Pharmacy Information
Vol. 08  No. 03 ( 2019 ), Article ID: 29774 , 7 pages
10.12677/PI.2019.83006

Advances in Pharmacological Research of Cannabidiol

Shasha Han1, Dianhang Zhang2, Li Li1,3*

1College of Pharmacy, Liaoning University, Shenyang Liaoning

2Tianjin Jianfeng Flander Pharmaceutical Technology Development Limited Company, Tianjin

3Institute of Forensic Expertise, Liaoning University, Shenyang Liaoning

Received: Mar. 30th, 2019; accepted: Apr. 12th, 2019; published: Apr. 19th, 2019

ABSTRACT

On October 17, 2018, marijuana was fully legalized in Canada, and people paid more and more attention to the medicinal value of marijuana and its extract. Cannabinol is a non-psychoactive ingredient extracted from hemp, which does not lead to physiological dependence and has good tolerance. It has certain therapeutic characteristics for neurological diseases, epilepsy, tumors, inflammation, liver injury, diabetes, pain and other diseases. Its importance in the field of medicine has become more and more prominent. This article reviews the pharmacological studies of cannabinol, so as to provide references for the treatment of related diseases and rational utilization of cannabinol.

Keywords:Cannabidiol, Pharmacological Effects, Non-Psychoactive Ingredient, Tolerance, Rational Utilization

大麻二酚的药理研究进展

韩莎莎1,张殿杭2,李 丽1,3*

1辽宁大学药学院,辽宁 沈阳

2天津尖峰弗兰德医药科技发展有限公司,天津

3辽宁大学司法鉴定研究院,辽宁 沈阳

收稿日期:2019年3月30日;录用日期:2019年4月12日;发布日期:2019年4月19日

摘 要

2018年10月17日,在加拿大境内大麻全面合法化,人们对大麻及其提取物的药用价值越来越重视。大麻二酚是从大麻中提取的非精神活性成分,不会导致生理依赖,具有良好的耐受性,对神经疾病、癫痫、肿瘤、炎症、肝损伤、糖尿病、疼痛等多种疾病都表现出一定的治疗特性,在医药领域的重要性越发凸显出来。该文就大麻二酚的药理研究展开综述,以期为大麻二酚治疗相关疾病和合理利用提供参考。

关键词 :大麻二酚,药理作用,非神经活性成分,耐受性,合理利用

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

大麻起源于中亚和东亚,广泛分布在摩洛哥、南非、美国、巴西、印度等世界热带和温暖地区。大麻的药用记录可追溯至公元前2700年的中国,但成瘾性和精神致幻作用,使其临床应用受到极大限制。大麻植物含有数百种不同的化学物质,大约有60~80种成分被称为大麻素 [1] ,其中四氢大麻酚(tetrahydrocannabinol, THC)和大麻二酚(cannabidiol, CBD)含量最高,分子结构如图1所示。THC通过与大麻素I/II型受体(CB1R/CB2R)紧密结合来引发精神活性。CBD是由Adams等人 [2] 分离出来的,不但能拮抗THC所引发的精神活性,而且还具有广泛的治疗特性,对神经疾病包括焦虑、精神分裂症、成瘾、神经退行性疾病和新生儿低氧缺血性脑病均具有明显的改善作用。另外,在抗癫痫、抗肿瘤、抗炎、肝保护、糖尿病、疼痛的治疗上,也表现出很好的应用前景。

Figure 1. The chemical structure of tetrahydrocannabinol and cannabinol

图1. 四氢大麻酚和大麻二酚的化学结构

2. 大麻二酚的药理作用

2.1. 抗神经疾病作用

大麻二酚具有广泛的生物效应,在神经系统中有多种潜在的作用部位,被评估为一种治疗神经疾病的药物。对焦虑、精神分裂症、成瘾、神经退行性疾病、缺氧缺血脑病等都有一定的效果。

