Hans Journal of Biomedicine
Vol. 12  No. 03 ( 2022 ), Article ID: 51710 , 15 pages
10.12677/HJBM.2022.123019

利用网络药理学探讨栀子靶向铁死亡对酒精性肝病的作用机制

张楠1,王华峰1*,杨鲁红1,李世朋2

1山西师范大学生命科学学院,山西 太原

2首都医科大学附属北京友谊医院肝移植中心,北京

收稿日期:2022年4月13日;录用日期:2022年5月19日;发布日期:2022年5月26日

摘要

目的:基于网络药理学研究栀子改善酒精性肝病的铁死亡机制。方法:利用TCMSP和UniProt数据库筛选栀子的潜在目标,然后整合OMIM、Drugbank、GeneCards和DisGeNET获取酒精性肝病的作用靶点,再在FerrDb预测作用在铁死亡的目标基因,构建蛋白质相互作用的网络以及富集分析,最后进行分子对接,探索分子机制。结果:筛选出栀子在治疗酒精性肝病中具体作用在铁死亡通路上的17个基因,再综合PPI、GO、KEGG以及分子对接情况分析HMOX1、TP53、MAPK1和RB1可能是主要靶点。结论:本研究从理论上证明了栀子影响铁死亡而改善酒精性肝病。

关键词

栀子,铁死亡,酒精性肝病

Exploring the Mechanism of Targeted Ferroptosis of Gardeniae Fructus on Alcoholic Liver Disease by Network Pharmacology

Nan Zhang1, Huafeng Wang1*, Luhong Yang1, Shipeng Li2

1Department of Biotechnology, Shanxi Normal University, Taiyuan Shanxi

2Research Center of Liver Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing

Received: Apr. 13th, 2022; accepted: May 19th, 2022; published: May 26th, 2022

ABSTRACT

Objective: Based on network pharmacology, we investigated the mechanism of gardeniae fructus to improve ferroptosis in alcoholic liver disease. Methods: We screened potential targets for gardeniae fructus using TCMSP and UniProt, and then we obtained targets for alcoholic liver disease using OMIM, Drugbank, GeneCards and DisGeNET. On a database called FerrDb, we predicted the target genes for ferroptosis. We built a network diagram of protein interactions and enrichment analysis; finally, we explored the molecular mechanisms through molecular docking analysis of them. Results: We screened out 17 genes involved in the effect of gardeniae fructus on the ferroptosis pathway in the treatment of alcoholic liver disease, and we believed that HMOX1, TP53, MAPK1 and RB1 were the main targets through comprehensive PPI, GO, KEGG and molecular docking. Conclusion: Theoretically, this study demonstrates that gardeniae fructus improves alcoholic liver disease by influencing ferroptosis.

Keywords:Gardeniae Fructus, Ferroptosis, Alcoholic Liver Disease

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

栀子(Gardeniae Fructus)是茜草科植物栀子的干燥成熟果实 [1],据《神农本草经》 [2] 记载栀子有治疗炎症和肝病等药理性 [3] [4] [5] [6],能够抑制氧化应激反应,清除肝内的自由基 [7]。因为此类中药安全范围大、毒副作用小、作用环节多,所以栀子的药理研究越来越得到重视,因此,研究栀子对保护肝脏的作用成为一大热点 [8] [9]。饮酒后有90%的酒精需要在肝脏中代谢 [10] [11] [12],其中会生成大量的活性氧,产生氧化应激反应,造成损伤 [13],引起酒精性肝病(alcoholic liver disease, ALD)。据研究报道,ALD在我国肝病排名中位于第二 [13] [14],也是世界范围内肝脏疾病死亡率最常见的 [14],全球有7.6%的男性和4.0%的女性死于酒精 [15],因此ALD已经严重影响了人们的身体健康和正常生活 [14]。铁死亡是一种铁离子依赖性的氧化死亡方式 [16],它只被抗氧化剂和铁螯合剂抑制 [17],并且是非凋亡性的坏死方式 [17]。铁死亡的死亡通路为ALD的防治提供了作用靶点。

肝病一直是困扰全球健康的难题,临床上有诸如糖皮质激素等用来治疗ALD,但是它们有并发症的风险 [18];使用抗氧化类药物GSH和水飞蓟素,不能解决脂肪堆积的问题 [19];肝移植术前注意事项复杂——患者需戒酒不少于六个月,同时还需要用药物加强监测状况等,而且需要注意的是,目前肝源匮乏,并且治疗费用昂贵 [18]。栀子与铁死亡的结合为解决ALD开辟了一条新道路,ALD的发病过程比较长,如若能在这个阶段栀子能给予有效治疗就能预防甚至阻止ALD的发病 [18]。

