Pharmacy Information
Vol.06 No.05(2017), Article ID:22756,7 pages
10.12677/PI.2017.65017

New Progress in the Relations between Nitric Oxide and Hepatic Ischemia Reperfusion Injury

Yaqi Zhang1, Ning Ding2, Yuanyuan Xiang3, Yongfen Zeng2, Fenfang Hong4, Shulong Yang5*

1Clinical Medicine 1315 Class, Medical College, Nanchang University, Nanchang Jiangxi

2The Anaesthesia Class Grade 1202 Class, Jiangxi Medical College, Nanchang University, Nanchang Jiangxi

3Clinical Medicine 1314 Class, Medical College, Nanchang University, Nanchang Jiangxi

4Medical Experimental Teaching Center, Medical College, Nanchang University, Nanchang Jiangxi

5Department of Physiology, Basic Medical College, Medical College, Nanchang University, Nanchang Jiangxi

Received: Oct. 30th, 2017; accepted: Nov. 17th, 2017; published: Nov. 23rd, 2017

ABSTRACT

The levels of eNOS and NO reduced but iNOS increased during hepatic ischemia reperfusion injury (HIRI) in vivo. Once NO reduced, the hepatic sinus was contracted and the microcirculation was damaged; in addition, liver cell edema, necrosis and apoptosis were happened; the levels of serum liver enzymes were also changed; nitrite transforming to NO increased and osteopontin upregulated. NO involves the multiple steps of HIRI. During the early injury, activation of eNOS may play a protective role by its producing NO. However, eNOS over-expression or the excessive bioavailability of derivative NO will aggravate liver injury. At the end of the injury, iNOS can produce higher NO levels to protect liver from HIRI. Ischemic preconditioning, ischemic postconditioning and medicine preconditioning can increase serum NO level by increasing eNOS level and decreasing iNOS activity and reduce the MDA level, which play a protective role in the perioperative period of liver. This article summarizes the newest progress in the relations between NO and HIRI.

Keywords:Liver, Ischemia Reperfusion Injury, NO, NOS

一氧化氮与肝缺血再灌注损伤相关性研究新进展

张亚奇1,丁宁2,向圆圆3,曾永芬2,洪芬芳4,杨树龙5*

1南昌大学医学部,临床1315班,江西 南昌

2南昌大学医学部,麻醉1202班,江西 南昌

3南昌大学医学部,临床1314班,江西 南昌

4南昌大学医学部,医学实验教学中心,江西 南昌

5南昌大学医学部,基础医学院生理教研室,江西 南昌

收稿日期:2017年10月30日;录用日期:2017年11月17日;发布日期:2017年11月23日

摘 要

肝缺血再灌注损伤(hepatic ischemia reperfusion injury, HIRI)时,体内NO、eNOS减少,iNOS增多。NO减少时,肝窦收缩微循环障碍;肝脏细胞水肿、坏死、凋亡;亚硝酸盐还原为NO增多。NO涉及HIRI的多个环节。损伤早期,eNOS激活产生NO有保护作用,但eNOS过度表达且其衍生NO生物利用度过高可加重肝损伤;而iNOS晚期因大量产生NO产生保护作用。缺血预处理、缺血后处理以及药物预处理则可通过增强eNOS、降低iNOS活性而增加血清NO并降低丙二醛含量,发挥肝脏围术期保护功能。本文综述了近年来NO与HIRI相关性新研究进展。

关键词 :肝脏,缺血再灌注损伤,一氧化氮,一氧化氮合酶

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 一氧化氮及其合酶

一氧化氮(nitric oxide, NO)半衰期短,为不稳定自由基分子,极易氧化为亚硝酸盐、硝酸盐、过氧亚硝酸盐等而失活。超氧化物歧化酶(superoxide dismutase, SOD)或酸性条件可增加NO化学稳定性。研究发现细胞NO合成是pH、亚硝酸盐和氧依赖性的 [1] 。体内NO来源有两个,一是酶生(enzymstigenese),一氧化氮合酶(NO synthase, NOS)催化L-精氨酸与氧分子氧化还原生成;二是非酶生(non-enzymstigenese),来自体表或者摄入的无机氮化学降解或转化。当NOS活性随环境缺氧而降低时,NO可以通过其他途径产生,如亚硝酸盐可被去氧肌红蛋白和血红蛋白、黄嘌呤氧化还原酶以及其他蛋白质还原为NO [2] 。外源性NO供体如硝酸甘油、硝普钠、FK409、肝选择性NO供体以及S-亚硝酸硫醇可在体内持续释放NO [3] 。