2.1.1. 抗焦虑作用

大麻二酚作为一种潜在的抗焦虑药物引起了越来越多的关注。与大麻二酚抗焦虑作用相关的受体是:CB1受体、TRPV1受体和5-HT1A受体。CBD对CB1受体的亲和力较低,但它作为一种间接激动剂发挥作用。CBD在高浓度时充当TRPV1激动剂,可能通过干扰花生四烯乙醇胺的失活来发挥作用。5-HT1A受体是目前已确定的抗焦虑靶点。Alexandre等在动物试验中,通过高架十字迷宫法,证明了低剂量的大麻二酚通过激动5-HT1A受体,来发挥抗焦虑作用;过量的大麻二酚会激活TRPV1受体,增加焦虑。另外,试验还发现大麻二酚可以使人产生抗焦虑作用,还可以用来治疗社交焦虑障碍 [3] 。Devinsky [4] 和Rong [5] 也得到了相同的结论。Blessing等报道了CBD对人的抗焦虑作用,并提供了神经生物学靶点的证据,如扁桃体活化减少和内侧前额叶扁桃体连接改变 [6] 。

2.1.2. 抗精神分裂症

抗精神病药物通过拮抗中枢多巴胺D2受体发挥作用,虽然它们对大多数患者有效,但多达三分之一的患者治疗效果不佳。然而CBD并不依赖于多巴胺D2受体的拮抗,而是通过抑制脂肪酸酰胺水解酶、抑制腺苷酸再摄取、激动TRPV1和5-HT1A受体来发挥作用 [7] 。Zuardi等 [8] 发现CBD可以改善对氟哌啶醇没有效果的病人的症状。

有研究报道额纹状体偶联下降是精神分裂症的中间表型,而CBD导致额纹状体连接增加,提示CBD在精神分裂症患者中潜在的治疗用途 [9] 。将CBD作为辅助药物,加入到抗精神病的治疗中与对照组相比,产生了更好的治疗效果。患者的认知功能和整体功能水平有所提高,运动速度和行动能力的改善效果最为显著。每组中只有三分之一的患者出现了不良反应,例如血脂异常和恶心,副反应的症状大部分是轻微的,可自行解决,表明CBD具有良好的耐受性 [7] 。

2.1.3. 抗成瘾性

Morgan等选取48名大麻使用者,采用随机双盲交叉实验,比较THC (8 mg),CBD (16 mg),及二者合用(8 mg THC + 16 mg CBD)的成瘾性。结果发现单独使用THC或二者合用均会造成精神损伤,而只使用CBD并无精神损伤作用,且CBD能改善低频率大麻使用者的精神症状,对高频率大麻使用者无效 [10] 。Trigo等评估40名大麻依赖者对服用Nabiximols (27 mg/mL THC/25 mg/mL CBD)的耐受性和安全性。研究发现,Nabiximols有助于减少大麻的使用量,而不增加患者对大麻的渴望 [11] 。CBD不只对大麻戒断有作用,也有利于烟草的戒断 [12] 。

2.1.4. 抗神经退行性疾病

大脑中铁的积累被认为是正常衰老的特征。然而,在阿尔茨海默氏症(AD)、帕金森症(PD)和亨廷顿氏症(HD)等神经系统疾病中,铁选择性地聚集在与相关的神经退行性过程有关的大脑区域,如海马、黑质、皮质和基底神经节。研究发现CBD可以通过阻断铁诱导的细胞凋亡,来发挥神经保护作用,使得CBD成为一种潜在的治疗神经退行性疾病的药物 [13] 。Cheng等首次证实了CBD在转基因小鼠AD模型中的治疗作用 [14] 。