2. 材料与方法

2.1. 筛选栀子活性成分的靶标

中医系统药理数据库与分析平台(TCMSP, http://lsp.nwu.edu.cn/tcmsp.php) [20] 收集栀子的化合物,分析包括MW、Hdon、Hacc、OB、DL和ALogP等在内的化学性质,结合文献研究,以DL ≥ 0.18 [21] 作为鉴别必需化合物的标准。通过UniProt [22] (https://www.uniprot.org/)规范处理Human和Reviewed,匹配与目标蛋白对应的人类基因名,得到栀子成分的最终靶点信息。并用Cytoscape 3.7.2软件对交互网络进行可视化,构建网络图。

2.2. 收集酒精性肝病的相关基因

将“Alcoholic Liver Disease”作为搜索OMIM [23] (http://www.omim.org/)、Drugbank [24] (https://go.drugbank.com/)、GeneCards [25] [26] (https://www.genecards.org)和DisGeNET [27] (http://www.disgenet.org/)的关键词,以确定与酒精性肝病有关的目标 [28]:1) OMIM:人类孟德尔遗传在线数据库 [29] 收集自Gene Map下的Gene/Locus一栏,即为所需的Gene Symbol;2) Drugbank:我们在Drugbank [30] 选择最适合的一个词条,然后将Drugs and targets信息整理,最后将蛋白名称转化为UniProt的基因名称;3) GeneCards:这是一个关于提供所有注释和预测的人类基因的全面、友好的数据库 [25] [26] [31],数据结果根据相关评分利用中位数从高到低不断筛选,存留出结果前1000~1500个指标;4) DisGeNET:它包含与人类疾病相关的、公开的基因和变异集合 [32] [33]。利用该数据库查找与酒精性肝病相关的靶基因,Summary of Gene Disease Associations一栏的内容构建成所需靶基因。

2.3. 获取调控铁死亡基因

从FerrDb [34] (http://www.zhounan.org/ferrdb/)收集Drivers、Suppressors和Markers的基因有效筛选Human和Validated,即人类且可信度高的基因。

2.4. 分析栀子成分靶向铁死亡调节酒精性肝病的交集基因

将上述所获得的三组基因进行交集分析,通过Venn图 (http://bioinformatics.psb.ugent.be/webtools/Venn/)获取交集基因。

2.5. 交集基因的蛋白质相互作用分析

基于STRING [35] (https://string-db.org/)建立蛋白质之间的互作(PPI)网络图,置信度0.4 [36]。再利用Cytoscape 3.7.2软件对网络拓扑可视化分析,再使用Network Analyzer插件对PPI网络的拓扑参数——分析度、间中心性和贴近中心性等分析 [37]。

2.6. 交集基因参与的KEGG通路和GO功能富集分析

为了分析基因的生物学过程和信号通路 [38],进一步阐明作用机制,利用R工具clusterProfiler包用于栀子成分靶向铁死亡调节酒精性肝病的交集基因的KEGG通路和GO功能富集分析,p值校正方法采用BH,最后,利用R工具ggplot2等包注释和可视化,绘制诸如气泡图、柱状图等网络图,结合Cytoscape 3.7.2将信号通路与靶点的关系可视化。

2.7. 交集基因与对应栀子活性成分进行分子对接

将栀子成分与交集基因的蛋白结构分批分子对接。准备交集基因的蛋白受体和与这些基因相关的栀子成分的配体文件,将基因在UniProt检索对应蛋白名或Entry,利用PDB蛋白质结构数据库 [39] (https://www.rcsb.org/)获得的三维结构导入PyMOL删去结构中水分子和小分子配体 [28]。再从PubChem [40] (https://pubchem.ncbi.nlm.nih.gov/)获取栀子成分的化学结构 [37],通过Chem 3D优化成最小能量;其次,确定活性口袋,基于AutoDock Tools 1.5.6对文件转换PDBQT格式,并对受体加氢,设置活性口袋参数,得到其格点数目和中心位置等的重要数据;接下来,AutoDock Vina分子对接;最后,结合结果用PyMOL和PLIP [41] (https://plip-tool.biotec.tu-dresden.de/)进行可视化分析,在Photoshop软件中绘制分子对接图。

3. 结果

3.1. 获得栀子活性成分及其作用靶点

TCMSP中共得到98个化合物,并且可以确定每个化合物包括MW、AlogP和Hdon等 [31] 信息在内的基本特征,接着筛选出DL ≥ 0.18的化合物43种——包括栀子苷、槲皮素、山奈酚等。表1 节选自评分较高的前十位而建立的化合物信息数据库。将43种化合物经过UniProt处理最终得到233个潜在人体靶标。为阐明分子机制,Cytoscape 3.7.2软件对交互网络可视化构建“栀子–成分–靶点”网络图(图1)。

