Pure Mathematics
Vol. 12  No. 11 ( 2022 ), Article ID: 57699 , 8 pages
10.12677/PM.2022.1211197

超临界多型分支过程的自归一化大偏差

肖宁洁,王娟

上海理工大学理学院,上海

收稿日期:2022年9月28日;录用日期:2022年10月28日;发布日期:2022年11月8日

摘要

{ Z ( t ) ; t 0 } 是一个超临界马尔可夫分支过程。本文研究了超临界多型分支过程在连续时间情况下的自归一化大偏差,这是我们对先前研究的离散时间下的自归一化大偏差进行扩展的结果,得到了连续时间内自标准化大偏差 l i m t e b 1 t P ( | S ( t ) / Z 1 ( t ) + Z 2 ( t ) V ( t ) | > x | Z i ( 0 ) = I i ) 的极限是存在的,且是有限的和正的。

关键词

Markov分支过程,多型,自归一化,大偏差

Self-Normalized Large Deviations for Supercritical Multitype Branching Processes

Ningjie Xiao, Juan Wang

College of Science, University of Shanghai for Science and Technology, Shanghai

Received: Sep. 28th, 2022; accepted: Oct. 28th, 2022; published: Nov. 8th, 2022

ABSTRACT

Let { Z ( t ) ; t 0 } be a supercritical Markov branching processes. In this paper, we study the self-normalized large deviations of the supercritical multitype branching processes in continuous time, this is an extension of previous study of the large deviation of the self-normalization in discrete time. From the above, we obtain that the limit of self-normalized large deviation l i m t e b 1 t P ( | S ( t ) / Z 1 ( t ) + Z 2 ( t ) V ( t ) | > x | Z i ( 0 ) = I i ) in continuous time exists and is finite and positive.

Keywords:Markov Branching Process, Multitype, Self-Normalized, Large Deviation

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

{ Z ( t ) ; t 0 } 是一个连续的时间马尔可夫分支过程。假设 Z i ( t ) = ( Z i , 1 ( t ) , Z i , 2 ( t ) , , Z i , N ( t ) ) 是在t时刻由i型单个粒子发起的N维分支过程。为了描述方便,在本文中我们考虑了二维的情况,即 N = 2

Z i ( 0 ) = I i

Z i ( t + d ) = i = 1 2 k = 1 Z i ( t ) X i k ( d )

I 1 = ( 1 , 0 ) I 2 = ( 0 , 1 ) X i k ( t ) = ( X i , 1 k ( t ) , X i , 2 k ( t ) ) 是i型粒子的第k个个体在t时刻的后代分布情况。其中 ( X i k ( t ) , k = 1 , 2 , ) 是独立同分布的且与 X i ( t ) = ( X i 1 ( t ) , X i 2 ( t ) ) , i = 1 , 2 有相同的分布。这些随机向量是集合 Z + 2 中的非负整数。在不失一般性的前提下,我们还假设 P 0 = 0 ,即该种群的灭绝概率为0。

其中一个值得关注的话题是在连续时间情况下(1.1)的收敛情况。

P ( | l Z T ( t + d ) 1 Z T ( t ) l ( Z T ( t ) M ) T 1 Z T ( t ) | ) ,for ε > 0 t (1.1)

在分支过程中的研究中,大偏差扮演者重要的角色。此前对大偏差的研究主要集中在离散时间的分支过程或者一维的情况。Li,Cheng和A. G. Pakes [1] 通过分析连续时间调和矩 E ( X t r ) 的渐近性,显示了 Z ( t ) 的大偏差速率。Li,Meng [2] 利用一个基于2型马尔可夫分支过程的相关母函数的微分方程找到了一条曲线,由此得到了一个正则性准则。Li,Cheng,Li [3] 讨论了 W ( t ) = e m t X ( t ) m 1 a ( 1 e m t ) 收敛到W, X ( t + s ) / X ( t ) 在一定概率下收敛到 e m s 且两者在 W α ( α 为任意常数)在不同的力矩条件下得到了上述三种收敛速率的显式估计。结果表明,第一个速率是几何的,而另外两个速率是超几何的。Athreya [4] 研究了单个粒子分支过程的大偏差率。Chu [5] 在Athreya [4] 的基础上得到了离散时间下超临界分支过程的自归一化大偏差,证明了它的极限是存在的且是正的有限的。Athreya和Vidyashankar [6] 证明了

