Hans Journal of Chemical Engineering and Technology
Vol. 13  No. 04 ( 2023 ), Article ID: 68788 , 10 pages
10.12677/HJCET.2023.134027

沥青质转化研究

时一鸣,朱慧红,杨涛

中石化(大连)石油化工研究院有限公司,辽宁 大连

收稿日期:2023年5月16日;录用日期:2023年7月7日;发布日期:2023年7月17日

摘要

轻质石油供应日益枯竭,导致对重油等非常规石油资源的依赖日益增加。重油通常含有大量的重馏分沥青质。在重油改质过程中,沥青质会促进高分子量焦炭的形成,这会导致催化剂失活、传热效率降低和管道堵塞等问题。采用加氢处理,能够选择性地去除杂质,实现比其他工艺高得多的液烃收率。然而,沥青质会干扰加氢处理,限制其转化效率。而沸腾床技术能更有效的提高沥青质的转化率。有鉴于此,本综述总结了沥青质转化研究的进展。更具体地说,讨论了沥青质的性质及重油加氢中沥青质的转化。

关键词

沥青质,重油加氢,沸腾床加氢

Asphaltene Transformation Studies

Yiming Shi, Huihong Zhu, Tao Yang

SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian Liaoning

Received: May 16th, 2023; accepted: Jul. 7th, 2023; published: Jul. 17th, 2023

ABSTRACT

The increasingly depleted supply of light petroleum has led to an increasing dependence on unconventional petroleum resources such as heavy oil. Heavy oil usually contains a large amount of heavy fraction asphaltene. In the process of upgrading heavy oil, asphaltene can promote the formation of high molecular weight coke, which can lead to catalyst deactivation, reduced heat transfer efficiency, and pipeline blockage. By using hydrogenation treatment, impurities can be selectively removed, achieving much higher liquid hydrocarbon yields than other processes. However, asphaltene can interfere with hydrogenation and limit its conversion efficiency. The fluidized bed technology can more effectively improve the conversion rate of asphaltene. In view of this, this review summarizes the progress of research on asphaltene conversion. More specifically, the properties of asphaltene and the conversion of asphaltene in heavy oil hydrogenation were discussed.

Keywords:Asphaltene, Heavy Oil Hydrogenation, Fluidized Bed Hydrogenation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

由于人口和经济的飞速增长,全球范围内,各行各业对能源的需求不断增加。在当代,取暖、烹饪、运输和工业生产等都需要能源,能源消耗量逐年增长,据统计至2019年,已有超过30%的能源消耗来自石油,石油作为全球主要能源,它在各领域发挥着至关重要的作用 [1] 。但是在过去的几十年中,大量的传统轻质石油被开采,储量不断减少,导致我们对重油等非常规石油资源的依赖增加。

重油改质生产的原油具有与天然轻质原油相似的特性。但是,重油的加工复杂且具有挑战性。这是由于重油中含有大量的重质沥青质,它们极易通过缩聚反应生成大分子焦炭,这种不良反应路径限制了改质过程中的重油转化,同时缩聚产物在催化剂、下游分离器、热交换器和分馏塔中积聚,最终导致操作停机 [2] [3] 。

沥青质被定义为石油或渣油中不溶于轻质正烷烃(如正戊烷或正庚烷)但可溶于芳烃(如甲苯或苯)的部分 [4] [5] [6] 。研究表明,重油改质中焦炭的形成不仅取决于沥青质的数量 [7] ,还取决于其化学性质 [8] 。通常,沥青质的化合物的构成极为复杂,包含多个稠环芳烃、硫、氮、氧和多种金属,其中芳环由烷基链连接组成 [9] 。复杂的化学结构、沥青质单元的聚集状态以及沥青质中杂原子的组合导致了沥青质研究的困难和模糊性,特别是渣油改质过程中的物理和化学转化方面的研究。

脱碳过程和加氢过程解决了重质原料加工过程中的困难,脱碳过程主要包括焦化,减粘,催化裂化等加工工艺;加氢过程包括加氢处理,加氢精制,加氢减粘,加氢裂化等加工工艺。然而,随着原料质量的恶化,脱碳工艺逐渐被加氢工艺所取代,后者对于高沥青质含量的原料表现出较高的液体收率、以及对杂质的高耐受性。

通过加氢处理,可以实现比其他工艺高得多的液体油收率,主要依靠氢气与重油馏分在中高温下反应从而选择性地去除杂质。然而,在这个过程中沥青质会干扰加氢处理,限制其转化效率。因此,合理处理沥青质对加氢处理工艺的改进和催化剂的高效开发至关重要。近几十年,无数专家学者针对加氢处理的操作条件对沥青质产生的影响进行广泛研究。鉴于此,本文总结了该领域的研究现状,讨论了不同操作参数和催化剂对加氢处理过程中沥青质分子化学和物理行为的影响。