Table 1. Part of the active components of gardeniae fructus

表1. 栀子部分有效成分

Figure 1. “Gardeniae Fructus-component-target” network diagram

图1. “栀子–成分–靶点”网络图

3.2. 获得酒精性肝病相关基因

OMIM数据库共鉴定1081种与酒精性肝病相关的靶标;Drugbank选择“severe alcoholic liver disease”词条,匹配到Pentoxifylline、Prednisolone和Propylthiouracil的3个药物,对应出了15个靶点基因;潜在靶点与相关疾病之间的关系也从GeneCards中得到,相关评分最初高到118.99,低至0.32,经过中位数不断筛选最终留下1068个结果;利用DisGeNET数据库Summary of Gene Disease Associations钓靶出195个结果。综合以上鉴定的靶点,删除重叠靶标,最终构建成含有2033个靶基因数据库。

3.3. 确定调控铁死亡的重要基因

FerrDb筛选得到Drivers84个基因、Suppressors有89个以及Markers3个,剔除重复获得121个相关基因,并节选评分较高的部分基因如表2所示。

Table 2. Part of the genes that regulates ferroptosis

表2. 调控铁死亡的部分基因

3.4. 栀子活性成分靶向铁死亡调节酒精性肝病的相关基因

将栀子的靶标、酒精性肝病靶点与铁死亡相关基因进行比较,发现有重叠的17个靶点(图2),构建成目标基因数据库,即HMOX1、TP53、HSPB1、CDKN1A、STAT3、MAPK1、PTGS2、EGFR、DPP4、NQO1、IFNG、HSPA5、CDKN2A、CAV1、HIF1A、RB1、NFE2L2。这些靶点就是栀子的关键成分在靶向铁死亡时能够调节酒精性肝病的重要基因。

Figure 2. The intersection genes of Gardeniae Fructus, ALD and Ferroptosis

图2. “栀子、酒精性肝病与铁死亡的交集基因

3.5. 交集基因的蛋白质互作网络

网络中的节点表示潜在目标,边缘表示目标之间的交互作用 [37] (图3),该网络由17个节点和82条边组成,每个节点平均9.65度显示出多靶点治疗特点,网络的聚类系数为0.815。为了细致化枢纽节点,Network Analyzer工具计算节点度、间度和亲密度的拓扑参数 [37],其中度值越高则圆圈越大颜色越亮,交互关系越紧密边缘越粗颜色越暗。

Figure 3. Protein-protein interaction network

图3. 蛋白互作网络图

3.6. 交集基因的GO和KEGG富集结果

17个最终目标基因GO功能分析时,图4综合描述靶点富集分析——前10的分子功能、生物过程和细胞组合,在分子功能方面,目标蛋白主要与泛素样蛋白连接酶结合、泛素蛋白连接酶结合、磷酸酶绑定、RNA聚合酶II转录因子结合有关;富集结果还表明活性氧代谢过程、氧化应激反应、营养水平反应、对金属的反应、活性氧代谢过程的调节为首的是最重要的生物学功能;细胞成分主要分布在细胞基质结、细胞基质黏着连接、粘着斑、膜区域、膜微区和膜筏上。同样的KEGG结果表明,最终目标基因与多条通路密切相关但仅选择前20条信号通路,并依据蛋白靶点与信号通路的关系构建通路网络图(图5),绿色方形表示通路,黄色菱形表示目标。数据表明它们主要与肝细胞癌、非小细胞肺癌、胰腺癌、膀胱癌和HIF-1信号通路有关(图6),而且这些信号通路都受到栀子多种成分的调控、参与多种调控方式,其中肝细胞癌的信号通路可以被认为是重要靶标,结果支持了栀子至少部分通过靶向该信号通路并激活代谢过程来降低ALD严重程度,提示了这些靶点可能是富集通路中的关键蛋白,对于改善病理症状有良好的活性。

Figure 4. Histogram of GO enrichment analysis

图4. GO富集分析柱状图

Figure 5. “Target-KEGG pathway” network diagram

图5. “靶点-KEGG通路”网络图

Figure 6. Bubble chart of KEGG

图6. KEGG气泡图

3.7. 分子对接结果

对应的栀子化合物与目标基因靶点对接(表3),最低自由能越负,相互作用越稳定 [28]。因此,从每组对接中找到最稳定的组合(图7图8),结果表明,HMOX1通过与周围的PHE-95、PRO-99、LEU-141、GLN-145和ALA-175残基产生疏水相互作用并与ALA-175形成氢键与oleanolic acid结合;此外,quercetin在LYS-54、ASP-106和MET-108处形成3个氢键,在ILE-31、LYS-54、LEU-156形成3个疏水作用,增强了与MAPK1的相互作用;而且quercetin和RB1也能形成3个疏水相互作用和3个氢键,疏水相互作用位于ARG-467、LYS-530和LEU-649,氢键在ARG-467、SER-534和PHE-650;TP53可以与ursolic acid通过与LEU-194、PHE-277、GLU-336形成疏水相互作用与IL1B结合,还形成1个ARG-337盐桥增强结合能力。