2.1.5. 抗新生儿低氧缺血性脑病

CBD对急性缺氧缺血后的神经具有保护作用,因此能够治疗新生儿缺氧缺血脑病。CBD能够阻止钙的增加,减少谷氨酸的释放和NO产生,抑制细胞核因子-κB (NF-κB)的转录活性,具有抗氧化结构及扩张血管的特点,具有神经胶质保护作用。CBD能保护婴儿的大脑,不仅具有控制兴奋性、炎症和氧化应激的神经调节作用,还能减弱神经退化和有害神经胶质的激活 [15] 。

2.2. 抗癫痫作用

公元前2900年在阿拉伯文献中就有大麻作为药物来治疗癫痫的记载 [16] 。欧洲的十九世纪中期,苏格兰医生以大麻素治疗儿童癫痫的疗法,受到了当时神经科学家的广泛支持 [17] 。现在以CBD治疗癫痫越来越盛行。

Hussain等 [18] 对117名服用富含CBD药物的癫痫儿童进行调查。其中16人(14%)癫痫停止发作,100人(85%)癫痫发作频率降低,11人没有变化,5人癫痫发作频率增加。在CBD治疗期间,有很大比例的受访者表示睡眠(53%)、警觉性(71%)和情绪(63%)有所改善。Tzadok等 [19] 对青少年顽固性癫痫患者进行医用大麻油治疗,也得到了很好的治疗效果。Kaplan等研究发现CBD能有效地减少Dravet综合征模型小鼠的癫痫发作频率 [20] ,Blathnaid [21] 和Devinsky [22] 等也得到了相同的结论:癫痫发作次数减少了,生活质量提高了,但CBD的不良反应发生率也增高了,常见的不良事件包括嗜睡、厌食和腹泻。此外 Emma等采用CBD治疗顽固性癫痫Sturge-Weber综合症,所有受试者在CBD治疗的大部分时间里生活质量改善了,其轻微的副作用可以被人体很好的耐受 [23] 。给Lennox-Gastaut综合症的患者辅助CBD的药物治疗导致癫痫发作频率的降低,但是不良反应的发生率也升高,与CBD有显著关联的不良事件是嗜睡、食欲下降、腹泻和血清氨转移酶的增加 [24] 。此外,美国食品和药物监督管理局(FDA)最近批准了GW公司开发的Epidiolex (CBD纯品的液态制剂),用于治疗两岁及以上患者的癫痫,包括Lennox-Gastaut综合症和Dravet综合症,这两种罕见和严重形式的癫痫 [25] 。

2.3. 抗炎作用

在受到脂多糖(LPS)刺激的巨噬细胞中,CBD和辣木碱联合使用具有抗炎和抗氧化作用 [26] 。在LPS诱导的小鼠急性肺损伤模型中,CBD也具有抗炎作用,作用机制可能与细胞外腺苷供应的增加和通过腺苷A2A受体的信号传递有关 [27] 。Burstein等总结了CBD在各种临床前模型中的抗炎作用,包括实验性结肠炎、胶原诱导关节炎、神经炎症、自身免疫性脑脊髓炎、急性肺损伤、肝缺血再灌注(I/R)损伤等 [28] 。

2.4. 抗肿瘤作用

CBD对多种肿瘤细胞具有抑制作用,其抗肿瘤作用根据癌症组织类型不同,其作用机制各不相同。目前,CBD抗肿瘤作用机制的研究多集中在乳腺癌、肺癌、神经胶质瘤、前列腺癌和白血病中。