2. 沥青质的性质

2.1. 沥青质的一般性质

沥青质是基于石油残余物在各种溶剂中的溶解性来定义的,主要是指石油或渣油中不溶于轻质正烷烃(如正戊烷或正庚烷)但可溶于芳烃(如甲苯或苯)的部分。自1950年代以来,沥青质一直是一个活跃的研究课题。然而,沥青质分子构成非常复杂,主要有由有各种杂原子的多环芳烃组成,因此,沥青质是石油中具有极高的分子量的固体 [10] [11] [12] [13] 。此外,沥青质固体具有高碳和低氢含量而其硫、氧、氮和铁、钠、镍和钒等金属的含量取决于其独创性石油的地质来源和分离工艺条件。但是这些元素并不会显着影响沥青质在液体石蜡中的溶解性,因此通常将液体石蜡用于沥青质与其他馏分的分离。

2.2. 沥青质分子量

沥青质最重要的特性之一是它的分子量。沥青质分子量的测量一直是研究沥青质物理化学性质的重点和难点。但是由于沥青质不是唯一的一组或一类化合物,导致研究报道的沥青质分子量变化很大,从几百道尔顿到几十万道尔顿(Da)。这些值的显着差异源于沥青质含量和组成的差异以及沥青质的自缔合倾向。通常报告的分子量对应于沥青质纳米聚集体的平均重量 [14] [15] [16] [17] [18] 。近年来,沥青质的分子量测量更精确,结果的范围更窄。例如,蒸气压渗透法(VPO)显示了测量的分子量与沥青质溶液中的沥青质浓度之间的比例关系,以及测量的分子量与测量温度或溶剂极性之间的反比关系 [19] [20] [21] 。分散沥青质分子的VPO结果范围为700至2000 Da,聚集沥青质分子的VPO结果范围为2000至30000 Da [19] [22] [23] [24] [25] [26] 。其他技术也提供了类似的值;使用尺寸排阻色谱法(SEC) [25] 估计沥青质的分子量为1700 Da,使用基质激活激光解吸/电离(MALDI) [27] 估计为786~1280 Da,使用大气压光电离(APPI)估计为400~900 Da [28] ,使用荧光偏振法(FD)估计为500~1000 Da [29] 。每种方法的优缺点如表1所示。

Table 1. Advantages and disadvantages of molecular weight measurement methods for asphaltene

表1. 沥青质分子量测量方法的优缺点

2.3. 沥青质的结构

沥青质的分子结构是石油科学中的另一个关键问题。一般来说,沥青质主要使用两种不同的模型进行建模:大陆模型和群岛模型。其中大陆模型的沥青质由单个芳香核心组成,侧链向外 [30] ,群岛模型的沥青质则由多个芳香核心组成,芳香核心之间通过烷烃桥接 [31] [32] 。一些研究表明,这两种类型的结构可以在稠油中同时存在,其主要类型取决于油的来源 [33] [34] [35] [36] 。然而,最近的科学研究发现,大陆模型的结构在两种模型中占主导地位 [37] - [42] 。自从Mullins [38] 于2011年首次提出Yen-Mullins理论,一直都是最被广泛接受的模型(图1)。该模型的基本特点如下:

大陆型结构在沥青质中占主导地位。单个沥青质分子包含一个多环芳烃环系统,该系统平均包含七个稠环。沥青质的平均分子量为750 Da,其重量分布范围为500~1000 Da。

Figure 1. Yen-Mullins model for asphalt aggregation

图1. 沥青质聚集的Yen-Mullins模型

沥青质以三种不同的层次结构存在于原油中:分子、纳米聚集体和团簇。纳米聚集体中的平均分子数为6,团簇中的平均纳米聚集体数为8。

在该模型中,沥青质是一种固体状物质,在油中分散良好,但在一定条件下会沉淀形成新相。由于其两亲性质,沥青质具有以胶束形式聚集的强烈趋势 [43] [44] [45] 。为了确定沥青质开始聚集的浓度,提出了对其临界胶束浓度或临界聚集浓度的研究。甲苯是沥青质相行为研究中最常用的溶剂。在浓度低于50 mg/L时,沥青质以单分子形式存在;进一步增加其浓度会导致纳米聚集体的形成。当其浓度达到2~5 g/L时,纳米聚集体开始形成团簇,每个团簇由10个或更少的纳米聚集体组成。沥青质的聚集是一个循序渐进的过程 [46] ,团簇的生长不会改变分形维数 [47] 。

2.4. 沥青质中的杂元素

杂原子在决定沥青质的物理行为方面起着至关重要的作用,尤其是在勘探、运输、提质和蒸馏过程中沥青质在设备表面或催化剂载体上的吸附。在重油加氢过程中,杂原子的存在直接影响了产品的稳定性和催化剂活性。沥青质中含杂原子的极性部分,如吡啶、吡咯、酚、羧基和喹啉基团显着影响沥青质的表面吸附 [48] [49] 。