Table 3. Molecular docking

表3. 分子对接

注:a. CDKN1A-ursolic acid对接;b. CDKN2A-quercetin对接;c. DPP4-Sudan III对接;d. EGFR-quercetin对接;e. HIF1A-quercetin对接;f. HMOX1-oleanolic acid对接;g. HSPA5-quercetin对接;h. HSPB1-quercetin对接。

Figure 7. Part of the molecular docking

图7. 部分分子对接

注:a. IFNG-quercetin对接;b. MAPK1-quercetin对接;c. NFE2L2-quercetin对接;d. NQO1-oleanolic acid对接;e. PTGS2-Sudan III对接;f. RB1-quercetin对接;g. STAT3-ursolic acid对接;h. TP53-ursolic acid对接。

Figure 8. Part of the molecular docking

图8. 部分分子对接

4. 讨论

ALD是一种酒精造成的肝细胞损伤,细胞内谷胱甘肽的耗竭、谷胱甘肽过氧化物酶4活性降低 [42],铁离子则以Fenton反应氧化生成大量ROS [43] [44],导致氧化还原反应异常。栀子在中国作为治病药材已有2000年的历史 [45] [46],被广泛用于治疗肝病 [47]。栀子可以抑制小鼠肝脏内细胞色素P450-E1活性,降低自由基生成速率,增加谷胱甘肽系统的清除能力和速率 [48]。依据肝脏损伤模型 [49] 发现栀子通过激活部分信号通路来抑制炎症以此保护肝脏,有研究者采用斑马鱼肝损伤模型也得到同样结论 [2]。因此可以推断,栀子通过减少氧化应激反应来减少肝脏损伤 [50]。因此,栀子治疗ALD是一种可行策略。

网络药理学在中药资源领域的应用是可以解决当前研究中的问题,为研究栀子对ALD的药理机制提供有力支持 [51]。本研究中,我们采用网络药理学方法探讨栀子对ALD的铁死亡改善机制。首先TCMSP能够收集尽可能多的栀子潜在靶点,由于DL是药物设计,可评估前瞻性化合物的“类药”质量,优化药物动力学和药物性质,如化学稳定性 [31],所以以DL为筛选标准;其次UniProt可以规范地将筛选化合物映射对应蛋白靶标,为了整理更全面、优异、可靠的ALD靶点,选择四个数据库互相补充分析。然后将上述靶点相交来阐明它们的关系;因为FerrDb专注于研究铁死亡,所以相较于其它数据库而言,能够获得更全面的基因情况;假设最终目标基因靶点是栀子利用铁死亡通路治疗ALD,接下来构建它们之间的PPI网络,在此基础上Network Analyzer插件能衡量此网络 [52] 中节点的拓扑重要性 [33],做出进一步的判断;Gene Ontology (GO)是一种基因功能分类系统,用来全面描述生物体中基因及其产物的特征,KEGG是计算机利用遗传信息对更高层次和更复杂的细胞活动和生物行为进行计算预测 [28],将这些靶点进行通路富集分析,最后为验证栀子预测靶点的可靠性进行分子对接。

结果表明,栀子233个靶点中有17个靶点是靶向铁死亡调节酒精性肝病的。活性氧代谢过程、氧化应激反应、营养水平反应、对金属的反应、活性氧代谢过程的调节为首的是重要的生物学功能,在KEGG通路中富集时发现,CDKN1A、CDKN2A、NQO1、EGFR、HMOX1、NFE2L2、MAPK1、RB1、TP53在肝细胞癌信号通路中富集,再综合PPI以及对接情况推测HMOX1、TP53、MAPK1和RB1可能是栀子治疗ALD的铁死亡方式主要靶点。其中,HMOX1是一种应激诱导酶,它是转录因子HIF-1α (缺氧诱导因子-1α)的下游靶标,它是调节氧化反应的关键因子 [53]。HMOX1的上调与下调会影响ERK/Nrf2信号通路,能启动氧化应激反应 [54]。TP53在ALD中可作为驱动基因 [55],也可存在变异 [56]。但当它作为一种调节因子时,能够抑制细胞周期,防止细胞凋亡,预防肝癌 [57]。miRNA主要参与肝细胞癌通路,已知miR-181家族的缺失通过调节MAPK1来抑制肿瘤细胞的迁移 [58],降低miR-122表达可诱导HIF-1α和MAPK1来促进肝癌 [59]。饮酒能抑制肝细胞中的let-7a、增加TP53蛋白表达和上调RB1诱导肝细胞死亡 [60]。像TP53和RB1等的突变影响肝细胞癌的生物通路——细胞周期调控、氧化应激反应以及MAPK通路 [61]。中药药理学的多组分和多靶点的特点更有助于解释栀子能够多靶点影响肝细胞癌通路,进一步预防或治疗ALD的铁死亡。