2. 肝缺血再灌注损伤

肝缺血再灌注损伤(hepatic ischemia reperfusion injury, HIRI)是一种主要通过调节活性氧和细胞炎性因子生成引起细胞损伤和器官功能衰竭的临床问题 [4] ,主要由氧化应激、反应性氧化物质释放、白细胞聚集介导的炎症紊乱等引起,涉及大量信号转导分子和各细胞间相互作用。常见于肝移植、失血性休克、肝脏严重创伤手术、肝脏肿瘤切除、静脉阻塞性疾病、毒性肝损害等,其后果往往取决于缺血时间的长短、肝脏储备功能的强弱、器官获取和移植手术等 [5] ,肝稳态失衡可能导致较高的致病率和死亡率。肝IR期间肝组织发生显著病理改变以及血清转氨酶和乳酸脱氢酶(lactate dehydrogenase, LDH)活性升高,脂质过氧化物、NO与炎性细胞因子IL-1β、IL-6的生成增加,谷胱甘肽(glutathione, GSH)和IL-10含量减少 [4] 。在肝缺血期间细胞发生厌氧代谢,高磷酸盐产生不充足,低水平的高磷酸盐减弱细胞功能如信号相互作用、细胞增殖、凋亡和死亡周期等。肝缺血过程中产生有毒的代谢物,吸引游离水进入缺血细胞和细胞器,造成细胞水肿 [6] 。如果缺血持续时间大于24小时,血液中磷酸合成酶恢复活性,导致细胞坏死、凋亡 [7] 。缺血增加粘附分子表达,导致内皮细胞和中性粒细胞的粘附,引起血管闭塞 [8] 。

3. NO/NOS与HIRI

3.1. NO与HIRI

血流动力学不稳定在HIRI过程中是一种常见情况。肝稳态不仅需要足量的氧供和营养灌注,也要血管舒缩平衡的控制以及适当的细胞间交流。研究表明在肝稳态失衡状态下,器官衰竭会导致微循环紊乱,包括:1、血管舒缩的调节异常,伴随内皮素和NO平衡的失调,动脉和肝窦收缩,以及微循环关闭;2、大量的炎症反应伴随白细胞聚集、血小板粘附以及枯否细胞激活。结果生成大量活性氧簇和TNF-α等促炎介质,导致微循环功能衰竭和再灌注损伤 [9] 。

Hide D等人发现肝冷、热缺血(CS + WR)之后,肝脏内皮细胞有NO水平的降低和超氧化物阴离子的积累 [10] 。增加NO含量能够改善肝微循环,这对HIRI至关重要。

BNIP3 (一种与细胞死亡相关的Bcl-2基因家族的成员)在体内或体外可增强氧化还原应激,其上调是肝细胞损伤坏死的机制之一。肝损伤时下降的NO含量上调BNIP3表达,诱发肝细胞低氧损伤 [11] 。

与标准肝切除术相比,间歇性选择性夹闭可改善SOD分泌,促进肝细胞增殖。这种有益影响限制线粒体损伤和凋亡,与ATP恢复、NO生成增加、抗氧化活性增强和内质网适应相关 [10] 。

Ijaz S等研究连续大剂量应用L-精氨酸对脂肪肝微循环和组织氧结合能力产生的影响时,发现脂肪肝中渐增的NO可增加肝血流量、促进微循环和肝组织氧结合 [12] 。

一个前瞻性随机小组试验结果表明,肝移植接受者在围手术期吸入NO有效抑制肝细胞凋亡、坏死,加速移植肝功能的的恢复以及缩短病人住院时间 [13] 。Srinivasan等首次表明冷藏心脏停搏供体的肝脏过程中,经静脉系统吹入氧气结合NO气体(VSOP-NO)的方法比单独VSOP更能降低门静脉压力。Yagi等证实体内进行30%小体积肝脏移植时,VSOP-NO改善肝微循环的效果比VSOP更优越[3]。VSOP-NO降低内皮素-1 (endothelin-1, ET-1)的表达和减少氧化损伤有效修复移植物的热缺血损伤[3]。