ε > 0 ( l Z n 1 Z n l ( Z n M ) 1 Z n ) ( l Z n 1 Z n l v ( 1 ) 1 v ( 1 ) ) 收敛到0的概率为1,二个序列的大偏差概率呈几何速率衰

减,在适当的条件下超几何衰减。其中,M是 { Z n , n 0 } 的平均矩阵, v ( 1 ) 是M的最大特征值 ρ 对应的特征向量,1是所有分量都等于1的向量。本文在对Chu [4] 的研究结果上,将研究方向扩展到连续时间下的超临界多型分支过程。

文章的其余部分结构如下,在第2节中,我们介绍了一些预备知识和引理,并阐述主要定理;第3节主要是定理的详细证明过程;最后对本文进行了总结。

2. 预备知识

多型分支过程的平均矩阵是一个 n n 矩阵,记为 M ( t )

M ( t ) = { m i j ( t ) ; i , j = 1 , , n }

这里 m i j ( t ) = E [ X i j ] ,且满足下面条件

lim t 0 M ( t ) = Ι .

本文在超临界情况下进行研究,因此假设它的最大特征值 τ > 1 v = ( v 1 , v 2 ) u = ( u 1 , u 2 ) 是特征值所对应的两个严格正的特征向量,标准化后使得 1 T v = 1 1 T u = 1

定义

f ( s ) = ( f ( 1 ) ( s ) , f ( 2 ) ( s ) )

f ( i ) ( s ) = j p ( i ) ( s ) s j .

f ( s ) = s 有唯一解 e = ( e 1 , e 2 ) ,其中 e i [ 0 , 1 ) , i = 1 , 2 。此外, e i 是粒子 Z i ( t + d ) , t 0 的灭绝概率,即

e i = P ( lim t Z ( t ) = 0 | Z ( 0 ) = I i ) .

在这种情况下,我们定义以下矩阵

A = f ( i ) ( s ) s j | s = 0 . (2.1)

假设存在一个常数 γ ( 0 , 1 ) 使得 ( γ n A n ) n 1 收敛到一个非零的且有限的矩阵,这被称为Schroder情形 [7],关于多维分支过程更详细的解释可参考( [8],第五章)。

定理2.1 ( [9],定理1.1) V , V 1 , V 2 , 是独立同分布的随机向量且有 P ( V = 0 ) = 0 。假设对于任一 E [ V ] 0 或者 E [ V 2 ] > 0 ,当 x > E [ V ] / E [ V 2 ] 时,

lim n ( S n > x n H n ) 1 / n = sup c 0 inf α 0 E [ e α ( c V x ( V 2 + C 2 ) / 2 ) ]

其中 S n = i = 1 n V i H n 2 = i = 1 n V i 2 。如果 E [ V 2 ] = ,则有 E [ V ] / E [ V 2 ] = 0

定理2.2 ( [6],定理2) 如果(2.1)式假设成立,并且认为

max i E [ ( 1 Z 1 T ) 2 r | Z 0 = I i ] <

γ 满足 ρ T γ > 1 。令 l = ( l 1 , l 2 ) 为非零向量且 l 1 l 2 ,则对于任意 ε > 0 i = 1 , 2

lim n γ n P ( | l Z n + 1 T 1 Z n T l ( Z n M ) T 1 Z n T | > ε | Z 0 = I i )

存在且为有限的正的。

命题2.1对于任意 j 1 lim t e b 1 t p 1 j ( t ) = ϕ j 存在且 ϕ j ϕ 1 = 1 。同时, Q ( s ) 满足以下方程

B ( s ) Q ( s ) = b 1 Q ( s ) , 0 s 1 .

0 s 1 Q ( 0 ) = 0 Q ( 0 ) = 1 Q ( 1 ) = Q ( s ) < 。其中, B ( s ) = j = 0 b j s j 。此外, Q ( s )

还给出了以下级数展开式

Q ( s ) = j = 0 q j s j . (2.2)

3. 主要定理及其证明

定理3.1定义 S ( t ) V 2 ( t ) 见(3.1),(3.2),则

lim t e b 1 t P ( | S ( t ) Z 1 ( t ) + Z 2 ( t ) V ( t ) | > x | Z i ( 0 ) = I i )

存在且为有限的正的。

为方便描述,我们将 Z i ( t ) = ( Z i , 1 ( t ) , Z i , 2 ( t ) ) 简写为 Z i ( t ) = ( Z 1 ( t ) , Z 2 ( t ) )