5. 结论

铁代谢和过氧化程度控制着肝病的发展,所以铁死亡可能为ALD提供准确治疗靶点与探针 [62] [63]。本研究从网络药理学和文献研读的角度探讨栀子的治疗作用,至少在理论上证明了我们的建议是可行的,研究发现栀子可能结合HMOX1、TP53、MAPK1和RB1在铁死亡通路起到调节作用而有效改善ALD。但是影响ALD的因素很多 [18]、现存的模型并不能彻底解决患者问题 [64] ……很多挑战未被克服,当未来有更多数据时,这种情况会得到改善。

文章引用

张 楠,王华峰,杨鲁红,李世朋. 利用网络药理学探讨栀子靶向铁死亡对酒精性肝病的作用机制
Exploring the Mechanism of Targeted Ferroptosis of Gardeniae Fructus on Alcoholic Liver Disease by Network Pharmacology[J]. 生物医学, 2022, 12(03): 150-164. https://doi.org/10.12677/HJBM.2022.123019

参考文献

  1. 1. Takei, H., Iizuka, S. and Yamamoto, M. (2020) Effects of Long-Term Administration of Gardeniae Fructus on Intra-Abdominal Organs of Rats. Evidence-Based Complementary & Alternative Medicine, 2020, Article ID: 4201508. https://doi.org/10.1155/2020/4201508

  2. 2. Dong, R., Tian, Q., Shi, Y., et al. (2021) An Integrated Strategy for Rapid Discovery and Identification of Quality Markers in Gardenia Fructus Using an Omics Discrimination-Grey Correlation-Biological Verification Method. Frontiers in Pharmacology, 12, Article ID: 705498. https://doi.org/10.3389/fphar.2021.705498

  3. 3. Che, X., Wang, M., Wang, T., et al. (2016) Evaluation of the Antidepressant Activity, Hepatotoxicity and Blood Brain Barrier Permeability of Methyl Genipin. Molecules, 21, 923-933. https://doi.org/10.3390/molecules21070923

  4. 4. Zhang, Z., Wang, X., Zhang, D., et al. (2019) Geniposide-Mediated Protection against Amyloid Deposition and Behavioral Impairment Correlates with Downregulation of mTOR Signaling and Enhanced Autophagy in a Mouse Model of Alzheimer’s Disease. Aging (Albany NY), 11, 536-548. https://doi.org/10.18632/aging.101759

  5. 5. Kim, S.-J., Lee, S.-M., Cho, H.-I., et al. (2016) Genipin Alleviates Sepsis-Induced Liver Injury by Restoring Autophagy. British Journal of Pharmacology, 173, 980-991. https://doi.org/10.1111/bph.13397

  6. 6. 郭曙军, 赵志英. 栀子苷的药理作用及其作用机制研究进展[J]. 包头医学院学报, 2013, 29(2): 111-113.

  7. 7. 王荣慧, 吴虹, 王梦蝶, 等. 栀子苷保肝利胆和肝毒性双重作用的研究进展[J]. 安徽中医药大学学报, 2020, 39(3): 88-91.

  8. 8. Wang, W., Tian, D. and Zhang, Z. (2016) In Vitro Effects of Concomitant Use of Herbal Preparations on Cytochrome P450s Involved in Clozapine Metabolism. Molecules, 21, 597. https://doi.org/10.3390/molecules21050597

  9. 9. 黄涛, 毕旭东. 肝脏缺血再灌注损伤防治的研究进展[J]. 中国全科医学, 2007, 10(20): 1743-1745.

  10. 10. Müller, A. and Sies, H. (1982) Role of Alcohol Dehydrogenase Activity and the Acetaldehyde in Ethanol-Induced Ethane and Pentane Production by Isolated Perfused Rat Liver. Biochemical Journal, 206, 153-156. https://doi.org/10.1042/bj2060153

  11. 11. Lieber, C.S., et al. (1989) Impaired Oxygen Utilization. A New Mechanism for the Hepatotoxicity of Ethanol in Sub-Human Primates. The Journal of Clinical Investigation, 83, 1682-1690. https://doi.org/10.1172/JCI114068

  12. 12. Espina, N., et al. (1988) In Vitro and in Vivo Inhibitory Effect of Ethanol and Acetaldehyde on O6-Methylguanine Transferase. Carcinogenesis, 9, 761-766. https://doi.org/10.1093/carcin/9.5.761

  13. 13. 南婷婷, 许东霞, 王余宸铭, 等. 蝉花孢子粉多糖的酶辅助提取及对酒精性肝损伤小鼠的保护作用[J]. 食品工业科技, 2021(2): 295-301, 309.

