 2018-03-07.

7. 7. 徐汇川. 某大型枢纽机场新安检模式的验证与优化研究[D]: [硕士学位论文]. 北京: 中国人民公安大学, 2017.

8. 8. 麻建军. 基于乘客风险等级的分组安检对机场安检系统性能影响的研究[D]: [硕士学位论文]. 北京: 中国民航大学, 2017.

9. 9. 王嘉宏, 陈荣庆. 基于旅客风险分类的机场安检排队仿真分析[J]. 管理科学与工程, 2018, 7(2): 110-124.

10. 10. 崔晓喆. 基于流程分析的机场安检风险管理研究[D]: [硕士学位论文]. 北京: 中国民航大学, 2018.

11. 11. 赵振武, 唐玉丽, 麻建军. 基于旅客分类的机场安检系统研究[J]. 综合运输, 2017, 39(3): 37-41.

12. 12. Wang, C.-H. (2016) Arena Simulation for Aviation Passenger Security-Check Systems. Advances in Intelligent Systems and Computing, 536, 95-102. https://doi.org/10.1007/978-3-319-48490-7_12

13. 13. Huang, P., Luh, H. and Zhang, Z.G. (2016) A Queueing Model for Tiered Inspection Lines in Airports. International Journal of Information and Management Sciences, 27, 147-177.

14. 14. Wang, C.-H. and Lan, J. (2017) Performance Evaluation of a Risk-Based Three-Tier Inspection System. The 2nd International Conference on Computational Modeling, Simulation and Applied Mathematics (CMSAM2017), Beijing, 22-23 October 2017, 464-468. https://doi.org/10.12783/dtcse/cmsam2017/16417

15. 15. 赵振武, 李新源. 基于Anylogic的机场旅客安检流程仿真与优化[J]. 中国民航大学学报, 2018(5): 52-55.

16. 16. 赵振武, 李新源, 唐玉丽. 机场2阶段安检系统设计与性能分析[J]. 中国安全科学学报, 2018, 28(8): 81-86.

17. 17. de Lange, R., Samoilovich, I. and van der Rhee, B. (2013) Virtual Queuing at Airport Security Lanes. European Journal of Operational Research, 225, 153-165. https://doi.org/10.1016/j.ejor.2012.09.025

18. 18. Boekhold, J.V., Faghri, A. and Li, M. (2014) Evaluating Security Screening Checkpoints for Domestic Flights Using a General Microscopic Sim-ulation Model. Journal of Transportation Security, 7, 45-67. https://doi.org/10.1007/s12198-013-0129-8

19. 19. Perboli, G., Musso, S., Perfetti, F. and Trapani, P. (2014) Simu-lation of New Policies for the Baggage Check in the Security Gates of the Airports: The Logiscan Case Study. Proce-dia-Social and Behavioral Sciences, 111, 58-67. https://doi.org/10.1016/j.sbspro.2014.01.038

20. 20. Kierzkowski, A. and Kisiel, T. (2017) Simulation Model of Security Control System Functioning: A Case Study of the Wroclaw Airport Terminal. Journal of Air Transport Man-agement, 64, 173-185. https://doi.org/10.1016/j.jairtraman.2016.09.008

21. 21. Wang, C.-H. (2018) A Queueing Analysis of a Securi-ty-Check System with Two Types of Inspection Channels. Proceedings of the 2018 International Conference on Mathematics, Modelling, Simulation and Algorithms (MMSA2018), Chengdu, 25-26 March 2018, 102-106. https://doi.org/10.2991/mmsa-18.2018.23