针对HIRI,外源性NO主要起保护作用。基于NO治疗心功能不全和肺动脉高压的方法已有多年,但近些年才开始使用外源性NO治疗HIRI [14] 。

3.2. NOS与HIRI

肝缺血损伤时iNOS的表达升高,eNOS生成减少,而总NOS含量增加 [15] 。NO的不稳定状态也可降低eNOS含量水平 [16] 。Miyake T等首次证实了反复肝IR时,磷酸化eNOS (phosphorylation eNOS, p-eNOS)的水平和iNOS的活性将发生改变,即在肝IR早期p-eNOS增加,中后期减少,iNOS生成在IR过程逐步增加 [17] 。

3.2.1. eNOS与HIRI

肝IR早期eNOS一过性激活产生少量NO可减轻肝损伤。研究表明IR早期eNOS活化,促发短暂少量的NO生成,可能与氧气、L-精氨酸和细胞内Ca2+浓度升高有关。活性蛋白C (APC)上调肝内eNOS表达和下调iNOS表达增加肝NO水平,因其抗炎和抗细胞凋亡能力而被认为有细胞保护作用 [18] 。

研究表明eNOS衍生的NO生物利用度过高不利于肝移植物的保存反而加重HIRI [19] 。有报道称,HIR过程中,eNOS过度表达降低肝ATP含量造成肝损伤,导致血清丙氨酸氨基转移酶(alanine aminotransferase, ALT)和天门冬氨酸氨基转移酶(aspartate aminotransferase, AST)含量升高 [20] 。

3.2.2. iNOS与HIRI

IR不仅引起肝损伤,还刺激循环系统和造成门静脉毒血症 [21] 。IR期间门静脉高压有助于肠道细菌移位,导致肠内毒素频繁产生,加速iNOS激活 [22] 。重复IR过程可致使肝微循环障碍,低氧应激可加速iNOS基因表达 [23] 。

IR早期iNOS转录与表达需要较长时间,可能至少1小时 [17] 。iNOS参与IRI过程并对早期IRI肝有害,iNOS抑制剂可减轻大鼠HIRI。在IR早期,可使用外源性NO或抑制iNOS表达,减轻肝损伤。Abu-Amara等采用再灌注时间长度实验模型,显示在HIRI晚期,iNOS衍生的NO发挥保护作用 [13] 。

4. 临床与NO有关的HIRI防治措施

目前主要的防治措施有缺血预处理(ischemic preconditioning, IPC)、缺血后处理(ischemic postconditioning, IPO)和药物预处理。

4.1. 肝脏缺血预处理

缺血预处理是指肝脏短暂缺血事件能对随后的长时间IR损伤产生保护并提高其再生能力。IPC改善肝脏微循环,减轻组织炎症反应,减少白细胞浸润、肝窦内皮细胞凋亡,保护线粒体结构和促进肝脏细胞再生 [24] 。IPC发挥作用可能是通过释放腺苷和NO,以及激活随后的蛋白激酶(protein kinases, PK)相关信号网络,下调粘附分子的表达,减弱炎性细胞和肝窦内皮细胞间的粘附作用以及降低缺血肝叶氮氧化物水平 [25] 。Xue Q等在健康雄性大鼠常规肝移植术肝缺血前分别进行IPC和给予腺苷,测得大鼠血清NO水平皆升高,观察到IPC诱发NO肝血窦内皮细胞 [26] 。

Datta G等发现IPC在肝移植等IR损伤过程中可能介导eNOS发挥保护作用 [27] 。但仍存在一些矛盾的报道,且IPC减轻肝脏IR的机制尚未完全阐明。

4.2. RIPC的保护作用

NO是后肢远程缺血预处理(RIPC)对抗HIRI的重要介质。Abu-Amara M等研究发现RIPC激活sGC (可溶性鸟苷酸环化酶)-cGMP(环磷酸鸟苷)途径,维持肝微循环血流量 [28] 。表明RIPC增加细胞内cGMP含量,促进NO生成,减轻HIRI。