Ancheyta等人 [50] 检查了从玛雅、地峡和奥尔梅卡原油中获得的沥青质,其沥青质含量分别为14.10 wt%、3.63 wt%和1.05 wt%。还确定了不同原油的沥青质杂元素含量(图2),发现不同原油之间存在显着差异。换言之,原油的来源决定了其杂元素含量。此外,虽然原油中沥青质的占比不高,但在沥青质馏分中发现了大量的杂原子,特别是氮、钒和镍。例如,在奥尔梅卡原油中,沥青质仅占原油重量的1.05 wt%,但分别占总氮和金属的20 wt%和64 wt%。

Figure 2. Content of asphalt impurities in different crude oils

图2. 不同原油中沥青杂元素含量

此外,这些杂元素在沥青质有机化合物中的位置不同,形式多样。硫主要以噻吩形式存在 [51] 。大多数有机氮化合物含有杂环芳环,包括吡啶、苯胺、喹啉、吡咯、咔唑和吲哚,以及烷基 [52] 。金属镍和钒通常以金属卟啉形式存在 [53] ,这些化合物很难通过裂解反应直接脱除;但如果沥青质组分中的键能由于稠环系统的饱和而减弱,能有效地提高它们地脱除效率。这也解释了与重油焦化工艺相比,为什么加氢处理中的杂元素脱除率要更高。

3. 重油加氢过程中沥青质的转化

3.1. 沥青质转化的一般概念

Figure 3. Asphaltene phase separation mechanism under thermal conditions

图3. 热条件下沥青质相分离机理

目前有两种不同的方法可以用于处理含有沥青质的重质渣油原料:一种是将沥青质从渣油原料中脱除,另一种方法是将沥青质转化为其他产品。工业上脱除沥青质的方法通常是溶剂脱沥青(液–液萃取),即生产沥青的同时还生产脱沥青油,或者通过焦化工艺脱除沥青(即将沥青分子转化为焦炭的热裂化)。同样也可以将沥青质转化为有价值的碳氢化合物,但这需要在具有低酸性载体的催化剂在高温和氢气分压下的苛刻操作条件下工作,以限制焦炭的形成。在这些条件下,可以获得较高的沥青质加氢转化效率,并且通过这种方法产生的液体的产率远高于沥青质脱除的方法。

在重油改质过程中沥青质的转化涉及沥青质的化学和物理变化。重油改质过程中会发生三种反应:热裂化、加氢和缩聚反应 [54] ;这些反应中的每一个都以不同的方式改变沥青质。当芳核中的环数减少到四个或更少时,沥青质的转化变得不经济 [55] ;此时理想的残渣转化率约为95%。目前,大多数重油改质过程中残渣的转化率很少达到70 wt%以上,这种有限转换是由多种因素造成的;其中最关键的是高分子量碳基化合物的沉积,这些碳基化合物源自沥青质的芳香核在反应器壁和管道上的缩聚反应。目前发现这种化合物的形成不仅取决于化学反应,即缩聚反应,还取决于物理相互作用,即沥青质的相分离 [56] [57] [58] 。2007年,Gould和Wiehe提出了基于悬垂核心模块模型的沥青质相分离机制(图3) [59] 。

在该机理中,沥青质的演化涉及三个反应步骤:芳香核的裂解、结垢和缩聚。在最初的状态下,他们简单地将沥青质描述为一种多功能分子,其中心有一个芳香核心,具有许多不同的官能团,如饱和烷基链和向外取向的芳香部分;后者被称为吊坠。这些沥青质分散良好,并与其他重油馏分(即树脂、饱和物和氢化芳烃化合物)达到平衡。在热条件下的反应开始时,烷基链和小环芳族侧链通过裂解反应脱除,形成重烃自由基 [60] 。由于沥青质分散在油中,其中含有一些天然的氢供体 [61] ,因此沥青质自由基达到一定的转化水平就会停止继续转化,这个过程解释了为什么沥青质重量会减少。然后转化后的沥青质变得更具有芳香性,更不易溶于油,最终分离形成新相。由于富含沥青质的相含有少量或不含氢供体,芳核之间发生缩聚反应,最终形成不可逆的高分子量焦炭。通过芘的深度加氢处理也可以观察到芳香核的生长,其中芘被用作模型化合物 [61] 。尽管由于沥青质化合物被广泛认为以团簇而不是单个分子的形式存在,导致悬垂核心模块模型不能正确描述重油中沥青质的存在,但是同时考虑团簇内沥青质与其他馏分的相互作用是非常复杂的,因此将沥青质簇简化为沥青质单元是一种实用的方法,可以提供与实验数据一致的结果。

