﻿ 耦合电网约束的水电系统短期发电调度研究 Study on Short-Term Scheduling of Hydropower System Coupling Grid Constraint

Journal of Water Resources Research
Vol.05 No.03(2016), Article ID:17744,11 pages
10.12677/JWRR.2016.53026

Study on Short-Term Scheduling of Hydropower System Coupling Grid Constraint

Yuechi Zhang1, Chuntian Cheng1, Kang Liu2, Fu Chen1, Benxi Liu1

1Institute of Hydropower System and Hydro Informatics, Dalian University of Technology, Dalian Liaoning

2Changjiang Institute of Survey, Planning, Design and Research, Wuhan Hubei

Received: May 10th, 2016; accepted: May 31st, 2016; published: Jun. 3rd, 2016

ABSTRACT

The power grid is the only way of transmitting hydropower generation, and it will inevitably produce a certain degree of power loss in the transport process. Most previous studies focused on the generation side of maximum power out or generation benefits, without giving adequate attention to the power loss. In this paper, a short-term generation scheduling model coupling with power grid constraints is established, with the objective of maximizing the generation at the receiving end. A DDGA algorithm is proposed to solve the model, which combines the advantages of DDDP and GA. Moreover, based on the multi- core computer platform and Fork/Join parallel framework, a parallel processing method is used to improve the efficiency of solving the method. A case study of Lancang River cascade hydropower system proves that the model and DDGA method can quickly obtain optimal scheduling results, and it can improve the absorptive capacity of hydropower grid effectively. The proposed method is reasonability and practicability.

Keywords:Grid Loss, Short-Term Scheduling, Hydropower System, Parallel

1大连理工大学水电与水信息研究所，辽宁 大连

2长江勘测规划设计研究院，湖北 武汉

1. 引言

2. 耦合电网约束的水电系统调度模型

2.1. 目标函数

(1)

2.2. 约束条件

1) 电站约束。主要分为两个方面，一方面是水力约束，主要包括水量平衡约束、始末水位约束、发电流量约束、水位约束和出库流量约束等。

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

2) 电网约束。主要包括线路损耗约束、线路容量约束、网络损耗约束等。

(11)

(12)

(13)

2.3. 网络损耗处理方法

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

3. 基于并行DDGA的模型求解方法

3.1. 寻优速度改进

DDDP是动态规划的衍生算法，也是一种迭代优化方法，它由基本可行解开始，在基本可行解附近将状态离散化形成“廊道”，在“廊道”内利用动态规划求解，再以新的较优解代替基本可行解进行迭代计算，直到找到最优解为止。DDDP具有减少贮存量和计算时间的优点，为求解高维的水电系统优化调度问题提供了方便。

Figure 1. The relation curve between the power station output and its related electricity

(22)

3.2. 初始解生成策略

1) 根据各电站的日初、日末水位及来水量确定全天可用水量

2) 以水位为状态变量、流量为决策变量，每个时段在之间随机生成流量，那么总流量的期望就是，实际为

3) 计算的差值，均匀分摊给电站的各个时段，使初始解的下泄流量等于可用流量，自动满足流量约束和末水位约束，从而提高初始解的可行性。

3.3. 最优个体保留策略

3.4. 多核并行计算

3.5. 并行DDGA求解流程

DDGA迭代过程中，选择、交叉、变异及适应度函数计算过程都是针对一个或多个个体，且均能分解成并列的多个子任务，符合并行计算的条件。因此，本文对上述四个步骤进行改进，大幅提高了算法求解效率，求解步骤如下：

4. 应用实例

4.1. 基本资料

4.2. 考虑电网约束的水电系统调度结果

Table 1. Calculation parameters for each hydropower plant

(a) (b) (c) (d)

Figure 2. Power curve and loss curve before and after considering the grid constraints

Table 2. Result of output power and transmission losses of stations before and after coupling grid constraints

4.3. 并行DDGA对传统遗传算法收敛性的提高

Figure 3. Convergence of three kinds of mutation methods

Table 3. Multi-core parallel computing speed

5. 结论

Study on Short-Term Scheduling of Hydropower System Coupling Grid Constraint[J]. 水资源研究, 2016, 05(03): 200-210. http://dx.doi.org/10.12677/JWRR.2016.53026

1. 1. 纪昌明, 李继伟, 张新明, 等. 梯级水电站短期发电优化调度的免疫蛙跳算法应用研究[J]. 水力发电学报, 2015, 34(1): 29-36. JI Changming, LI Jiwei, ZHANG Xinming, et al. Application of immune-shuffled frog-leaping algorithm to optimized operation of cascade hydropower stations for short-term power generation. Journal of Hydroelectric Engineering, 2015, 34(1): 29-36. (in Chinese)