CBD可通过调节多种细胞外信号通路激活凋亡通路、诱导抗增殖和抑制血管生成,能有效抑制体内外不同类型肿瘤的生长 [29] 。Mohamad等报道了CBD在体外和体内对包括三阴性乳腺癌在内的乳腺癌细胞系生长和转移特性的抑制作用,首次证明CBD通过抑制表皮生长因子/表皮生长因子受体(EGF/EGFR)信号通路和调节肿瘤微环境来抑制乳腺癌的生长和转移 [30] 。Ahmed等发现了CBD可诱导不同的癌症相关信号(mTOR、cyclin D1和PPARg)相互作用,来促进阳性和三阴性乳腺癌细胞的凋亡 [31] 。CBD和THC对维持细胞生长和生存的细胞内中枢信号通路具有影响,在原位小鼠神经胶质瘤模型中,CBD和THC可以增强放射治疗的抗癌效应 [32] 。CBD还可通过多靶点作用抑制U87-MG和T98G胶质瘤细胞的增殖和侵袭,导致一组特异性参与生长、侵袭和血管生成的蛋白表达减少 [33] 。CBD还可以促进宫颈细胞的凋亡 [34] 。大麻素可以促进细胞间粘附分子1 (ICAM-1)在肺癌细胞上的表达,增强了癌细胞对杀伤细胞(LAK)的敏感性,来增加肺癌细胞的溶解 [35] 。

由于CBD具有良好的耐受性,不会产生传统化疗的典型毒性作用,因此开发CBD作为潜在的抗癌药物具有相当大的研究价值。

2.5. 抗痉挛

痉挛是多发性硬化(MS)患者的常见慢性症状,经常伴随着疼痛,痉挛,移动限制,睡眠障碍,和膀胱功能障碍,与疲劳、焦虑和抑郁有关。患者的生活质量随着痉挛程度的加重而恶化。英国GW制药公司开发了Sativex (THC/CBD含量比值为1的口腔黏膜喷雾剂),用于治疗多发性硬化症 [36] ,该药目前已在27个国家批准使用 [37] 。Sativex在超过四分之三的应试者中产生了具有临床意义的抗MS痉挛作用,从而证明其是一种有效的抗痉挛药物 [38] 。

2.6. 抗糖尿病

研究发现CBD能够降低非肥胖型糖尿病小鼠的发病率,这种效应与减少的胰岛炎结合在一起,导致促炎细胞因子的水平降低。CBD能够减少与糖尿病相关的氧化应激、炎症、细胞死亡和血管通透性 [39] 。CBD通过G蛋白偶联受体18 (GPR18)依赖性地恢复心脏的脂联素-蛋白激酶B-内皮型一氧化氮合酶(adiponectin-Akt-Enos)信号和减少心肌氧化应激,来减轻糖尿病诱发的心血管异常 [40] 。此外,CBD对糖尿病引发的抑郁也可以产生轻微的抑制作用 [41] 。因此CBD能够改善糖尿病及其并发症。

2.7. 抗慢性疼痛

有大量证据表明,大麻在治疗成人慢性疼痛方面是有效的,并能改善慢性疼痛患者短期睡眠障碍。此外,CBD可减轻癌症带来的体重减轻、呕吐和疼痛等症状 [42] 。CBD可以治疗肾移植患者的慢性疼痛,在增加CBD剂量后,只产生轻微的不良反应,并且耐受性好 [43] 。透皮给予CBD治疗骨关节炎引起的膝关节疼痛效果良好 [44] 。

2.8. 肝保护功能

CBD可以减轻肝脏损伤,降低肝脏甘油三酯的水平,还可在细胞水平减轻油酸所致人肝脏细胞脂肪堆积,具有肝保护功能 [45] 。THC和CBD可通过诱导脂解或增强线粒体活性来抑制脂肪肝,还可以改善胰岛素敏感性,这两种化合物可被用作治疗肥胖症和代谢综合征相关肝病 [45] 。CBD可以通过降低醇介导的氧化应激,抑制JNK MAPK通路的激活和增加自噬等多种机制保护小鼠肝脏免受酒精诱导的脂肪变性 [46] 。