3.2. 沸腾床沥青质转化研究

在原料的金属含量较低时,可以在采用固定床反应器中以中等的渣油转化率水平对渣油进行加氢处理,以达到较高的沥青质转化率水平。但含有大量沥青质的原料通常会含有较高的金属含量,而且对反应放热的控制会迫使渣油加氢转化过程采用特定技术,如沸腾床技术 [62] [63] 。原料中的金属如镍和钒被浓缩在残渣进料中,并将逐渐沉积和浓缩在加氢转化催化剂上,因此需要添加催化剂以保证在操作期间的催化剂活性。在氢气存在的情况下,高转化率水平会产生显著的反应热,该反应热需要通过充分的混合来控制,以避免沿反应器产生较大的温度梯度。

Merdrignac [64] 等人采用中东的原料油在沸腾床装置上研究了沥青质的变化,他们在55~85 wt%渣油转化率的条件下,获得了62~89 wt%的沥青质转化率。同时他们采用尺寸排阻色谱法(SEC)来评估沥青质的尺寸,采用13C核磁共振(NMR)对原料和未转化的沥青质进行表征,以用来考察沥青质平均分子结构参数的变化。结果表明,当转化率达到约50%时,未转化的沥青质在较小的聚集体中解离。沥青质单位尺寸随着转化率的增加而减小,而且沥青质的芳香性由于脱烷基而增加。

Gauthier [65] 等人在上面的基础上使用元素分析、SEC和13C NMR对未转化的沥青质流出物进行了更详细的分析,结果表明,沥青质的单元尺寸随着转化率的增加而减小,而沥青质的芳香性由于脱烷基而增加。而沥青质结构可能随着裂化的严重程度的增加而变化。沥青质首先会通过分子单元的解离而进化,然后通过小型缩聚结构的裂解而最终导致脂肪族链的脱烷基。在高转化率下未转化的沥青质分子主要由几个芳香环的大缩聚结构组成。

Stratiev [66] 等人在沸腾床减压渣油加氢裂化中使用Mo纳米分散催化剂增加了加氢作用,并降低了整个加氢裂化渣油的密度和沥青质馏分的密度。同时他们发现根据进料饱和物、芳烃、树脂和沥青质数据估算的进料胶体不稳定性指数与转化率呈负相关。

Stratiev [67] 等人研究了沸腾床减压渣油加氢裂化催化剂条件对沉淀转化率的影响,结果表明沸腾床减压渣油加氢裂化装置中催化系统条件对装置性能的重要性,证明不仅原料质量,催化系统质量是对渣油加氢精制装置性能影响最大的单一变量。同时还发现在恒定的液体时空速下反应温度的升高增加了未转化的真空渣油产物的芳香性,这很可能是由于连接到芳香核心的侧烷基的脱烷基化。温度的升高也对沥青质转化率的增加产生了影响,但这一现象在不同来源的真空渣油的沸腾床渣油加氢裂化中的沉降过程中并不总是观察到。

4. 总结

为了更好的实现“双碳”目标,推进绿色低碳的发展,在提高重油加氢转化利润的同时减轻沥青质的污染以及防止焦炭的形成至关重要。因此,更加需要注意反应过程中沥青质的稳定性,而提高加氢活性可以有效降低沥青质的不稳定性,所以开发一种合适的沥青质转化催化剂,提高加氢活性,减少焦炭的形成非常重要。

文章引用

时一鸣,朱慧红,杨 涛. 沥青质转化研究
Asphaltene Transformation Studies[J]. 化学工程与技术, 2023, 13(04): 234-243. https://doi.org/10.12677/HJCET.2023.134027

参考文献

  1. 1. Looney, B. (2020) Statistical Review of World Energy. British Petroleum Company, London, 2020.

  2. 2. Martínez, M.T., Benito, A.M. and Callejas, M.A. (1997) Thermal Cracking of Coal Residues: Kinetics of Asphaltene De-composition. Fuel, 76, 871-877. https://doi.org/10.1016/S0016-2361(97)00048-3

  3. 3. Fakher, S., Ahdaya, M., Elturki, M. and Imqam, A. (2020) Critical Review of Asphaltene Properties and Factors Impacting Its Stability in Crude Oil. Journal of Petroleum Exploration and Production Technology, 10, 1183-1200. https://doi.org/10.1007/s13202-019-00811-5

  4. 4. Bai, Y. and Bai, Q. (2019) 16-Wax and Asphaltenes. In: Bai, Y. and Bai, Q., Eds., Subsea Engineering Handbook, Second Edition, Gulf Professional Publishing, Boston, 435-453. https://doi.org/10.1016/B978-0-12-812622-6.00016-6

  5. 5. Fink, J.K. (2012) Chapter 16-Enhanced Oil Re-covery. In: Fink, J.K., Ed., Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids, Gulf Professional Pub-lishing, Boston, 459-517. https://doi.org/10.1016/B978-0-12-383844-5.00016-7

  6. 6. (2015) Chapter 16-Enhanced Oil Recovery. In: Fink, J., Ed., Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids, Second Edition, Gulf Professional Publishing, Boston, 477-565. https://doi.org/10.1016/B978-0-12-803734-8.00016-3