4.3. 缺血后处理

缺血后处理是在组织器官长时间缺血后再灌注早期,对组织器官进行数次短暂的再灌注/阻断的处理方法。IPO的确切机制尚不明了,AKT-eNOS-NO-HIF(低氧诱导因子,hypoxia inducible factor)通路的激活是IPO减轻肝热缺血再灌注(WIR)损伤的可能机制之一。AKT磷酸化及其下游eNOS磷酸化是肝内皮细胞合成NO的重要途径 [29] 。IPO激活AKT增加NO浓度,进一步诱导HIF-1α转录和表达,抑制促炎介质、粘附分子过度生成,最终减轻HIRI [30] 。

4.4. 药物预处理

药物预处理的保肝作用多与NO上调、TNF-α、iNOS、eNOS和caspase-3的调节、氧化应激反应以及环氧酶-1 (COX-1)激活、K-ATP通道开放有关。

4.4.1. 亚硝酸盐与HIRI

NO的半衰期极短,治疗HIRI方面效果不理想,相比之下NO供体药物如亚硝酸盐和硝普钠等则表现明显的优越性 [14] 。增强亚硝酸盐的含量可以恢复NO的生物利用度。人体中NO主要来源于亚硝酸盐,病理状态下极易还原为NO。Pluta RM等发现长时间静脉滴注亚硝酸钠可为人体持续提供NO [31] 。亚硝酸盐在缺氧过程中进入组织,作为NO供体保持NO持续形成,保护缺氧/复氧细胞 [12] 。大鼠肝缺血前进行亚硝酸盐处理能够降低厌氧代谢和减少细胞坏死 [32] 。

S-亚硝酸硫醇作为血管内NO储蓄池,不会引起氧化应激、呼吸困难以及血管耐受现象 [33] ,此优点增加其使用范围。

4.4.2. 阿片类药物与HIRI

阿片类制剂模拟IPC的保护作用,对缺血后器官的保护作用在机制上与IPC有共同之处。研究发现瑞芬太尼预处理可降低血清转氨酶和细胞因子的浓度,以及肝丙二醛(Malondialdehyde; malonic dialdehyde, MDA)浓度和过氧化物酶活性,增加活体内SOD、NO和iNOS表达 [34] 。吗啡预处理有阿片受体、PI3K、Akt以及血红素氧合酶-1 (haem oxygenase-1, HO-1)参与 [35] 。吗啡主要通过磷酸化PKC和增加HO-1表达以及降低iNOS含量以减轻HIRI [35] 。

4.4.3. 人参皂苷与HIRI

人参皂苷Rb1后处理激活ROS (reactive oxygen specoes,活性氧簇)-NO-HIF通路,明显增加肝组织内HIF-1α和Akt表达,上调血清NO浓度以及iNOS和SOD活性,显著降低血清ALT水平和MDA含量(P < 0.05),抑制TNF-α、ICAM-1 mRNA和蛋白表达,发挥肝脏保护作用 [30] 。

4.4.4. 电针预处理与HIRI

Zhou J等采用家兔肝IR损伤模型实验发现电针预处理(EA)抑制iNOS产生,减少丙二醛含量,增加SOD表达活性 [36] 。同时,轻微局部热应力上调肝基因表达热休克蛋白70 (HSP70),减轻缺血再灌注损伤 [37] 。

5. 总结

NO在机体HIRI中起着重要作用,HIRI过程中eNOS基因表达活性上调并随时间推移而下降,而iNOS含量随时间延长而上调,最后趋于稳定。从代偿逐步走向失代偿期NO浓度先增高后下降。NO对于肝脏血管舒缩平衡的调控及细胞间交流有着极有意义的作用。肝血窦血清NO浓度上升可增加肝血流量,促进肝代谢;肝血清NO含量下降,肝血管收缩,细胞肿胀,炎性细胞聚集。增加组织内NO含量可成为预防与治疗HIRI方法之一,可使用外源性NO供体或提高组织NO利用率来达到目的。但NO是一把双刃剑,涉及到缺血及再灌注的多个环节,与其它多种因素相互作用而共同发挥作用,因而不能一概而论其利或是弊。IPC、IPO及药物预处理发挥其对HIRI保护作用是多位点、多途径、交互作用的结果。根据不断深入完善的研究成果,在消除NO有害作用的同时发挥其积极作用,为HIRI的预防和治疗提供一个重要手段。NO将会使HIRI的研究和临床治疗步入一个崭新的阶段。

基金项目

国家自然科学基金项目(No. 81660151,81660751,81260504);江西省重点研发计划项目(No. 20161BBG70067);江西省自然科学基金项目(No. 20171BAB205085).