  14. 14. 袁慧琦, 梁楚燕, 梁健, 等. 铁皮石斛对小鼠急性酒精性肝损伤的保护作用[J]. 暨南大学学报(自然科学与医学版), 2016, 37(5): 384-388.

  15. 15. Seitz, H.K., Bataller, R., Cortez-Pinto, H., et al. (2018) Alcoholic Liver Disease. Nature Reviews Disease Primers, 4, 16. https://doi.org/10.1038/s41572-018-0014-7

  16. 16. 王玲, 贾岩, 李蒙蒙, 等. 铁死亡在肝细胞癌中的作用以及研究进展[J]. 中国药理学通报, 2018, 34(6): 745-749.

  17. 17. Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060. https://doi.org/10.1016/j.cell.2012.03.042

  18. 18. 马丙钧. 灵芝酸A对急性酒精性肝损伤小鼠的保护作用及机制研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2019.

  19. 19. 孔诺. 莲子心油对小鼠急性酒精性肝损伤的保护作用的研究[D]: [硕士学位论文]. 南京: 南京师范大学, 2013.

  20. 20. Ru, J., Li, P., Wang, J., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, 13. https://doi.org/10.1186/1758-2946-6-13

  21. 21. Walters, J. (2002) New Advances in the Molecular and Cellular Biology of the Small Intestine. Current Opinion in Gastroenterology, 18, 161-167. https://doi.org/10.1097/00001574-200203000-00002

  22. 22. Consortium, U. (2021) UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Research, 49, D480- D489.

  23. 23. Hamosh, A., et al. (2005) Online Mendelian Inheritance in Man (OMIM), a Knowledgebase of Human Genes and Genetic Disorders. Nucleic Acids Research, 33, D514-D517. https://doi.org/10.1093/nar/gki033

  24. 24. Wishart, D.S., Feunang, Y.D., Guo, A.C., et al. (2018) DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Research, 46, D1074-D1082. https://doi.org/10.1093/nar/gkx1037

  25. 25. Safran, M., Dalah, I., Alexander, J., et al. (2010) GeneCards Version 3: The Human Gene Integrator. Database (Oxford), 2010, baq020. https://doi.org/10.1093/database/baq020

  26. 26. Stelzer, G., et al. (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54, 1.30.31-31.30.33. https://doi.org/10.1002/cpbi.5

  27. 27. Piñero, J., Saüch, J., Sanz, F., et al. (2021) The DisGeNET Cytoscape App: Exploring and Visualizing Disease Genomics Data. Computational and Structural Biotechnology Journal, 19, 2960-2967. https://doi.org/10.1016/j.csbj.2021.05.015

  28. 28. Min, L., Wu, Y., Cao, G., et al. (2021) A Network Pharmacology Strategy to Investigate the Anti-Osteoarthritis Mechanism of Main Lignans Components of Schisandrae Fructus. International Immunopharmacology, 98, Article ID: 107873. https://doi.org/10.1016/j.intimp.2021.107873

  29. 29. Hamosh, A., Scott, A., Amberger, J., et al. (2005) Online Mendelian Inheritance in Man (OMIM), a Knowledgebase of Human Genes and Genetic Disorders. Nucleic Acids Research, Oxford, 33, D514-D517. https://doi.org/10.1093/nar/gki033

  30. 30. Wishart, D.S., Knox, C., Guo, A.C., et al. (2006) DrugBank: A Comprehensive Resource for in Silico Drug Discovery and Exploration. Nucleic Acids Research, 34, D668-D672. https://doi.org/10.1093/nar/gkj067

  31. 31. Li, S., Ying, Q.A., Rui, X.A., et al. (2019) Exploring the Protective Effect of ShengMai-Yin and Ganmaidazao Decoction Combination against Type 2 Diabetes Mellitus with Nonalcoholic Fatty Liver Disease by Network Pharmacology and Validation in KKAy Mice. Journal of Ethnopharmacology, 242, Article ID: 112029. https://doi.org/10.1016/j.jep.2019.112029

  32. 32. Piero, J., Bravo, L., Queralt-Rosinach, N., et al. (2016) DisGeNET: A Comprehensive Platform Integrating Information on Human Disease-Associated Genes and Variants. Nucleic Acids Research, 45, D833-D839. https://doi.org/10.1093/nar/gkw943