  7. 7. Gonçalves, M.L.A., Ribeiro, D.A., Teixeira, A.M.R.F. and Teixeira, M.A.G. (2007) Influence of Asphaltenes on Coke Formation during the Thermal Cracking of Different Brazilian Distillation Residues. Fuel, 86, 619-623. https://doi.org/10.1016/j.fuel.2006.08.022

  8. 8. Centeno, G., Ancheyta, J., Alvarez, A., Marroquín, G., Alonso, F. and Castillo, A. (2012) Effect of Different Heavy Feedstocks on the Deactivation of a Commercial Hydrotreating Catalyst. Fuel, 100, 73-79. https://doi.org/10.1016/j.fuel.2012.01.027

  9. 9. Gray, M.R., Tykwinski, R.R., Stryker, J.M. and Tan, X. (2011) Supramolecular Assembly Model for Aggregation of Petroleum Asphaltenes. Energy Fuel, 25, 3125-3134. https://doi.org/10.1021/ef200654p

  10. 10. Mozaffari, S., Tchoukov, P., Atias, J., Czarnecki, J. and Nazemifard, N. (2015) Effect of Asphaltene Aggregation on Rheological Properties of Diluted Athabasca Bitumen. Energy Fuel, 29, 5595-5599. https://doi.org/10.1021/acs.energyfuels.5b00918

  11. 11. Mozaffari, S., Tchoukov, P., Mozaffari, A., Atias, J., Czarnecki, J. and Nazemifard, N. (2017) Capillary Driven Flow in Nanochannels—Application to Heavy Oil Rhe-ology Studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 513, 178-187. https://doi.org/10.1016/j.colsurfa.2016.10.038

  12. 12. Mozaffari, S., Li, W., Thompson, C., Ivanov, S., Seifert, S., Lee, B., Kovarik, L. and Karim, A.M. (2017) Colloidal Nanoparticle Size Control: Experimental and Kinetic Mod-eling Investigation of the Ligand-Metal Binding Role in Controlling the Nucleation and Growth Kinetics. Nanoscale, 9, 13772-13785. https://doi.org/10.1039/C7NR04101B

  13. 13. Struchkov, I.A., Rogachev, M.K., Kalinin, E.S. and Roschin, P.V. (2019) Laboratory Investigation of Asphaltene-In- duced Formation Damage. Journal of Petro-leum Exploration and Production Technology, 9, 1443-1455. https://doi.org/10.1007/s13202-018-0539-z

  14. 14. Murgich, J. (2002) Intermolecular Forces in Aggregates of Asphaltenes and Resins. Petroleum Science and Technology, 20, 983-997. https://doi.org/10.1081/LFT-120003692

  15. 15. Merino-Garcia, D. and Andersen, S.I. (2005) Calorimetric Evi-dence about the Application of the Concept of CMC to Asphaltene Self-Association. Journal of Dispersion Science and Technology, 26, 217-225. https://doi.org/10.1081/DIS-200045600

  16. 16. Gawrys, K.L. and Kilpatrick, P.K. (2005) Asphaltenic Aggregates Are Polydisperse Oblate Cylinders. Journal of Colloid and Interface Science, 288, 325-334. https://doi.org/10.1016/j.jcis.2005.03.036

  17. 17. Storm, D.A. and Sheu, E.Y. (1995) Characterization of Col-loidal Asphaltenic Particles in Heavy Oil. Fuel, 74, 1140-1145. https://doi.org/10.1016/0016-2361(95)00062-A

  18. 18. Rogel, E. (2000) Simulation of Interactions in Asphaltene Aggregates. Energy Fuel, 14, 566-574. https://doi.org/10.1021/ef990166p

  19. 19. Moschopedis, S.E., Fryer, J.F. and Speight, J.G. (1976) Investigation of Asphaltene Molecular Weights. Fuel, 55, 227-232. https://doi.org/10.1016/0016-2361(76)90093-4

  20. 20. Yarranton, H.W., Alboudwarej, H. and Jakher, R. (2000) Investigation of Asphaltene Association with Vapor Pressure Osmometry and Interfacial Tension Measurements. Industrial & Engineering Chemistry Research, 39, 2916-2924. https://doi.org/10.1021/ie000073r

  21. 21. Wiehe, I.A. (1992) A Solvent-Resid Phase Diagram for Tracking Resid Conversion. Industrial & Engineering Chemistry Research, 31, 530-536. https://doi.org/10.1021/ie00002a013

  22. 22. Strausz, O.P., Peng, P.A. and Murgich, J. (2002) About the Colloidal Nature of Asphaltenes and the MW of Covalent Monomeric Units. Energy Fuel, 16, 809-822. https://doi.org/10.1021/ef0002795

