Advances in Clinical Medicine
Vol. 11  No. 11 ( 2021 ), Article ID: 46221 , 5 pages
10.12677/ACM.2021.1111709

老年性聋发病机制的研究进展

许潇文

滨州医学院,山东 烟台

收稿日期:2021年9月29日;录用日期:2021年10月27日;发布日期:2021年11月3日

摘要

老年性聋多发于老年人中,其会出现听力下降,认知障碍等症状,严重影响着老年人的正常沟通及生活质量。随着老龄化日益严重,老年性聋的发病机制越发受到重视。本文就老年性聋的发病机制进行综述,为老年性聋的研究及治疗提供理论依据。

关键词

老年性聋,发病机制,凋亡,炎症

Research Progress on the Pathogenesis of Age-Related Hearing Loss

Xiaowen Xu

Binzhou Medical University, Yantai Shandong

Received: Sep. 29th, 2021; accepted: Oct. 27th, 2021; published: Nov. 3rd, 2021

ABSTRACT

Age-related hearing loss is more common among the elderly. Due to symptoms such as hearing loss and cognitive impairment, it seriously affects the normal communication and quality of life of the elderly. As aging becomes more and more serious, the pathogenesis of age-related hearing loss has been paid more and more attention. This article reviews the pathogenesis of age-related hearing loss and provides a theoretical basis for the research and treatment of age-related hearing loss.

Keywords:Age-Related Hearing Loss, Pathogenesis, Apoptosis, Inflammation

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

老年性聋又称年龄相关性听力损失或增龄性聋,多以双侧感音神经性耳聋,听力下降等为症状的一类疾病,该疾病在老年人中发病率较高。老年性聋导致的听力损害到达一定程度后,会严重影响老年人的身心健康,造成其沮丧、自卑,进而可促使阿尔茨海默症、抑郁症等疾病的发生,严重影响老年人群的正常生活 [1]。从第六次人口普查的结果来看,中国60岁及以上人口超过1.77亿,占中国总人口的13.31%,其中65岁及以上人口占8.91% [2]。从这些数据可以看出,中国正处于老龄化社会的快速发展阶段。由于老龄化人口增加,老年性聋患者的数量也日益增加,对老年性聋的研究也愈发受到关注。本文通过对老年性聋的发病机制进行综述,为其未来的研究提供参考。

老年性聋的致病因素有很多,如遗传因素、外界环境等,属于多因素共同作用而发生的一类疾病 [3]。线粒体损伤、遗传易感性、炎症等机制也引起越来越多的关注和研究。

2. 遗传易感性

遗传因素在老年性聋发病机制中影响占比较大。有研究表明,老年性聋具有较强的遗传性,有家族史的人群需重视老年性聋的发生 [3]。而多种基因也被证实与老年性聋的遗传易感性有关。

CDH23基因:作为钙黏家族的家族成员,在细胞黏附、分选和迁移等方面均有重要作用 [4]。研究表明,在噪音刺激的情况下,减少或缺失细胞中耳钙黏蛋白会更容易使静纤毛受到损伤 [5]。CDH23可引起非综合征型耳聋和遗传性耳聋–色素性视网膜炎综合征,其在维持正常的耳蜗和视网膜功能方面有着重要的作用 [6]。KCNQ4基因:作为钾离子通道基因,其在释放钾离子以及钾离子循环过程中起关键作用,在维持听觉功能方面有重要意义。之前有研究表明,KCNQ4基因除了SNP12外还有两个SNP均表示出与老年性聋遗传易感性的关联,而且三个SNP均位于同一段区域(13kb) [7]。一类与氧化应激、抗氧化酶有关的基因越来越受到重视,如NAT2、GSTT1和GSTM1、GPX1和SOD1等。研究称,NAT2通过造成氧化应激使其多态性与老年性聋遗传易感性相关联 [8]。在小鼠模型中,当敲除GPX1与SOD1基因后,小鼠出现老年性聋表型,可能说明了抗氧化酶GPX1和SOD1的缺失导致老年性聋 [9] [10]。除此之外,通过研究发现GRM7、ApoE、GRHL2等基因均可作为老年性聋的遗传易感性基因 [11]。