文章引用

张亚奇,丁 宁,向圆圆,曾永芬,洪芬芳,杨树龙. 一氧化氮与肝缺血再灌注损伤相关性研究新进展
New Progress in the Relations between Nitric Oxide and Hepatic Ischemia Reperfusion Injury[J]. 药物资讯, 2017, 06(05): 101-107. http://dx.doi.org/10.12677/PI.2017.65017

参考文献 (References)

  1. 1. Pluta, R.M. (2013) Prolonged Intravenous Infusion of Sodium Nitrite Delivers Nitric Oxide (NO) in Humans. Acta Neurochirurgica Supplement, 115, 49-51. https://doi.org/10.1007/978-3-7091-1192-5_11

  2. 2. Yang, L.Q., Tao, K.M., Liu, Y.T., et al. (2011) Remifentanil Preconditioning Reduces Hepatic Ischemia-Reperfusion Injury in Rats via Inducible Nitric Oxide Synthase Expression. Anesthesiology, 114, 1036-1047. https://doi.org/10.1097/ALN.0b013e3182104956

  3. 3. Wang, Y., Wong, G.T., Man, K., et al. (2012) Pretreatment with Intrathecal or Intravenous Morphine Attenuates Hepatic Ischaemia-Reperfusion Injury in Normal and Cirrhotic Rat Liver. British Journal of Anaesthesia, 109, 529-539. https://doi.org/10.1093/bja/aes209

  4. 4. Zhou, J. and Chen, Y. (2011) Effect of Electroacupuncture Preconditioning on Nitric Oxide, Nitric Oxide Synthase and Oxyradical during Hepatic Ischemia-Reperfusion Injury in Rabbits. Chinese Acupuncture & Moxibustion, 31, 149-152.

  5. 5. Maia, L.B., Pereira, V., Mira, L., et al. (2015) Nitrite Reductase Activity of Rat and Human Xanthine Oxidase, Xanthine Dehydrogenase, and Aldehyde Oxidase: Evaluation of Their Contribution to NO Formation in Vivo. Biochemistry, 54, 685-710. https://doi.org/10.1021/bi500987w

  6. 6. Jensen, F.B., Hansen, M.N., Montesanti, G., et al. (2014) Nitric Oxide Metabolites during Anoxia and Reoxygenation in the Anoxia-Tolerant Vertebrate Trachemys scripta. Journal of Experimental Biology, 217, 423-431. https://doi.org/10.1242/jeb.093179

  7. 7. Lin, J.G. and Chen, Y.H. (2011) The Mechanistic Studies of Acupuncture and Moxibustion in Taiwan. Chinese Journal of Integrative Medicine, 17, 177-186. https://doi.org/10.1007/s11655-011-0664-8

  8. 8. Kageyama, S., Yagi, S., Tanaka, H., et al. (2014) Graft Reconditioning with Nitric Oxide Gas in Rat Liver Transplantation from Cardiac Death Donors. Transplantation, 97, 618-625. https://doi.org/10.1097/TP.0000000000000025

  9. 9. Zaki, H.F. and Abdelsalam, R.M. (2013) Vinpocetine Protects Liver against Ischemia-Reperfusion Injury. Canadian Journal of Physiology & Pharmacology, 91, 1064-1070. https://doi.org/10.1139/cjpp-2013-0097

  10. 10. Dziodzio, T., Biebl, M. and Pratschke, J. (2014) Impact of Brain Death on Ischemia/Reperfusion Injury in Liver Transplantation. Current Opinion in Organ Transplantation, 19, 108-114. https://doi.org/10.1097/MOT.0000000000000061

  11. 11. Jennings, R.B., Shen, A.C., Hill, M.L., et al. (1978) Mitochondrial Matrix Densities in Myocardial Ischemia and Autolysis. Experimental & Molecular Pathology, 29, 55-65. https://doi.org/10.1016/0014-4800(78)90026-6