  23. 23. Powers, D.P., Sadeghi, H., Yarranton, H.W. and van den Berg, F.G.A. (2016) Regular Solution Based Approach to Modeling Asphaltene Precipitation from Native and Reacted Oils: Part 1, Molecular Weight, Density and Solubility Parameter Distributions of Asphaltenes. Fuel, 178, 218-233. https://doi.org/10.1016/j.fuel.2016.03.027

  24. 24. Luo, P., Wang, X. and Gu, Y. (2010) Characterization of Asphaltenes Precipitated with Three Light Alkanes under Different Experimental Conditions. Fluid Phase Equilibria, 291, 103-110. https://doi.org/10.1016/j.fluid.2009.12.010

  25. 25. Guzman, A., Bueno, A. and Carbognani, L. (2009) Molecular Weight Determination of Asphaltenes from Colombian Crudes by Size Exclusion Chromatography (SEC) and Vapor Pressure Osmometry (VPO). Petroleum Science and Technology, 27, 801-816. https://doi.org/10.1080/10916460802455491

  26. 26. Barrera, D.M., Ortiz, D.P. and Yarranton, H.W. (2013) Molecular Weight and Density Distributions of Asphaltenes from Crude Oils. Energy Fuel, 27, 2474-2487. https://doi.org/10.1021/ef400142v

  27. 27. Mukhamatdinov, I.I., Salih, I.S.S., Rakhmatullin, I.Z., Sitnov, S.A., Laikov, A.V., Klochkov, V.V. and Vakhin, A.V. (2020) Influence of Co-Based Catalyst on Subfractional Compo-sition of Heavy Oil Asphaltenes during Aquathermolysis. Journal of Petroleum Science and Engineering, 186, Ar-ticle ID: 106721. https://doi.org/10.1016/j.petrol.2019.106721

  28. 28. Cunico, R.L., Sheu, E.Y. and Mullins, O.C. (2004) Molec-ular Weight Measurement of UG8 Asphaltene Using APCI Mass Spectroscopy. Petroleum Science and Technology, 22, 787-798. https://doi.org/10.1081/LFT-120038719

  29. 29. Groenzin, H. and Mullins, O.C. (1999) Asphaltene Molecular Size and Structure. The Journal of Physical Chemistry A, 103, 11237-11245. https://doi.org/10.1021/jp992609w

  30. 30. Zhao, S., Kotlyar, L.S., Woods, J.R., Sparks, B.D., Hardacre, K. and Chung, K.H. (2001) Molecular Transformation of Athabasca Bitumen End-Cuts during Coking and Hydrocracking. Fuel, 80, 1155-1163. https://doi.org/10.1016/S0016-2361(00)00180-0

  31. 31. Sheremata, J.M., Gray, M.R., Dettman, H.D. and McCaffrey, W.C. (2004) Quantitative Molecular Representation and Sequential Optimization of Athabasca As-phaltenes. Energy Fuel, 18, 1377-1384. https://doi.org/10.1021/ef049936+

  32. 32. McKenna, A.M., Chacón-Patiño, M.L., Weisbrod, G.T. and Blakney, R.P. (2019) Rodgers, Molecular-Level Characterization of Asphaltenes Isolated from Distillation Cuts. Energy Fuel, 33, 2018-2029. https://doi.org/10.1021/acs.energyfuels.8b04219

  33. 33. Chacón-Patiño, M.L., Rowland, S.M. and Rodgers, R.P. (2017) Advances in Asphaltene Petroleomics. Part 1: Asphaltenes Are Composed of Abundant Island and Archi-pelago Structural Motifs. Energy Fuel, 31, 13509-13518. https://doi.org/10.1021/acs.energyfuels.7b02873

  34. 34. Chacón-Patiño, M.L., Rowland, S.M. and Rodgers, R.P. (2018) Advances in Asphaltene Petroleomics. Part 2: Selective Separation Method that reveals Fractions Enriched in Island and Archipelago Structural Motifs by Mass Spectrometry. Energy Fuel, 32, 314-328. https://doi.org/10.1021/acs.energyfuels.7b03281

  35. 35. Chacón-Patiño, M.L., Rowland, S.M. and Rodgers, R.P. (2018) Advances in Asphaltene Petroleomics. Part 3. Dominance of Island or Archipelago Structural Motif Is Sample Dependent. Energy Fuel, 32, 9106-9120. https://doi.org/10.1021/acs.energyfuels.8b01765

  36. 36. Dong, X., Zhang, Y., Milton, J., Yerabolu, R., Easterling, L. and Kenttämaa, H.I. (2019) Investigation of the Relative Abundances of Single-Core and Multicore Compounds in Asphaltenes by Using High-Resolution In-Source Collision-Activated Dissociation and Medium-Energy Colli-sion-Activated Dissociation Mass Spectrometry with Statistical Considerations. Fuel, 246, 126-132. https://doi.org/10.1016/j.fuel.2019.02.080

