﻿ 1.5 μm能见度激光雷达的波长修正模型比较 The Comparison of Wavelength Dependence Models for 1.5 μm Visibility Lidar

Optoelectronics
Vol.06 No.04(2016), Article ID:19354,10 pages
10.12677/OE.2016.64020

The Comparison of Wavelength Dependence Models for 1.5 μm Visibility Lidar

Jingyu Ren1, Xiang Shang2*, Mingjia Shangguan2, Chong Wang2, Jiawei Qiu2, Haiyun Xia2

1Tsinghua University High School, Beijing

2School of Earth and Space Science, University of Science and Technology of China, Hefei Anhui

Received: Dec. 4th, 2016; accepted: Dec. 19th, 2016; published: Dec. 26th, 2016

ABSTRACT

Visibility has a great effect on air pollution monitoring and all kinds of traffic operations. 1.5 μm visibility lidar has many advantages, such as eye-safe, miniaturization and modularity. Therefore 1.5 μm visibility lidar is suitable for crowded places. Visibility is defined as the atmospheric distance of transmission when 550 nm collimated laser’s output power attenuates to 2% or 5%. Thus, when using 1.5 μm visibility lidar, the wavelength correction must be done. Several models have been summarized in this work, and the differences of these models have been analyzed. To have a comparison of these models, a 1.5 μm visibility lidar has been constructed. And a 24-hour continuous visibility observation is carried out in Hefei, Anhui Province in October, 2014. By comparing the data of lidar with the forward visibility meter, the Kim model is confirmed as the most suitable model for visibility measurement in Hefei and the average relative error is less than 7.8%.

Keywords:Visibility, 1.5 μm, Lidar, Wavelength Dependence Model

1.5 μm能见度激光雷达的波长修正模型比较

1清华大学附属中学，北京

2中国科学技术大学地球与空间科学学院，安徽 合肥

1. 引言

2. 能见度测量原理

(1)

(2)

2.1. 斜率法

(3)

(4)

(5)

2.2. Klett反演法

Klett假设后向散射系数与大气消光系数有指数关系：

(6)

(7)

(8)

2.3. Fernald反演法

(9)

(10)

(11)

3. 能见度模式

3.1. Kruse模型

Kruse模型是波长修正的一个经典模型：

(12)

(13)

3.2. Kim模型

Kim在Kruse模型的基础上对能见度较低时的实验数据进行了分析。Kim假设气溶胶粒径分布为修正伽马分布，认为当能见度小于6 km时，q是变量，他提出q值应为：

(14)

3.3. Naboulsi模型

(15)

3.4. Grabner模型

(16)

(17)

(18)

4. 实验结果与分析

Figure 1. Extinction coefficients under different visibilities at 1.5 μm for four models

Figure 2. System layout of the 1.5 μm visibility lidar

Figure 3. Experiment raw data from lidar at four moments

Table 1. Retrieved visibilities of three models and the real value

Figure 4. The comparison of retrieved visibilities from three models

5. 总结与展望

The Comparison of Wavelength Dependence Models for 1.5 μm Visibility Lidar[J]. 光电子, 2016, 06(04): 139-148. http://dx.doi.org/10.12677/OE.2016.64020

1. 1. Wu, D., Bi, X.Y., Deng, X.J., et al. (2007) Effect of Atmospheric Haze on the Deterioration of Visibility over the Pearl River Delta. Acta Meteorologica Sinica, 21, 215. (in Chinese)

2. 2. Xing, X.N., Cui, Y.M., Zhang, F.G., et al. (2010) Summary of Present Situation and Development Trend of Visibility Measurement Technology. Metrology & Measurement Technology, 5, 006. (in Chinese)

3. 3. Xia, H.Y., Shangguan, M.J., Dou, X.K., et al. (2016) Micro-Pulse Upconversion Doppler Lidar for Wind and Visibility Detection in the Atmospheric Boundary Layer. Optics Letters, 41, 5218-5221. https://doi.org/10.1364/OL.41.005218