  12. 12. Sammut, I.A., Burton, K., Balogun, E., et al. (2000) Time-Dependent Impairment of Mitochondrial Function after Storage and Transplantation of Rabbit Kidneys. Transplantation, 69, 1265-1275. https://doi.org/10.1097/00007890-200004150-00011

  13. 13. Yadav, S.S., Howell, D.N., Gao, W., et al. (1998) L-Selectin and ICAM-1 Mediate Reperfusion Injury and Neutrophil Adhesion in the Warm Ischemic Mouse Liver. American Journal of Physiology, 275, G1341-G1352.

  14. 14. Vollmar, B. and Menger, M.D. (2009) The Hepatic Microcirculation: Mechanistic Contributions and Therapeutic Targets in Liver Injury and Repair. Physiological Reviews, 89, 1269-1339. https://doi.org/10.1152/physrev.00027.2008

  15. 15. Hide, D., Ortega-Ribera, M., Fernández-Iglesias, A., et al. (2014) A Novel Form of the Human Manganese Superoxide Dismutase Protects Rat and Human Livers Undergoing Ischaemia and Reperfusion Injury. Clinical Science, 127, 527-537. https://doi.org/10.1042/CS20140125

  16. 16. Metukuri, M.R., Beer-Stolz, D., Namas, R.A., et al. (2009) Expression and Subcellular Localization of BNIP3 in Hypoxic Hepatocytes and Liver Stress. American Journal of Physiology Gastrointestinal and Liver Physiology, 296, G499-G509. https://doi.org/10.1152/ajpgi.90526.2008

  17. 17. Sandvik, G.K., Nilsson, G.E. and Jensen, F.B. (2012) Dramatic Increase of Nitrite Levels in Hearts of Anoxia-Exposed Crucian Carp Supporting a Role in Cardioprotection. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 302, R468-R477. https://doi.org/10.1152/ajpregu.00538.2011

  18. 18. Abu-Amara, M., Yang, S.Y., Seifalian, A., et al. (2012) The Nitric Oxide Pathway—Evidence and Mechanisms for Protection against liver Ischaemia Reperfusion Injury. Liver International Official Journal of the International Association for the Study of the Liver, 32, 531-543. https://doi.org/10.1111/j.1478-3231.2012.02755.x

  19. 19. Guan, L.Y., Fu, P.Y., Li, P.D., et al. (2014) Mechanisms of Hepatic Ischemia-Reperfusion Injury and Protective Effects of Nitric Oxide. World Journal of Gastrointestinal Surgery, 6, 122-128. https://doi.org/10.4240/wjgs.v6.i7.122

  20. 20. Wang, B.Q., Kan, Y.F. and Yang, Q.H. (2010) The Protective Effect of the Limb Ischemia Preconditioning on the Hepatic Injury Related to NO/ET-1 System in Rats. Chinese Journal of Applied Physiology, 26, 376-379.

  21. 21. Siriussawakul, A., Zaky, A. and Lang, J.D. (2010) Role of Nitric Oxide in Hepatic Ischemia-Reperfusion Injury. World Journal of Gastroenterology, 16, 6079-6086. https://doi.org/10.3748/wjg.v16.i48.6079

  22. 22. Miyake, T., Yokoyama, Y., Kokuryo, T., et al. (2013) Endothelial Nitric Oxide Synthase Plays a Main Role in Producing Nitric Oxide in the Superacute Phase of Hepatic Ischemia Prior to the Upregulation of Inducible Nitric Oxide Synthase. Journal of Surgical Research, 183, 742-751. https://doi.org/10.1016/j.jss.2013.01.048

  23. 23. Kuriyama, N., Isaji, S., Hamada, T., et al. (2010) The Cytoprotective Effects of Addition of Activated Protein C into Preservation Solution on Small-for-Size Grafts in Rats. Liver Transplantation, 16, 1-11. https://doi.org/10.1002/lt.21923

  24. 24. Ben, A.H., Zaoualí, M.A., Alfany-Fernandez, I., et al. (2011) How to Protect Liver Graft with Nitric Oxide. World Journal of Gastroenterology, 17, 2879-2889. https://doi.org/10.3748/wjg.v17.i24.2879