Z 1 ( t ) + Z 2 ( t ) = 1 Z i ( t ) T

S ( t ) = l Z i ( t + d ) T l ( Z i ( t ) M ) T = k = 1 Z 1 ( t ) [ l 1 ( X 11 k ( d ) m 11 ) + l 2 ( X 12 k ( d ) m 12 ) ] + k = 1 Z 2 ( t ) [ l 1 ( X 21 k ( d ) m 21 ) + l 2 ( X 22 k ( d ) m 22 ) ] (3.1)

V 2 ( t ) = k = 1 Z 1 ( t ) [ l 1 2 ( X 11 k ( d ) X ¯ 11 ( t ) ) 2 + l 2 2 ( X 12 k ( d ) X ¯ 12 ( t ) ) 2 ] + k = 1 Z 2 ( t ) [ l 1 2 ( X 21 k ( d ) X ¯ 21 ( t ) ) 2 + l 2 2 ( X 22 k ( d ) X ¯ 22 ( t ) ) 2 ] (3.2)

X ¯ i j ( t ) = Z i ( t + d ) Z i ( t ) = 1 Z i ( t ) k = 1 Z i ( t ) X i j k ( d ) , i , j = 1 , 2

证明:为了简化描述,我们先进行以下定义

Y i j ( k ) = l j ( X i j k ( d ) m i j )

S n ( i , j ) = l j ( X i j k ( d ) m i j )

S n m = S n ( 1 , 1 ) + S n ( 1 , 2 ) + S m ( 2 , 1 ) + S m ( 2 , 2 )

X ¯ n ( i , j ) = 1 n k = 1 n X i j k ( d )

X ¯ m ( i , j ) = 1 m k = 1 m X i j k ( d )

V n ( i , j ) 2 = k = 1 n Y i j ( k ) 2

V ( n , m ) 2 = V n ( 1 , 1 ) 2 + V n ( 1 , 2 ) 2 + V m ( 2 , 1 ) 2 + V m ( 2 , 2 ) 2

V n m 2 = j = 1 2 k = 1 n l j 2 ( X 1 j k ( d ) X ¯ n ( 1 , j ) ) 2 + j = 1 2 k = 1 m l j 2 ( X 2 j k ( d ) X ¯ m ( 2 , j ) ) 2

ε n m ( t ) = V ( n , m ) 2 V n m 2 = n j = 1 2 ( X ¯ n ( 1 , j ) m 1 j ) 2 + m j = 1 2 ( X ¯ m ( 2 , j ) m 2 j ) 2

Z 1 ( t ) = n , Z 2 ( t ) = m ,在条件概率下,

P ( | S ( t ) Z 1 ( t ) + Z 2 ( t ) V ( t ) | > x | Z i ( 0 ) = I i ) = P ( S ( t ) x Z 1 ( t ) + Z 2 ( t ) V ( t ) | Z i ( t ) = ( n , m ) ) P ( Z i ( t ) = ( n , m ) ) = P ( S n m ( t ) x n + m V ( n , m ) ) A

对于任意的 ε ( 0 , 1 ) ,我们有

P ( S n m ( t ) x n + m V ( n , m ) ) P ( S n m ( t ) x n + m V ( n , m ) , ε n m ( t ) δ V ( n , m ) 2 ) + P ( ε n m ( t ) > δ V ( n , m ) 2 ) P ( S n m ( t ) x 1 δ n + m V ( n , m ) ) + P ( ε n m ( t ) > δ V ( n , m ) 2 ) A 1 + A 2 (3.3)

如果当 n , m 时, A 1 A 2 都收敛到0,结合(2.2)则定理即得证。现对 A 1 A 2 进行一下分析,

A 1 P ( S n m ( t ) 2 x 2 ( 1 δ ) ( n + m ) V ( n , m ) 2 ) P ( 4 S n ( 1 , 1 ) 2 x 2 ( 1 δ ) n V n ( 1 , 1 ) 2 ) + P ( 4 S n ( 1 , 2 ) 2 x 2 ( 1 δ ) n V n ( 1 , 2 ) 2 ) + P ( 4 S m ( 2 , 1 ) 2 x 2 ( 1 δ ) m V m ( 2 , 1 ) 2 ) + P ( 4 S m ( 2 , 2 ) 2 x 2 ( 1 δ ) m V m ( 2 , 2 ) 2 ) (3.4)