4. 4. Cheng, X.W., Gong, S.S., Li, F.Q., et al. (2007) 24 h Continuous Observation of Sodium Layer over Wuhan by Lidar. Science in China Series G: Physics, Mechanics and Astronomy, 50, 287-293. (in Chinese) https://doi.org/10.1007/s11433-007-0032-z

5. 5. Wu, T.F., Liang, Z.G., Yan, J.H. (2012) Theoretical Study on Air Dispersion Compensation in the Distance Measurement of Femtosecond Pulsed Laser. Chinese Journal of Lasers, 39, 1208004. (in Chinese) https://doi.org/10.3788/CJL201239.1208004

6. 6. Lu, L.H., Liu, W.Q., Zhang, T.S., et al. (2014) A new Micro-Pulse Lidar for Atmospheric Horizontal Visibility Measurement. Chinese Journal of Lasers, 41, 0908005. (in Chinese) https://doi.org/10.3788/CJL201441.0908005

7. 7. Koschmieder, H. (1925) Theorie der horizontalensichtweite: Kontrast und sichtweite. Keim&Nemnich.

8. 8. Klett, J.D. (1981) Stable Analytical Inversion Solution for Processing Lidar Returns. Applied Optics, 20, 211-220. https://doi.org/10.1364/AO.20.000211

9. 9. Fernald, F.G. (1984) Analysis of Atmospheric Lidar Observations: Some Comments. Applied Optics, 23, 652-653. https://doi.org/10.1364/AO.23.000652

10. 10. Xie, C.B., Han, Y., Li, C., et al. (2005) Mobile Lidar for Visibility Measurement. High Power Laser Part Beams, 17, 971-975.

11. 11. Hua, D. and Song, X. (2008) Advances in Lidar Remote Sensing Techniques. Infrared and Laser Engineering, 38, 21-27. (In Chinese)

12. 12. Shangguan, M., Xia, H., Wang, C., et al. (2016) All-Fiber Upconversion High Spectral Resolution wind Lidar Using a Fabry- Perot Interferometer. Optics Express, 24, 19322-19336. https://doi.org/10.1364/OE.24.019322

13. 13. Kruse, P.W., McGlauchlin, L.D. and McQuistan, R.B. (1962) Elements of Infrared Technology: Generation, Transmission and Detection. Wiley, New York.

14. 14. Kim, I., McArthur, B. and Korevaar, E. (2001) Comparison of Laser Beam Propagation at 785 nm and 1550 nm in Fog and Haze for Optical Wireless Communications. International Society for Optics and Photonics, 26-37. https://doi.org/10.1117/12.417512

15. 15. Al Naboulsi, M. (2004) Fog Attenuation Prediction for Optical and Infrared Waves. Optical Engineering, 43, 319-329. https://doi.org/10.1117/1.1637611

16. 16. Grabner, M. and Kvicera, V. (2011) The Wavelength Dependent Model of Extinction in Fog and Haze for Free Space Optical Communication. Optics Express, 19, 3379-3386. https://doi.org/10.1364/OE.19.003379

17. 17. Claus, W. (2006) Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere Springer, Berlin.

18. 18. Gong, W., Zhang, J., Mao, F., et al. (2010) Measurements for Profiles of Aerosol Extinction Coeffcient, Backscatter Coeffcient, and Lidar Ratio over Wuhan in China with Raman/Mie Lidar. Chinese Optics Letters, 8, 533-536.

19. 19. Sasano, Y. (1996) Tropospheric Aerosol Extinction Coefficient Profiles Derived from Scanning Lidar Measurements over Tsukuba, Japan, from 1990 to 1993. Applied Optics, 35, 4941-4952. https://doi.org/10.1364/AO.35.004941

20. 20. Xia, H., Shentu, G., Shangguan, M., et al. (2015) Long-Range Micro-Pulse Aerosol Lidar at 1.5 μm with an Upconversion Single-Photon Detector. Optics Letters, 40, 1579-1582. https://doi.org/10.1364/OL.40.001579

21. 21. Shentu, G., Pelc, J.S., Wang, X., et al. (2013) Ultralow Noise Up-Conversion Detector and Spectrometer for the Telecom Band. Optics Express, 21, 13986-13991. https://doi.org/10.1364/OE.21.013986

*通讯作者。