3. 线粒体损伤与凋亡

线粒体作为人体的“能量工厂”,在ATP与活性氧生成等方面有重要作用。

在动物实验中,越来越多的研究证明氧化应激引起线粒体DNA突变,从而导致凋亡,最终发展成为老年性聋 [12]。韩维举 [13] 等人研究发现,在老年人群中线粒体DNA4977的缺失可能是造成退行性改变的原因之一。沉默信息调节蛋白(Sirtuin)属于NAD+依赖型去乙酸化酶,SRT1被证明与老年性聋的发生发展关系密切。Hao等 [14] 研究发现,与年轻组相比,老年组小鼠的SRT1在耳蜗、coti器、听觉中枢中的表达均下调,其表达减少可能与年龄相关。Xue等 [15] 人发现,当出现线粒体功能障碍时,小鼠中SIRT1和PGC-1α表达降低。而在体外试验中,miR-29b本身会对SIRT1及PGC-1α起抑制作用,从而出现线粒体损伤及凋亡,而敲除miR-29b后,SIRT1及PGC-1α在其mRNA及蛋白水平均上调。可推断SIRT1及PGC-1α可能通过调节miR-29b对老年性聋发病起作用 [16]。但目前对于SIRT1对老年性聋的具体作用尚不明确,还需进一步探究。活性氧对线粒体损害及凋亡意义重大,Kujawa等 [17] 发现小鼠中SOD及过氧化氢酶水平升高,导致活性氧生成增加而造成线粒体损伤及凋亡。Caspase-3作为细胞凋亡中的终末剪切酶,对凋亡意义重大。熊敏等 [18] 通过对豚鼠的观察,发现Caspase-3参与耳蜗的老化。研究表明,Caspase-3在螺旋神经节的凋亡中也有重要作用 [19]。此外,一段时间的高脂饮食,会通过加速Caspase的表达而促使凋亡产生 [20]。与线粒体损伤和凋亡的因子还有很多,对这方面的研究也越来越受到重视。

4. miRNA表达改变

近来,越来越多研究表明,miRNA的表达改变参与老年性聋发生发展。miRNA作为一类非编码小RNA,通过调节转录后mRNA的稳定性以及翻译,参与内耳生长发育过程。Pang等 [21] 研究表明miR-34a在AHL中被激活并伴有自噬过程受损,而自噬受到抑制可能是由于miR-34a抑制自噬蛋白ATG9A引起的。miR-29b在C57BL/6小鼠的耳蜗中过表达,且miR-29b的过表达促进毛细胞的损失和线粒体功能障碍 [16]。Weston等 [22] 研究发现miR-182、miR-183在听觉和前庭毛细胞中大量表达,具有促进毛细胞功能成熟、维持内稳态的作用。而且miR-182与miR-183在老年性聋小鼠耳蜗模型中表达下调,引起耳蜗细胞的损伤。除此之外,miR-210的过表达促进Corti器中的毛细胞形成 [23]。Zhang等 [24] 通过微阵列分析两种衰老小鼠模型Corti器中miRNA表达上调或下调,表明miRNA直接或间接参与调节Corti器的变性过程。一般随着衰老而上调的miRNA具有促凋亡作用,下调的miRNA则具有促生长作用。miRNA可通过不同途径影响细胞凋亡,促凋亡的miRNA包括miR-29、miR-34、miR-141、miR146、miR-203、miR-429等,抗凋亡类别包括miR-17、miR-181和miR182/183 [25]。

miRNA在耳聋的发生发展中起着重要作用,随着对miRNA越来越多的研究,未来可能将其作为分子标记物,诊断和预测不同类型的听力损伤。

5. 炎症

有研究表明,年龄相关性疾病的发生与其慢性炎症息息相关 [26]。各种与年龄相关的疾病,例如神经退行性疾病、糖尿病、骨质疏松等,均有炎症机制的参与。研究发现,血清中白细胞介素-6 (IL-6)水平可以用来预测老年人的残疾率和死亡率 [27]。Verschuur等 [28] 学者研究发现,IL-6可直接反应炎症状态,已被证实可作为炎症的标志物,而且其研究支持炎症与老年性聋相关的新假说。随着年龄增加,TNF-α的水平升高而且TNF-α在血浆中升高可能与阿尔茨海默症、动脉粥样硬化等相关 [29] [30]。Joe C.已发现IL-6、TNF-α、NF-κB p65的mRNA在耳蜗中有表达。炎症与老年性聋相关性的研究并不多,或许未来可作为新的研究方向 [31]。

此外,谷氨酸假说、颞骨组织变化、免疫反应物变化等均可作为老年性聋的发病机制。

6. 小结

老年性聋的发病机制复杂且尚未明确,仍需大量的动物以及临床试验加以研究。随着老年性聋发病率的升高,对其机制的研究也显得尤为重要。尽管全基因组以及各种技术的发展使得老年性聋的发病机制更多地被发现,但这对于完全理解老年性聋是远远不够的。