3. 结语与展望

医用大麻和CBD的使用正在迅速增长,尤其是在抗癫痫,抗肿瘤,抗炎,抗精神病等方面的有益作用越来越受到人们的关注。然而,几十年的禁止令使得大麻衍生疗法在法律上处于灰色地带,这可能对基于CBD的药物评估和临床开发构成挑战。从上世纪90年代开始,美国一些州相继通过大麻合法化的法律。1996年,加利福利亚州选民通过“215号倡议”,规定医用大麻合法化,阿拉斯加于1998年批准了医用大麻合法化的倡议。自此以后,越来越多的州允许为医疗目的吸食大麻。到2015年,美国共有23个州和哥伦比亚特区允许个人种植、拥有或为医学目的而吸食大麻。美国相关机构预测,到2020年美国医用大麻合法化的州将达到37个 [47] 。加拿大政府也在2014年4月允许私人公司申请医用大麻的种植 [37] ,在2018年10月17日,允许大麻在加拿大境内全面合法化。随着医用大麻的获得越来越便利,人们对CBD有效性和安全性的理解大大增加,CBD将会更好地造福人类。

基金项目

辽宁省自然科学基金资助项目(材料联合基金) (项目编号:20180510016)。

文章引用

韩莎莎,张殿杭,李 丽. 大麻二酚的药理研究进展
Advances in Pharmacological Research of Cannabidiol[J]. 药物资讯, 2019, 08(03): 49-55. https://doi.org/10.12677/PI.2019.83006

参考文献

  1. 1. Brenneisen, R. (2007) Marijuana and the Cannabinoids: Chemistry and Analysis of Phytocannabinoids and Other Cannabis Constitu-ents. Humana Press, Totowa, 17-49. https://doi.org/10.1007/978-1-59259-947-9_2

  2. 2. Adams, R., Hunt, M. and Clark, J.H. (1940) Structure of Cannabidiol, a Product Isolated from the Marihuana Extract of Minnesota Wild Hemp. Journal of the American Chemical Society, 62, 196-200. https://doi.org/10.1021/ja01858a058

  3. 3. Schier, A.R., Ribeiro, N.P., Silva, A.C., et al. (2012) Cannabidiol, a Cannabis sativa Constituent, as an Anxiolytic Drug. The Revista Brasileira de Psiquiatria, 34, 104-117. https://doi.org/10.1016/S1516-4446(12)70057-0

  4. 4. Devinsky, O., Cilio, M.R., Cross, H., et al. (2014) Cannabidiol: Pharma-cology and Potential Therapeutic Role in Epilepsy and Other Neuropsychiatric Disorders. Epilepsia, 55, 791-802. https://doi.org/10.1111/epi.12631

  5. 5. Rong, C., Lee, Y., Carmona, N.E., et al. (2017) Cannabidiol in Medical Marijuana: Re-search Vistas and Potential Opportunities. Pharmacological Research, 121, 213-218. https://doi.org/10.1016/j.phrs.2017.05.005

  6. 6. Blessing, E.M., Steenkamp, M.M., Manzanares, J., et al. (2015) Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurotherapeutics, 12, 825-836. https://doi.org/10.1007/s13311-015-0387-1

  7. 7. McGuire, P., Robson, P., Cubala, W.J., et al. (2017) Cannabidiol (CBD) as an Adjunctive Therapy in Schizophrenia: A Multicenter Randomized Controlled Trial. American Journal of Psychiatry, 175, 225-231. https://doi.org/10.1176/appi.ajp.2017.17030325

  8. 8. Zuardi, A.W., Morais, S.L., Guimarães, F.S., et al. (1995) Antipsychotic Effect of Cannabidiol. Journal of Clinical Psychiatry, 56, 485-486.