  33. 33. Cai, F.-F., Bian, Y.-Q., Wu, R., et al. (2019) Yinchenhao Decoction Suppresses Rat Liver Fibrosis Involved in an Apoptosis Regulation Mechanism Based on Network Pharmacology and Transcriptomic Analysis. Biomedicine & Pharmacotherapy, 114, Article ID: 108863. https://doi.org/10.1016/j.biopha.2019.108863

  34. 34. Zhou, N. and Bao, J. (2020) LiFerrDb: A Manually Curated Resource for Regulators and Markers of Ferroptosis and Ferroptosis-Disease Associations. Database: The Journal of Biological Databases and Curation, 2020, baaa021. https://doi.org/10.1093/database/baaa021

  35. 35. Szklarczyk, D., Gable, A.L., Nastou, K.C., et al. (2021) The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Research, 49, D605-D612. https://doi.org/10.1093/nar/gkaa1074

  36. 36. Shi, M.J., Yan, X.L., Dong, B.S., et al. (2020) A Network Pharmacology Approach to Investigating the Mechanism of Tanshinone IIA for the Treatment of Liver Fibrosis. Journal of Ethnopharmacology, 253, Article ID: 112689. https://doi.org/10.1016/j.jep.2020.112689

  37. 37. Li, L., Li, S.-H., Jiang, J.-P., et al. (2021) Investigating Pharmacological Mechanisms of Andrographolide on Non-Alcoholic Steatohepatitis (NASH): A Bioinformatics Approach of Network Pharmacology. Chinese Herbal Medicines, 13, 342-350. https://doi.org/10.1016/j.chmed.2021.05.001

  38. 38. Tomczak, K., Czerwinska, P. and Wiznerowicz, M. (2015) The Cancer Genome Atlas (TCGA): An Immeasurable Source of Knowledge. Contemporary Oncology/Wspólczesna Onkologia, 19, A68-A77. https://doi.org/10.5114/wo.2014.47136

  39. 39. Sehnal, D., Bittrich, S., Deshpande, M., et al. (2021) Mol* Viewer: Modern Web App for 3D Visualization and Analysis of Large Biomolecular Structures. Nucleic Acids Research, 49, W431-W437. https://doi.org/10.1093/nar/gkab314

  40. 40. Kim, S., Chen, J., Cheng, T., et al. (2021) PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Research, 49, D1388-D1395. https://doi.org/10.1093/nar/gkaa971

  41. 41. Sebastian, S., Sven, S., Joachim, H.V., et al. (2015) PLIP: Fully Automated Protein-Ligand Interaction Profiler. Nucleic Acids Research, 43, W443-W447. https://doi.org/10.1093/nar/gkv315

  42. 42. Cao, J.Y. and Dixon, S.J. (2016) Mechanisms of Ferroptosis. Cellular and Molecular Life Sciences: CMLS, 73, 2195-2209. https://doi.org/10.1007/s00018-016-2194-1

  43. 43. Oseini, A.M. and Sanyal, A.J. (2017) Therapies in Non-Alcoholic Steatohepatitis (NASH). Liver International, 37, 97-103. https://doi.org/10.1111/liv.13302

  44. 44. 庞庆丰, 邱玉保, 吴亚先, 等. 铁死亡抑制剂在制备防治淹溺所致的肺损伤药物中的应用[P]. 中国, CN111529518A. 2020-05-22.

  45. 45. Zhou, J., Yao, N., Wang, S., et al. (2019) Fructus Gardeniae-Induced Gastrointestinal Injury Was Associated with the Inflammatory Response Mediated by the Disturbance of Vitamin B6, Phenylalanine, Arachidonic Acid, Taurine and Hypotaurine Metabolism. Journal of Ethnopharmacology, 235, 47-55. https://doi.org/10.1016/j.jep.2019.01.041

  46. 46. Yao, Q., Li, S., Cheng, X., et al. (2020) Yin Zhi Huang, a Traditional Chinese Herbal Formula, Ameliorates Diet-Induced Obesity and Hepatic Steatosis by Activating the AMPK/SREBP-1 and the AMPK/ACC/CPT1A Pathways. Annals of Translational Medicine, 8, 231. https://doi.org/10.21037/atm.2020.01.31

  47. 47. Yan, T., Yan, N., Wang, P., et al. (2020) Herbal Drug Discovery for the Treatment of Nonalcoholic Fatty Liver Disease. Acta Pharmaceutica Sinica B, 10, 3-18. https://doi.org/10.1016/j.apsb.2019.11.017

  48. 48. 张立明, 何开泽, 任治军, 等. 栀子中京尼平甙对CCl4急性小鼠肝损伤保护作用的生化机理研究[J]. 应用与环境生物学报, 2005, 11(6): 669-672.