A 2 P j = 1 2 ( n ( X ¯ n ( 1 , j ) m 1 j ) 2 > δ V n ( 1 , j ) 2 ) + P j = 1 2 ( m ( X ¯ m ( 2 , j ) m 2 j ) 2 > δ V m ( 2 , j ) 2 ) = P ( | k = 1 n X 11 k ( d ) m 11 | δ n V n ( 1 , 1 ) ) + P ( | k = 1 n X 12 k ( d ) m 12 | δ n V n ( 1 , 2 ) ) + P ( | k = 1 m X 21 k ( d ) m 21 | δ m V m ( 2 , 1 ) ) + P ( | k = 1 m X 22 k ( d ) m 22 | δ m V m ( 2 , 2 ) ) R 1 + R 2 + R 3 + R 4 (3.5)

我们可以得到,对于第一部分 R 1

R 1 = P ( | k = 1 n ( X 11 k ( d ) m 11 ) | δ n V n ( 1 , 1 ) ) = P ( k = 1 n ( X 11 k ( d ) m 11 ) δ n V n ( 1 , 1 ) ) + P ( k = 1 n ( m 11 X 11 k ( d ) ) δ n V n ( 1 , 1 ) )

对于足够大的整数n,

P ( | k = 1 n ( X 11 k ( d ) m 11 ) | δ n V n ( 1 , 1 ) ) ( 1 + β ) ρ 1 n (3.6)

P ( | k = 1 n ( m 11 X 11 k ( d ) ) | δ n V n ( 1 , 1 ) ) ( 1 + β ) ρ 2 n (3.7)

其中

ρ 1 = sup c 0 inf w 0 E [ exp ( w ( c ( X M ) 1 2 δ ( X M ) 2 + c 2 ) ) ] ( 0 , 1 )

ρ 2 = sup c 0 inf w 0 E [ exp ( w ( c ( M X ) 1 2 δ ( M X ) 2 + c 2 ) ) ] ( 0 , 1 ) .

相似的

R 2 = P ( | k = 1 n ( X 12 k ( d ) m 12 ) | δ n V n ( 1 , 2 ) ) = P ( k = 1 n ( X 12 k ( d ) m 12 ) δ n V n ( 1 , 2 ) ) + P ( k = 1 n ( m 12 X 12 k ( d ) ) δ n V n ( 1 , 2 ) )

对于足够大的整数n,

P ( | k = 1 n ( X 12 k ( d ) m 12 ) | δ n V n ( 1 , 2 ) ) ( 1 + β ) ρ 3 n (3.8)

P ( | k = 1 n ( m 12 X 12 k ( d ) ) | δ n V n ( 1 , 2 ) ) ( 1 + β ) ρ 4 n (3.9)

其中

ρ 3 = sup c 0 inf w 0 E [ exp ( w ( c ( X M ) 1 2 δ ( X M ) 2 + c 2 ) ) ] ( 0 , 1 )

ρ 4 = sup c 0 inf w 0 E [ exp ( w ( c ( M X ) 1 2 δ ( M X ) 2 + c 2 ) ) ] ( 0 , 1 )

R 3 = P ( | k = 1 m ( X 21 k ( d ) m 21 ) | δ m V m ( 2 , 1 ) ) = P ( k = 1 m ( X 21 k ( d ) m 21 ) δ m V m ( 2 , 1 ) ) + P ( k = 1 m ( m 21 X 21 k ( d ) ) δ m V m ( 2 , 1 ) )

对于足够大的整数m,

P ( | k = 1 m ( X 21 k ( d ) m 21 ) | δ m V m ( 2 , 1 ) ) ( 1 + β ) ρ 5 n (3.10)

P ( | k = 1 m ( m 21 X 21 k ( d ) ) | δ m V m ( 2 , 1 ) ) ( 1 + β ) ρ 6 n (3.11)

其中

ρ 5 = sup c 0 inf w 0 E [ exp ( w ( c ( X M ) 1 2 δ ( X M ) 2 + c 2 ) ) ] ( 0 , 1 )

ρ 6 = sup c 0 inf w 0 E [ exp ( w ( c ( M X ) 1 2 δ ( M X ) 2 + c 2 ) ) ] ( 0 , 1 )

R 4 = P ( | k = 1 m ( X 22 k ( d ) m 22 ) | δ m V m ( 2 , 2 ) ) = P ( k = 1 m ( X 22 k ( d ) m 22 ) δ m V m ( 2 , 2 ) ) + P ( k = 1 m ( m 22 X 22 k ( d ) ) δ m V m ( 2 , 2 ) )

对于足够大的整数m,

P ( | k = 1 m ( X 22 k ( d ) m 22 ) | δ m V m ( 2 , 2 ) ) ( 1 + β ) ρ 7 n (3.12)

P ( | k = 1 m ( m 22 X 22 k ( d ) ) | δ m V m ( 2 , 2 ) ) ( 1 + β ) ρ 8 n (3.13)

其中

ρ 7 = sup c 0 inf w 0 E [ exp ( w ( c ( X M ) 1 2 δ ( X M ) 2 + c 2 ) ) ] ( 0 , 1 )

ρ 8 = sup c 0 inf w 0 E [ exp ( w ( c ( M X ) 1 2 δ ( M X ) 2 + c 2 ) ) ] ( 0 , 1 )

ρ 1 = ρ 3 = ρ 5 = ρ 7 , ρ 2 = ρ 4 = ρ 6 = ρ 8 .