  9. 9. Grimm, O., Löffler, M., Kamping, S., et al. (2018) Probing the Endocannabinoid System in Healthy Volunteers: Cannabidiol Alters Fronto-Striatal Resting-State Connectivity. European Neuro-psychopharmacology, 28, 841-849. https://doi.org/10.1016/j.euroneuro.2018.04.004

  10. 10. Morgan, C.J.A., Freeman, T.P., Hindocha, C., et al. (2018) Individual and Combined Effects of Acutedelta-9-Te- trahydrocannabinol and Cannabidiol on Psychotomimetic Symptoms and Memory Function. Translational Psychiatry, 8, 181-190. https://doi.org/10.1038/s41398-018-0191-x

  11. 11. Trigo, J.M., Soliman, A., Quilty, L.C., et al. (2018) Nabiximols Combined with Motivational Enhancement/Cognitive Behavioral Therapy for the Treatment of Cannabis De-pendence: A Pilot Randomized Clinical Trial. PLoS ONE, 13, e0190768. https://doi.org/10.1371/journal.pone.0190768

  12. 12. Hindocha, C., Freeman, T., Grabski, M., et al. (2018) Cannabidiol Reverses Attentional Bias to Cigarette Cues in a Human Experimental Model of Tobacco Withdrawal. Addiction, 113, 1696-1705. https://doi.org/10.1111/add.14243

  13. 13. Silva, V.K., Freitas, B.S., Garcia, R.C.L., et al. (2018) Antiapoptotic Effects of Canna-bidiol in an Experimental Model of Cognitive Decline Induced by Brain Iron Overload. Translational Psychiatry, 8, 176-183. https://doi.org/10.1038/s41398-018-0232-5

  14. 14. Cheng, D., Low, J.K., Logge, W., et al. (2014) Chronic Cannabidiol Treatment Improves Social and Object Recognition in Double Transgenic APPswe/PS1ΔE9 Mice. Psychopharmacology, 231, 3009-3017. https://doi.org/10.1007/s00213-014-3478-5

  15. 15. Sagredo, O., Palazuelos, J., Gutierrez-Rodriguez, A., et al. (2018) Cannabinoid Signalling in the Immature Brain: Encephalopathies and Neurodevelopmental Disorders. Biochemical Pharmacology, 157, 85-96. https://doi.org/10.1016/j.bcp.2018.08.014

  16. 16. Lozano, I. (2001) The Therapeutic Use of Cannabis sativa (L.) in Arabic Medicine. Journal of Cannabis Therapeutics, 1, 63-70. https://doi.org/10.1300/J175v01n01_05

  17. 17. O’Shaughnessy, W.B. (1943) On the Preparations of the Indian Hemp, or Gunjah: Cannabis Indica Their Effects on the Animal System in Health, and their Utility in the Treatment of Tetanus and other Convulsive Diseases. Provincial Medical Journal and Retrospect of the Medical Sciences, 5, 363-369.

  18. 18. Hussain, S.A., Raymond, Z., Jacobson, C., et al. (2015) Epilepsy & Behavior Perceived Efficacy of Cannabidi-ol-Enriched Cannabis Extracts for Treatment of Pediatric Epilepsy : A Potential Role for Infantile Spasms and Lennox-Gastaut Syn-drome. Epilepsy & Behavior, 47, 138-141. https://doi.org/10.1016/j.yebeh.2015.04.009

  19. 19. Tzadok, M., Uliel-Siboni, S., Linder, I., et al. (2016) CBD-Enriched Medical Cannabis for Intractable Pediatric Epilepsy The Current Israeli Experience. Seizure, 35, 41-44. https://doi.org/10.1016/j.seizure.2016.01.004

  20. 20. Kaplan, J.S., Stella, N., Catterall, W.A., et al. (2017) Cannabidiol Attenuates Seizures and Social Deficits in a Mouse Model of Dravet Syndrome. Proceedings of the National Academy of Sciences, 114, 11229-11234. https://doi.org/10.1073/pnas.1711351114

  21. 21. McCoy, B., Wang, L., Zak, M., et al. (2017) A Prospective Open-Label Trial of a CBD/THC Cannabis Oil in Dravet Syndrome. Annals of Clinical and Translational Neurology, 5, 1077-1088. https://doi.org/10.1002/acn3.621

  22. 22. Devinsky, O., Cross, H., Nabbout, R., et al. (2017) Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. The New England Journal of Medicine, 376, 2011-2020. https://doi.org/10.1056/NEJMoa1611618