  25. 25. Palanisamy, A.P., Cheng, G., Sutter, A.G., et al. (2014) Adenovirus-Mediated eNOS Expression Augments Liver Injury after Ischemia/Reperfusion in Mice. PLoS One, 9, e93304. https://doi.org/10.1371/journal.pone.0093304

  26. 26. Filos, K.S., Kirkilesis, I., Spiliopoulou, I., et al. (2004) Bacterial Translocation, Endotoxemia and Apoptosis Following Pringle Maneuver in Rats. International Journal of the Care of the Injured, 35, 35-43. https://doi.org/10.1016/S0020-1383(03)00288-2

  27. 27. Hu, M., Wang, Z., Rao, J., et al. (2010) Inhibition of Inducible Nitric Oxide Synthase Worsens Liver Damage Regardless of Lipopolysaccharide Treatment in Small-for-Size Liver Transplantation. Transplant Immunology, 23, 6-11. https://doi.org/10.1016/j.trim.2010.02.001

  28. 28. Vargiu, C., Belliardo, S., Cravanzola, C., et al. (2000) Oxygen Regulation of Rat Hepatocyte iNOS Gene Expression. Journal of Hepatology, 32, 567-573. https://doi.org/10.1016/S0168-8278(00)80217-2

  29. 29. 金丽明. 大鼠肝脏缺血再灌注损伤及缺血预处理对缺血肝脏损伤保护和再生作用及其机制研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2010.

  30. 30. Björnsson, B., Winbladh, A., Bojmar, L., et al. (2014) Conventional, But Not Remote Ischemic Preconditioning, Reduces iNOS Transcription in Liver Ischemia/Reperfusion. World Journal Gastroenterology, 20, 9506-9512. https://doi.org/10.3748/wjg.v20.i28.9506

  31. 31. Xue, Q., Yuan, Z., Chen, Z., et al. (2012) Protective Role of Nitric Oxide Induced by Ischemic Preconditioning on Cold Ischemic-Reperfusion Injury of Rat Liver Graft. Transplantation Proceedings, 44, 948-951. https://doi.org/10.1016/j.transproceed.2012.01.040

  32. 32. Datta, G., Luong, T.V., Fuller, B.J., et al. (2014) Endothelial nitric Oxide Synthase and Heme Oxygenase-1 Act Independently in Liver Ischemic Preconditioning. Journal of Surgical Research, 186, 417-428. https://doi.org/10.1016/j.jss.2013.08.019

  33. 33. Abu-Amara, M., Yang, S.Y., Quaglia, A., et al. (2012) The Hepatic Soluble Guanylyl Cyclase-Cyclic Guanosine Monophosphate Pathway Mediates the Protection of Remote Ischemic Preconditioning on the Microcirculation in Liver Ischemia-Reperfusion Injury. Transplantation, 93, 880-886. https://doi.org/10.1097/TP.0b013e31824cd59d

  34. 34. Tabka, D., Bejaoui, M., Javellaud, J., et al. (2015) Effects of Institut Georges Lopez-1 and Celsior Preservation Solutions on Liver Graft Injury. World Journal of Gastroenterology, 21, 4159-4168. https://doi.org/10.3748/wjg.v21.i14.4159

  35. 35. Guo, Y., Yang, T., Lu, J., et al. (2011) Rb1 Postconditioning Attenuates Liver Warm Ischemia-Reperfusion Injury through ROS-NO-HIF Pathway. Life Sciences, 88, 598-605. https://doi.org/10.1016/j.lfs.2011.01.022

  36. 36. Lin, J., Zeng, Z. and Center, O.T. (2010) Advances in Research on the Protective Mechanisms of Ischemic Prostconditioning against Hepatic Ischemia-Reperfusion Injury. World Chinese Journal of Digestology, 18, 1799-1803.

  37. 37. Murata, I., Nozaki, R., Ooi, K., et al. (2012) Nitrite Reduces Ischemia/Reperfusion-Induced Muscle Damage and Improves Survival Rates in Rat Crush Injury Model. Journal of Trauma and Acute Care Surgery, 72, 1548-1554. https://doi.org/10.1097/TA.0b013e31824a76b5

期刊菜单