定义 h = max { n , m } ,同样的论证也可以来估计 A 1 C 1 > 0 存在 ρ 9 ( 0 , 1 ) ,对所有的 h 1

A 1 C 1 ( 1 + β ) h ρ 9 h

ρ = max { ρ 1 , ρ 2 , ρ 9 } ,选择一常数 β ( 0 , 1 ) 使得 ( 1 + β ) ρ < 1 。则存在一个常数C,使得对所有 h 1 ,根据(3.4)~(3.13),我们得到

ψ ( n , m , t , δ ) P ( S n m ( t ) x n + m V ( n , m ) ) = A 1 + A 2 C ( 1 + β ) h ρ h

因此有

0 g ( t , h ) = A e b 1 t ψ ( n , m , t , δ ) C A e b 1 t ( 1 + β ) h ρ h C G ( t , h ) .

此外,根据(2.2),我们有

lim t h = 1 G ( t , h ) = lim t e b 1 t A ( 1 + β ) h ρ h = lim t e b 1 t f ( ( 1 + β ) ρ , t ) <

因此,再次通过控制收敛定理,我们得到

lim t h = 1 g ( t , h ) = h = 1 A e b 1 t ψ ( n , m , t , δ ) < .

即得证。

4. 结论

这篇文章研究了在连续时间下多维分支过程的自归一化大偏差的极限行为,由以上可知,该大偏差的极限是存在的并且是有限的、正的。

除此之外,对于连续时间下多维分支过程在迁入移民后的情形也值得进一步研究。加入移民后自归一化大偏差是否还具有相似的性质,这些都可以在今后的研究中加以思考和讨论。

文章引用

肖宁洁,王 娟. 超临界多型分支过程的自归一化大偏差
Self-Normalized Large Deviations for Supercritical Multitype Branching Processes[J]. 理论数学, 2022, 12(11): 1843-1850. https://doi.org/10.12677/PM.2022.1211197

参考文献

  1. 1. Li, J., Cheng, L., Pakes, A.G., Chen, A. and Li, L. (2020) Large Deviation Rates for Markov Branching Processes. Analysis and Applications, 18, 447-468. https://doi.org/10.1142/S0219530519500209

  2. 2. Li, J.P. and Meng, W.W. (2017) Regularity Criterion for 2-Type Markov Branching Processes with Immigration. Statistics & Probability Letters, 121, 109-118. https://doi.org/10.1016/j.spl.2016.10.010

  3. 3. Li, J., Cheng, L. and Li, L. (2021) Long Time Behaviour for Markovian Branching-Immigration Systems. Discrete Event Dynamic Systems, 31, 37-57. https://doi.org/10.1007/s10626-020-00323-z

  4. 4. Athreya, K.B. (1994) Large Deviation Rates for Branching Processes—I. Single Type Case. The Annals of Applied Probability, 4, 779-790. https://doi.org/10.1214/aoap/1177004971

  5. 5. Chu, W. (2018) Self-Normalized Large Deviation for Supercritical Branching Processes. Journal of Applied Probability, 55, 450-458. https://doi.org/10.1017/jpr.2018.29

  6. 6. Athreya, K.B. and Vidyashankar, A.N. (1995) Large Deviation Rates for Branching Processes. II. The Multitype Case. The Annals of Applied Probability, 5, 566-576. https://doi.org/10.1214/aoap/1177004778

  7. 7. Jones, O.D. (2004) Large Deviations for Supercritical Multitype Branching Processes. Journal of Applied Probability, 41, 703-720. https://doi.org/10.1239/jap/1091543420

  8. 8. Athreya, K.B. and Ney, P.E. (1972) Branching Processes. Springer, New York.

  9. 9. Shao, Q.M. (1997) Self-Normalized Large Deviations. The Annals of Probability, 25, 285-328. https://doi.org/10.1214/aop/1024404289

期刊菜单