2. 2. 申建建, 程春田, 李卫东, 等. 复杂时段耦合型约束水电站群短期变尺度优化调度方法[J]. 中国电机工程学报, 2014, 34(1): 87-95. SHEN Jianjian, CHENG Chuntian, LI Weidong, et al. A mutative-scale optimization method for short-term operation of hy-dropower plants with complex temporal coupling constraints. Proceedings of the CSEE, 2014, 34(1): 87-95. (in Chinese)

3. 3. 贾江涛, 管晓宏, 翟桥柱. 考虑水头影响的梯级水电站群短期优化调度[J]. 电力系统自动化, 2009, 33(13): 13-16. JIA Jiangtao, GUAN Xiaohong and ZHAI Qiaozhu. Short-term optimal scheduling of head-dependent cascaded hydropower stations. Automation of Electric Power Systems, 2009, 33(13): 13-16.

4. 4. 马超. 耦合航运要求的三峡–葛洲坝梯级水电站短期调度快速优化决策[J]. 系统工程理论与实践, 2013, 33(5): 1345- 1350. MA Chao. Fast optimal decision of short-term dispatch of three gorges and Gezhouba cascade hydropower stations with navi-gation demand considered. Systems Engineering Theory & Practice, 2013, 33(5): 1345-1350. (in Chinese)

5. 5. 胡国强. 梯级水电站优化调度模型与算法研究[D]: [博士学位论文]. 北京: 华北电力大学(北京), 2007. HU Guoqiang. Study on optimal scheduling model and algorithm of cascaded hydroelectric power plants. Beijing: North China Electric Power University (Beijing), 2007. (in Chinese)

6. 6. 邹进, 张勇传. 三峡梯级电站短期优化调度的模糊多目标动态规划[J]. 水利学报, 2005, 36(8): 925-931. ZOU Jin, ZHANG Yongchuan. Short-term optimal scheduling of cascade hydropower stations using fuzzy multi-objective dy-namic programming. Journal of Hydraulic Engineering, 2005, 36(8): 925-931. (in Chinese)

7. 7. 申建建, 武新宇, 程春田, 等. 大规模水电站群短期优化调度方法Ⅱ: 高水头多振动区问题[J]. 水利学报, 2011, 42(10): 1168-1176. SHEN Jianjian, WU Xinyu, CHEN Chuntian, et al. Comprehensive approach for classification of river systems and identification of ecological characteristics II. Applications. Journal of Hydraulic Engineering, 2011, 42(10): 1168-1176. (in Chinese)

8. 8. 武新宇, 程春田, 李刚, 等. 水电站群长期典型日调峰电量最大模型研究[J]. 水利学报, 2012, 43(3): 363-371. WU Xinyu, CHENG Chuntian, LI Gang, et al. Research on long term typical day peak load regulation energy maximization model for hydropower systems. Journal of Hydraulic Engineering, 2012, 43(3): 363-371. (in Chinese)

9. 9. 张忠波, 吴学春, 张双虎, 等. 并行动态规划和改进遗传算法在水库调度中的应用[J]. 水力发电学报, 2014, 33(4): 21-27. ZHANG Zhongbo, WU Xuechun, ZHANG Shuanghu, et al. Parallel dynamic programming and improved genetic algorithm and their application to reservoir operation. Journal of Hydroelectric Engineering, 2014, 33(4): 21-27. (in Chinese)

10. 10. 马宁. 水电站短期发电调度实用化模型及应用研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2011. MA Ning. Hydro power station short-term scheduling practical modal and application research. Dalian: Dalian University of Technology, 2011. (in Chinese)

11. 11. 王金文, 刘双全. 短期水电系统发电调度的优化方法综述[J]. 水电能源科学, 2008, 26(6): 137-143. WANG Jinwen, LIU Shuangquan. Optimization techniques in short-term hydropower scheduling: A state-of-art review. Water Resources and Power, 2008, 26(6): 137-143. (in Chinese)

12. 12. 邵军. 一种理论线损计算的电量潮流法[D]: [硕士学位论文]. 大连: 大连理工大学, 2004. SHAO Jun. A power flow method for theoretical calculation of line loss. Dalian: Dalian University of Technology, 2011. (in Chinese)

13. 13. 申学滨. 电力线路损耗分析与计算方法比较[J]. 中国电力教育, 2014(3): 248-249. SHEN Xuebin. Comparison of power line loss analysis and calculation methods. China Electric Power Education, 2014(3): 248-249. (in Chinese)

14. 14. RUDOLPH, G. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 1994, 5(1): 96- 101. http://dx.doi.org/10.1109/72.265964

15. 15. LEA, D. A Java fork/join framework. Proceedings of the ACM 2000 Conference on Java Grande, 2000, 36-43. http://dx.doi.org/10.1145/337449.337465