文章引用

许潇文. 老年性聋发病机制的研究进展
Research Progress on the Pathogenesis of Age-Related Hearing Loss[J]. 临床医学进展, 2021, 11(11): 4841-4845. https://doi.org/10.12677/ACM.2021.1111709

参考文献

  1. 1. Gates, G.A. and Mills, J.H. (2005) Presbycusis. The Lancet, 366, 1111-1120. https://doi.org/10.1016/S0140-6736(05)67423-5

  2. 2. He, Z.H., Li, M. and Zou, S.Y. (2019) Protection and Prevention of Age-Related Hearing Loss. Advances in Experimental Medicine and Biology, 1130, 59-71. https://doi.org/10.1007/978-981-13-6123-4_4

  3. 3. 任丽华, 苗忠义, 张丽敏. 老年性聋病因与发病机制研究进展[J]. 现代中西医结合杂志, 2018, 27(7): 792-795.

  4. 4. Christensen, K., Frederiksen, H. and Hoffman, H.J. (2001) Genetic and Environmental Influences on Self-Reported Reduced Hearing in the Old and Oldest Old. Journal of the American Geriatrics Society, 49, 1512-1517. https://doi.org/10.1046/j.1532-5415.2001.4911245.x

  5. 5. Tepass, U., Truong, K. and Godt, D. (2000) Cadherins in Embryonic and Neural Morphogenesis. Nature Reviews Molecular Cell Biology, 1, 91-100. https://doi.org/10.1038/35040042

  6. 6. Davis, R.R., Kozel, P. and Erway, L.C. (2003) Genetic Influences in Individual Susceptibility to Noise: A Review. Noise Health, 5, 19-28.

  7. 7. Ramzan, K., Al-Numair, N.S., Al-Ageel, S., et al. (2020) Identification of Novel CDH23 Variants Causing Moderate to Profound Progressive Nonsyndromic Hearing Loss. Genes (Basel), 11, 1474. https://doi.org/10.3390/genes11121474

  8. 8. Van Eyken, E., Van Laer, L., Fransen, E., et al. (2006) KCNQ4: A Gene for Age-Related Hearing Impairment. Human Mutation, 27, 1007-1016. https://doi.org/10.1002/humu.20375

  9. 9. Unal, M., Tamer, L., Dogruer, Z.N., et al. (2005) N-Acetyltransferase 2 Gene Polymorphism and Presbycusis. Laryngoscope, 115, 2238-2241. https://doi.org/10.1097/01.mlg.0000183694.10583.12

  10. 10. McFadden, S.L., Ohlemiller, K.K., Ding, D., et al. (2001) The Influence of Superoxide Dismutase and Glutathione Peroxidase Deficiencies on Noise-Induced Hearing Loss in Mice. Noise Health, 3, 49-64.

  11. 11. Ohlemiller, K.K., McFadden, S.L., Ding, D.L., et al. (2000) Targeted Mutation of the Gene for Cellular Glutathione Peroxidase (Gpx1) Increases Noise-Induced Hearing Loss in Mice. Journal of the Association for Research in Otolaryngology, 1, 243-254. https://doi.org/10.1007/s101620010043

  12. 12. 王文涛, 陈贤明. 老年性聋病因与发病机制研究进展[J]. 福建医药杂志, 2017, 39(1): 132-134.

  13. 13. Yamasoba, T., Lin, F.R., Someya, S., et al. (2013) Current Concepts in Age-Related Hearing Loss: Epidemiology and Mechanistic Pathways. Hearing Research, 303, 30-38. https://doi.org/10.1016/j.heares.2013.01.021

  14. 14. 韩维举, 韩东一, 姜泗长. 人听觉器官线粒体DNA4977缺失与老年聋的关系[J]. 中华耳鼻咽喉科杂志, 2000(6): 15-18.