  23. 23. Kaplan, B.A., Offermann, B.A., Sievers, M.A., et al. (2017) Cannabidiol Treat-ment for Refractory Seizures in Sturge-Weber Syndrome. Pediatric Neurology, 71, 18-23. https://doi.org/10.1016/j.pediatrneurol.2017.02.009

  24. 24. Lattanzi, S., Brigo, F., Cagnetti, C., et al. (2018) Efficacy and Safety of Adjunctive Cannabidiol in Patients with Lennox-Gastaut Syndrome: A Systematic Review and Meta‑Analysis. CNS Drugs, 32, 905-916. https://doi.org/10.1007/s40263-018-0558-9

  25. 25. Office of the Commissioner (2018) FDA Approves First Drug Comprised of an Active Ingredient Derived from Marijuana to Treat Rare, Severe Forms of Epilepsy.

  26. 26. Rajan, T.S., Giacoppo, S., Iori, R., et al. (2016) Anti-Inflammatory and Antioxidant Effects of a Combination of Cannabidiol and Moringin in LPS-Stimulated Macrophages. Fitoterapia, 112, 104-115. https://doi.org/10.1016/j.fitote.2016.05.008

  27. 27. Ribeiro, A., Paula, V.F., Pinheiro, M.L., et al. (2012) Cannabidiol, a Non-Psychotropic Plant-Derived Canna Binoid, Decreases Inflammation in a Murine Model of Acute Lung Injury: Role for the Adeno-sine A2A Receptor. European Journal of Pharmacology, 678, 78-85. https://doi.org/10.1016/j.ejphar.2011.12.043

  28. 28. Burstein, S. (2015) Cannabidiol (CBD) and Its Analogs: A Review of Their Effects on Inflammation. Bioorganic & Medicinal Chemistry, 23, 1377-1385. https://doi.org/10.1016/j.bmc.2015.01.059

  29. 29. Javid, F.A., Phillips, R.M., Afshinjavid, S., et al. (2016) Cannabinoid Pharmacology in Cancer Research: A New Hope for Cancer Patients? European Journal of Pharmacology, 775, 1-14. https://doi.org/10.1016/j.ejphar.2016.02.010

  30. 30. Elbaz, M., Nasser, M.W., Ravi, J., et al. (2015) Modulation of the Tumor Mi-croenvironment and Inhibition of EGF/EGFR Pathway: Novel Anti-Tumor Mechanisms of Cannabidiol in Breast Cancer. Molecular Oncology, 9, 906-919. https://doi.org/10.1016/j.molonc.2014.12.010

  31. 31. Sultan, A.S., Marie, M.A. and Sheweita, S.A. (2018) Novel Mechanism of Cannabidiol-Induced Apoptosis in Breast Cancer Cell Lines. The Breast, 41, 34-41. https://doi.org/10.1016/j.breast.2018.06.009

  32. 32. Scott, K.A., Dalgleish, A.G. and Liu, W.M. (2014) The Combination of Canna-bidiol and Δ9-Tetrahydrocannabinol Enhances the Anticancer Effects of Radiation in an Orthotopic Murine Glioma. Molecular Cancer Therapeutics, 13, 2955-2967. https://doi.org/10.1158/1535-7163.MCT-14-0402

  33. 33. Solinas, M., Massi, P., Cinquina, V., et al. (2013) Cannabidiol, a Non-Psychoactive Cannabinoid Compound, Inhibits Proliferation and Invasion in U87-MG and T98G Glioma Cells through a Multitarget Effect. PLoS ONE, 8, e76918. https://doi.org/10.1371/journal.pone.0076918

  34. 34. Lukhele, S.T. and Motadi, L.R. (2016) Cannabidiol Rather than Cannabis sativa Extracts Inhibit Cell Growth and Induce Apoptosis in Cervical Cancer Cells. BMC Complementary and Alternative Medicine, 16, 335-350. https://doi.org/10.1186/s12906-016-1280-0