  37. 37. Schuler, B., Meyer, G., Peña, D., Mullins, O.C. and Gross, L. (2015) Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. Journal of the American Chemical Society, 137, 9870-9876. https://doi.org/10.1021/jacs.5b04056

  38. 38. Mullins, O.C. (2010) The Modified Yen Model. Energy Fuel, 24, 2179-2207. https://doi.org/10.1021/ef900975e

  39. 39. Dutta Majumdar, R., Bake, K.D., Ratna, Y., Pomerantz, A.E., Mullins, O.C., Gerken, M. and Hazendonk, P. (2016) Single-Core PAHs in Petroleum- and Coal-Derived Asphaltenes: Size and Distribution from Solid-State NMR Spectroscopy and Optical Absorption Measurements. Energy Fuel, 30, 6892-6906. https://doi.org/10.1021/acs.energyfuels.5b02815

  40. 40. Eyssautier, J., Levitz, P., Espinat, D., Jestin, J., Gummel, J., Grillo, I. and Barré, L. (2011) Insight into Asphaltene Nanoaggregate Structure Inferred by Small Angle Neutron and X-ray Scattering. Journal of the American Chemical Society, 115, 6827-6837. https://doi.org/10.1021/jp111468d

  41. 41. Bava, Y.B., Geronés, M., Buceta, D., de la Iglesia Rodríguez, D., López-Quintela, M.A. and Erben, M.F. (2019) Elucidation of the Average Molecular Structure of Argentinian As-phaltenes. Energy Fuel, 33, 2950-2960. https://doi.org/10.1021/acs.energyfuels.8b04318

  42. 42. Ruiz-Morales, Y., Miranda-Olvera, A.D., Portales Mar-tínez, B. and Domínguez-Esquivel, J.M. (2020) Experimental and Theoretical Approach to Determine the Average Asphaltene Structure of a Crude Oil from the Golden Lane (Faja de Oro) of Mexico. Energy Fuel, 34, 7985-8006. https://doi.org/10.1021/acs.energyfuels.0c00593

  43. 43. Barré, L., Simon, S. and Palermo, T. (2008) Solution Properties of Asphaltenes. Langmuir, 24, 3709-3717. https://doi.org/10.1021/la702611s

  44. 44. Sirota, E.B. and Lin, M.Y. (2007) Physical Behavior of Asphaltenes. Energy Fuel, 21, 2809-2815. https://doi.org/10.1021/ef060634c

  45. 45. Mullins, O.C., Betancourt, S.S., Cribbs, M.E., Dubost, F.X., Creek, J.L., Andrews, A.B. and Venkataramanan, L. (2007) The Colloidal Structure of Crude Oil and the Structure of Oil Res-ervoirs. Energy Fuel, 21, 2785-2794. https://doi.org/10.1021/ef0700883

  46. 46. Sheu, E.Y., De Tar, M.M., Storm, D.A. and DeCanio, S.J. (1992) Aggregation and Kinetics of Asphaltenes in Organic Solvents. Fuel, 71, 299-302. https://doi.org/10.1016/0016-2361(92)90078-3

  47. 47. Hoepfner, M.P., Bôas Fávero, V.C., Haji-Akbari, N. and Fogler, H.S. (2013) The Fractal Aggregation of Asphaltenes. Langmuir, 29, 8799-8808. https://doi.org/10.1021/la401406k

  48. 48. Jouault, N., Corvis, Y., Cousin, F., Jestin, J. and Barré, L. (2009) Asphaltene Adsorption Mechanisms on the Local Scale Probed by Neutron Reflectivity: Transition from Monolayer to Multilayer Growth above the Flocculation Threshold. Langmuir, 25, 3991-3998. https://doi.org/10.1021/la8027447

  49. 49. González, M.F., Stull, C.S., López-Linares, F. and Pereira-Almao, P. (2007) Comparing Asphaltene Adsorption with Model Heavy Molecules over Macroporous Solid Surfaces. Energy Fuel, 21, 234-241. https://doi.org/10.1021/ef060196+

  50. 50. Ancheyta, J., Centeno, G., Trejo, F., Marroquín, G., García, J.A., Tenorio, E. and Torres, A. (2002) Extraction and Characterization of Asphaltenes from Different Crude Oils and Solvents. Energy Fuel, 16, 1121-1127. https://doi.org/10.1021/ef010300h

  51. 51. Pomerantz, A.E., Seifert, D.J., Bake, K.D., Craddock, P.R., Mullins, O.C., Kodalen, B.G., Mitra-Kirtley, S. and Bolin, T.B. (2013) Sulfur Chemistry of Asphaltenes from a Highly Compositionally Graded Oil Column. Energy Fuel, 27, 4604-4608. https://doi.org/10.1021/ef400773f