  49. 49. Rong, Y.-P., Huang, H.-T., Liu, J.-S., et al. (2017) Protective Effects of Geniposide on Hepatic Ischemia/Reperfusion Injury. Transplantation Proceedings, 49, 1455-1460. https://doi.org/10.1016/j.transproceed.2017.02.063

  50. 50. Kim, H.-Y., Kim, J. and Lee, S.-M. (2013) Protective Effects of Geniposide and Genipin against Hepatic Ischemia/Reperfusion Injury in Mice. Biomolecules & Therapeutics, 21, 132-137. https://doi.org/10.4062/biomolther.2013.005

  51. 51. Liu, F., Li, Y., Li, M., et al. (2020) Study on Mechanism of Iridoid Glycosides Derivatives from Fructus Gardeniae in Jiangxi Province by Network Pharmacology. Evidence-Based Complementary & Alternative Medicine, 2020, Article ID: 4062813. https://doi.org/10.1155/2020/4062813

  52. 52. Shi, S.H., Cai, Y.P., Cai, X.J., et al. (2014) A Network Pharmacology Approach to Understanding the Mechanisms of Action of Traditional Medicine: Bushenhuoxue Formula for Treatment of Chronic Kidney Disease. PLoS ONE, 9, e89123. https://doi.org/10.1371/journal.pone.0089123

  53. 53. Dunn, L.L., Kong, S.M.Y., Tumanov, S., et al. (2021) Hmox1 (Heme Oxygenase-1) Protects against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α). Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 317-330. https://doi.org/10.1161/ATVBAHA.120.315393

  54. 54. Tian, R., Yang, Z.Y., Lu, N.H. and Peng, Y.-Y. (2019) Quercetin, But Not Rutin, Attenuated Hydrogen Peroxide-Induced Cell Damage via Heme Oxygenase-1 Induction in Endothelial Cells. Archives of Biochemistry and Biophysics, 676, Article ID: 108157. https://doi.org/10.1016/j.abb.2019.108157

  55. 55. Qiu, J., Wang, W., Li, Y., et al. (2020) Comparison of Mutational Landscape of Non-Alcoholic Fatty Liver Disease, Viral Hepatitis, and Alcohol Consumption Related Hepatocellular Carcinoma. Journal of Clinical Oncology, 38, e16614. https://doi.org/10.1200/JCO.2020.38.15_suppl.e16614

  56. 56. Chae, H., Sung, P.S., Choi, H., et al. (2021) Targeted Next-Generation Sequencing of Plasma Cell-Free DNA in Korean Patients with Hepatocellular Carcinoma. Annals of Laboratory Medicine, 41, 198-206. https://doi.org/10.3343/alm.2021.41.2.198

  57. 57. Wungu, C., Amin, M., Kholili, U., et al. (2021) Associations between P53, Transforming Growth Factor Beta-1, and Interleukin-10 Serum Levels with Advanced Liver Disease and Hepatitis B Virus Infection. Indian Journal of Forensic Medicine & Toxicology, 15, 2842-2848.

  58. 58. Wang, S.-M., Yang, P.-W., Feng, X.-J., et al. (2021) Apigenin Inhibits the Growth of Hepatocellular Carcinoma Cells by Affecting the Expression of microRNA Transcriptome. Frontiers in Oncology, 11, Article ID: 657665. https://doi.org/10.3389/fonc.2021.657665

  59. 59. Morishita, A., Oura, K., Tadokoro, T., et al. (2021) MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers, 13, 514. https://doi.org/10.3390/cancers13030514

  60. 60. Pan, J.H., Kim, H., Tang, J., et al. (2020) Acute Alcohol Consumption-Induced let-7a Inhibition Exacerbates Hepatic Apoptosis by Regulating Rb1 in Mice. Alcohol, 85, 13-20. https://doi.org/10.1016/j.alcohol.2019.10.008

  61. 61. Caruso, S., O’Brien, D.R., Cleary, S.P., et al. (2021) Genetics of Hepatocellular Carcinoma: Approaches to Explore Molecular Diversity. Hepatology, 73, 14-26. https://doi.org/10.1002/hep.31394

  62. 62. 国胜文, 童媛媛, 柏利婷, 等. 铁死亡及其在器官缺血再灌注损伤中作用研究进展[J]. 中国体外循环杂志, 2020, 18(4): 248-250.

  63. 63. Albrecht, S.C., Barata, A.G., Großhans, J., et al. (2011) In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis. Cell Metabolism, 14, 819-829. https://doi.org/10.1016/j.cmet.2011.10.010

  64. 64. Lamas-Paz, A., Hao, F., Nelson, L.J., et al. (2018) Alcoholic Liver Disease: Utility of Animal Models. World Journal of Gastroenterology, 24, 5063-5075. https://doi.org/10.3748/wjg.v24.i45.5063

  65. NOTES

    *通讯作者。

期刊菜单