  35. 35. Haustein, M., Ramer, R., Linnebacher, M., et al. (2014) Cannabinoids Increase Lung Cancer Cell Lysis by Lym Phokine-Activated Killer Cells via Upregulation of Icam-1. Biochemical Pharmacology, 92, 312-325. https://doi.org/10.1016/j.bcp.2014.07.014

  36. 36. Fernández, ó. (2016) THC: CBD in Daily Practice: Available Data from UK, Germany and Spain. European Neurology, 75, 1-3. https://doi.org/10.1159/000444234

  37. 37. 陈轶翔. 美国拟放宽医用大麻种植基地[J]. 世界科学, 2015(10): 10-11.

  38. 38. Markovà, J., Essner, U., Akmaz, B., et al. (2018) Sativex® as Add-On Therapy vs. Fur-ther Optimized First-Line ANTispastics (SAVANT) in Resistant Multiple Sclerosis Spasticity: A Double-Blind, Placebo-Controlled Randomised Clinical Trial. International Journal of Neuroscience, 129, 1-10.

  39. 39. Horváth, B., Mukhopadhyay, P., Haskó, G., et al. (2012) The Endocannabinoid System and Plant-Derived Cannabinoids in Diabetes and Diabetic Complications. The American Journal of Pathology, 180, 432-442. https://doi.org/10.1016/j.ajpath.2011.11.003

  40. 40. Matouk, A.I., Taye, A., Mohamed, A., et al. (2018) Abnormal Cannabidiol Confers Cardioprotection in Diabetic Rats Independent of Glycemic Control. European Journal of Pharmacology, 820, 256-264. https://doi.org/10.1016/j.ejphar.2017.12.039

  41. 41. Morais, H., Chaves, Y.C., Waltrick, A.P.F., et al. (2018) Sub-Chronic Treat-ment with Cannabidiol But Not with URB597 Induced a Mild Antidepressant-Like Effect in Diabetic Rats. Neuroscience Letters, 682, 62-68. https://doi.org/10.1016/j.neulet.2018.06.006

  42. 42. Massi, P., Solinas, M., Cinquina, V., et al. (2013) Cannabidiol as Potential An-ticancer Drug. British Journal of Clinical Pharmacology, 75, 303-312. https://doi.org/10.1111/j.1365-2125.2012.04298.x

  43. 43. Cuñetti, L., Manzo, L., Peyraube, R., et al. (2018) Chronic Pain Treatment with Cannabidiol in Kidney Transplant Patients in Uruguay. Transplantation Proceedings, 50, 461-464. https://doi.org/10.1016/j.transproceed.2017.12.042

  44. 44. Hunter, D., Oldfield, G., Tich, N., et al. (2018) Synthetic Transdermal Cannabidiol for the Treatment of Knee Pain Due to Osteoarthritis. Osteoarthritis and Cartilage, 26, 26. https://doi.org/10.1016/j.joca.2018.02.067

  45. 45. Silvestri, C., Paris, D., Martella, A., et al. (2015) Two Non-Psychoactive Canna-binoids Reduce Intracellular Lipid Levels and Inhibit Hepatosteatosis. Journal of Hepatology, 62, 1382-1390. https://doi.org/10.1016/j.jhep.2015.01.001

  46. 46. Yang, L.L., Rozenfeld, R., Wu, D.F., et al. (2014) Cannabidiol Protects Liver from Binge Alcohol-Induced Steatosis by Mechanisms Including Inhibition of Oxidative Stress and Increase in Autophagy. Free Radi-cal Biology & Medicine, 68, 260-267. https://doi.org/10.1016/j.freeradbiomed.2013.12.026

  47. 47. 张业亮. 大麻合法化何以在美国蔓延[J]. 世界知识, 2015(3): 35-37.

期刊菜单