  15. 15. Xiong, H., Dai, M., Ou, Y., et al. (2014) SIRT1 Expression in the Cochlea and Auditory Cortex of a Mouse Model of Age-Related Hearing Loss. Experimental Gerontology, 51, 8-14. https://doi.org/10.1016/j.exger.2013.12.006

  16. 16. Xue, T., Wei, L., Zha, D.J., et al. (2016) miR-29b Overexpression Induces Cochlear Hair Cell Apoptosis through the Regulation of SIRT1/PGC-1alpha Signaling: Implications for Age-Related Hearing Loss. International Journal of Molecular Medicine, 38, 1387-1394. https://doi.org/10.3892/ijmm.2016.2735

  17. 17. Kujawa, S.G. and Liberman, M.C. (2006) Acceleration of Age-Related Hearing Loss by Early Noise Exposure: Evidence of a Misspent Youth. Journal of Neuroscience, 26, 2115-2123. https://doi.org/10.1523/JNEUROSCI.4985-05.2006

  18. 18. 熊敏, 何青莲, 汪建, 邓恒山. Caspase-3在老年豚鼠耳蜗螺旋神经节细胞的表达[J]. 中国组织化学与细胞化学杂志, 2006, 15(5): 547-549.

  19. 19. 王永生, 董雪蕾. 老年大鼠耳蜗螺旋神经节Caspase-3、Calretinin的表达[J]. 中国现代医生, 2012, 50(14): 13-14.

  20. 20. Du, Z., Yang, Y., Hu, Y., et al. (2012) A Long-Term High-Fat Diet Increases Oxidative Stress, Mitochondrial Damage and Apoptosis in the Inner Ear of D-galactose-Induced Aging Rats. Hearing Research, 287, 15-24. https://doi.org/10.1016/j.heares.2012.04.012

  21. 21. Pang, J.Q., Xiong, H., Lin, P.L., et al. (2017) Activation of miR-34a Impairs Autophagic Flux and Promotes Cochlear Cell Death via Repressing ATG9A: Implications for Age-Related Hearing Loss. Cell Death & Disease, 8, e3079. https://doi.org/10.1038/cddis.2017.462

  22. 22. Weston, M.D., Tarang, S., Pierce, M.L., et al. (2018) A Mouse Model of miR-96, miR-182 and miR-183 Misexpression Implicates miRNAs in Cochlear Cell Fate and Homeostasis. Scientific Reports, 8, Article No. 3569. https://doi.org/10.1038/s41598-018-21811-1

  23. 23. Riccardi, S., Bergling, S., Sigoillot, F., et al. (2016) MiR-210 Promotes Sensory Hair Cell Formation in the Organ of Corti. BMC Genomics, 17, Article No. 309. https://doi.org/10.1186/s12864-016-2620-7

  24. 24. Zhang, Q., Liu, H., McGee, J., et al. (2013) Identifying microRNAs Involved in Degeneration of the Organ of Corti during Age-Related Hearing Loss. PLoS ONE, 8, e62786. https://doi.org/10.1371/journal.pone.0062786

  25. 25. Xu, P., Guo, M. and Hay, B.A. (2004) MicroRNAs and the Regulation of Cell Death. Trends in Genetics, 20, 617-624. https://doi.org/10.1016/j.tig.2004.09.010

  26. 26. Tracy, R.P. (2003) Emerging Relationships of Inflammation, Cardiovascular Disease and Chronic Diseases of Aging. International Journal of Obesity and Related Metabolic Disorders, 27, S29-S34. https://doi.org/10.1038/sj.ijo.0802497

  27. 27. De Martinis, M., Franceschi, C., Monti, D., et al. (2005) Inflamm-Ageing and Lifelong Antigenic Load as Major Determinants of Ageing Rate and Longevity. FEBS Letters, 579, 2035-2039. https://doi.org/10.1016/j.febslet.2005.02.055

  28. 28. Verschuur, C.A., Dowell, A., Syddall, H.E., et al. (2012) Markers of Inflammatory Status Are Associated with Hearing Threshold in Older People: Findings from the Hertfordshire Ageing Study. Age Ageing, 41, 92-97. https://doi.org/10.1093/ageing/afr140

  29. 29. Bruunsgaard, H., Andersen-Ranberg, K., Jeune, B., et al. (1999) A High Plasma Concentration of TNF-Alpha Is Associated with Dementia in Centenarians. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 54, M357-M364. https://doi.org/10.1093/gerona/54.7.M357

  30. 30. Bruunsgaard, H., Skinhøj, P., Pedersen, A.N., et al. (2000) Ageing, Tumour Necrosis Factor-Alpha (TNF-a) and Atherosclerosis. Clinical & Experimental Immunology, 121, 255-260. https://doi.org/10.1046/j.1365-2249.2000.01281.x

  31. 31. Adams Joe, C. (2002) Clinical Implications of Inflammatory Cytokines in the Cochlea: A Technical Note. Otology & Neurotology, 23, 316-322. https://doi.org/10.1097/00129492-200205000-00015

期刊菜单