  52. 52. Zuo, P. and Shen, W. (2017) Identification of Nitrogen-Polyaromatic Compounds in Asphaltene from Co-Processing of Coal and Petroleum Residue Using Chromatography with Mass Spectrometry. International Journal of Coal Science & Technology, 4, 281-299. https://doi.org/10.1007/s40789-017-0178-x

  53. 53. Gascon, G., Vargas, V., Feo, L., Castellano, O., Castillo, J., Giusti, P., Acavedo, S., Lienemann, C.-P. and Bouyssiere, B. (2017) Size Distributions of Sulfur, Vanadium and Nickel Compounds in Crude Oils, Residues and Their Saturate, Aromatic, Resin and Asphaltene Fractions Deter-mined by Gel Permeation Chromatography Inductively Coupled Plasma High-Resolution Mass Spectrometry. En-ergy Fuel, 31, 7783-7788. https://doi.org/10.1021/acs.energyfuels.7b00527

  54. 54. Chianelli, R.R., Siadati, M.H., De la Rosa, M.P., Ber-hault, G., Wilcoxon, J.P., Bearden, R. and Abrams, B.L. (2006) Catalytic Properties of Single Layers of Transition Metal Sulfide Catalytic Materials. Catalysis Reviews, 48, 1-41. https://doi.org/10.1080/01614940500439776

  55. 55. Wiehe, I.A. (2008) Hydroconversion. In: Heinz Heinemann, J.G.S., Ed., Process Chemistry of Petroleum Macromolecules, CRC Press, Boca Raton, 377-385.

  56. 56. Wiehe, I.A. (1993) A Phase-Separation Kinetic Model for Coke Formation. Industrial & Engineering Chemistry Research, 32, 2447-2454. https://doi.org/10.1021/ie00023a001

  57. 57. Deng, W., Luo, H., Gao, J. and Que, G. (2011) Stability Change of Asphaltene in the Residue during Slurry-Phase Hydrocracking. Energy Fuel, 25, 5360-5365. https://doi.org/10.1021/ef201114t

  58. 58. Rogel, E., Ovalles, C., Pradhan, A., Leung, P. and Chen, N. (2013) Sediment Formation in Residue Hydroconversion Processes and Its Correlation to Asphaltene Behavior. Energy Fuel, 27, 6587-6593. https://doi.org/10.1021/ef401614a

  59. 59. Gould, K.A. and Wiehe, I.A. (2007) Natural Hydrogen Donors in Petroleum Resids. Energy Fuel, 21, 1199-1204. https://doi.org/10.1021/ef060349t

  60. 60. Hauser, A., Bahzad, D., Stanislaus, A. and Behbahani, M. (2008) Thermogravimetric Analysis Studies on the Thermal Stability of Asphaltenes: Pyrolysis Behavior of Heavy Oil Asphaltenes. Energy Fuel, 22, 449-454. https://doi.org/10.1021/ef700477a

  61. 61. Wang, W., Cai, X., Hou, H., Dong, M., Li, Z., Liu, F., Liu, Z., Tian, S. and Long, J. (2016) Different Mechanisms of Coke Precursor Formation in Thermal Conversion and Deep Hydro-processing of Vacuum Residue. Energy Fuel, 30, 8171-8176. https://doi.org/10.1021/acs.energyfuels.6b01488

  62. 62. Colyar, J.J. and Wisdom, L.I. (1997) Proceeding of the National Petroleum Refiners. Association Annual Meeting, San Antonio.

  63. 63. Duddy, J.E., Wisdom, L.I., Kress-mann, S. and Gauthier, T. (2004) Proceeding of the 3rd Bottom of the Barrel Technology Conference and Exhibition, Antwerp Belgium, October 20-21.

  64. 64. Merdrignac, I., Quoineaud, A. and Gauthier, T. (2006) Evolution of As-phaltene Structure during Hydroconversion Conditions. Energy Fuel, 20, 2028-2036. https://doi.org/10.1021/ef060048j

  65. 65. Gauthier, T., Danial-Fortain, P., Merdrignac, I., Guibard, I. and Quoi-neaud, A. (2008) Studies on the Evolution of Asphaltene Structure during Hydroconversion of Petroleum Residues. Catalysis Today, 130, 429-438. https://doi.org/10.1016/j.cattod.2007.10.005

  66. 66. Stratiev, D., Nenov, S., Shishkova, I., et al. (2020) Com-mercial Investigation of the Ebullated-Bed Vacuum Residue Hydrocracking in the Conversion Range of 55-93%. ACS Omega, 5, 33290-33304. https://doi.org/10.1021/acsomega.0c05073

  67. 67. Stratiev, D.S., Shishkova, I.K., Nikolaychuk, E., et al. (2019) Effect of Catalyst Condition on Sedimentation and Conversion in the Ebullated Bed Vacuum Residue H-Oil Hy-drocracking. Petroleum Science and Technology, 37, 1463- 1470. https://doi.org/10.1080/10916466.2019.1590407

期刊菜单