﻿ 水电站群长期典型日调峰调度方法 Long Term Typical Day Peak Load Regulation Method for Hydropower Station Group

Journal of Water Resources Research
Vol.06 No.03(2017), Article ID:20607,10 pages
10.12677/JWRR.2017.63026

Long Term Typical Day Peak Load Regulation Method for Hydropower Station Group

Lifei Sun1, Jianjian Shen1*, Jun Zhang2

1Institute of Hydropower & Hydroinformatics, Dalian University of Technology, Dalian Liaoning

2Zhejiang Power Dispatching and Control Center, Hangzhou Zhejiang

Received: May 2nd, 2017; accepted: May 20th, 2017; published: May 23rd, 2017

ABSTRACT

The provincial power grid, which is located in the east of our country’s economic load center, is faced with great peak load pressure. In terms of optimization of hydropower’s Long term peak load dispatching, a long-term optimal dispatching model of hydropower station is established, which is based on the maximum benefit of typical daily peak regulation of power network. A Peak regulation preference parameter is also defined. Based on the correlation factor, the relationship between electricity and peak load regulation is constructed in long term hydropower dispatching, and then optimize peak value parameter after trials and analysis, balancing contradictory between the long term power benefit and the typical peak load regulation of power grid. The model uses POA, DDDP, DPSA algorithm to solve the problem. The typical load distribution problem of power network is treated by the successive load shedding algorithm. The results show that the proposed model and method can ensure the long term peak regulation capability of hydropower system under the premise of ensuring that the power consumption is not obvious. The proposed model and method have good practical value.

Keywords:Hydropower Plants, Long Term, Peak Regulation Benefit, Typical Day, Optimal Operation

1大连理工大学水电与水信息研究所，辽宁 大连

2国网浙江电力调度控制中心，浙江 杭州

1. 引言

2. 数学模型

2.1. 目标函数

(1)

(2)

2.2. 约束条件

1) 水量平衡约束：

(3)

(4)

2) 始末水位约束：

(5)

3) 出库流量约束：

(6)

4) 发电流量约束：

(7)

5) 库水位约束：

(8)

6) 电站出力约束：

(9)

7) 泄流设备最大过流能力约束：

(10)

3. 求解方法

3.1. 调峰关系曲线

(11)

(12)

3.2. 典型日电力分配方法

(13)

3.3. 搜索策略及求解步骤

(1) 令迭代次数k = 0，同时以等流量法计算生成模型初始解；

(2) 选择具有中长期调节性能的电站，将其按流域分为N组；

(3) 令t = 1；

(4) 若k > 0；判断是否有电站两阶段水位过程发生变化。若有，则令流量搜索步长，转步骤(5)。若无，则令t = t + 1，若t > T，转步骤(12)，否则重复本步骤；

(5) 令电站组数n = 0，令调峰偏好参数取个固定值

(6) 据式(11)更新典型日剩余负荷各时刻对应的调峰效益系数

(7) 将第n组中各水库两阶段是末水位固定，求解出库流量。离散得到3个出库流量点，数值大小记为。所有的组合共记个状态。对组内电站各状态进行遍历，搜索最优流量过程；以逐次切负荷方法计算电站时段的典型日出力，计算两阶段调峰效益数值，个状态全部计算完成，一次寻优即完毕；

(8) 令n = n + 1，若n < N，重复步骤(7)，否则转步骤(9)；

(9) 重复步骤(5)~(8)，若连续两次寻优结果组内电站水位过程未有改变，则转步骤(10)，否则，重复本步骤；

(10) 令，若符合精度，转步骤(5)；否则，转步骤(11)；

(11) 令t = t + 1，若t > T，则令k = k + 1，转步骤(12)；否则，转步骤(4)；

(12) 若各电站水位过程本轮迭代未有改变，则计算完成；否则，转步骤(3)。

4. 应用实例

4.1. 工程背景

4.2. 多方案调度结果分析

(14)

(15)

Table 1. Basic data table of power stations

Table 2. Comparison of typical daily peak shaving pressure for Zhejiang power grid

Table 3. Multi scheme comparison of evaluation results of scheduling results

4.3. 典型方案与常规方案对比分析

Figure 1. Multi scheme comparison of hydropower system generation in each month

(a) 2月 (b) 10月

Figure 2. Multi scheme comparison of the typical day residual load in February and October

(a) 滩坑水位(b) 滩坑出力 (c) 新安江水位 (d) 新安江出力 (e) 紧水滩水位 (f) 紧水滩出力(g) 珊溪水位 (h) 珊溪出力

Figure 3. Multi scheme comparison of the water level and the average output of the main power stations

5. 结论

1) 所提方法通过合理优化各月电站平均出力过程，在保证水电系统总发电量没有明显损失的前提下，能有效提升水电系统的短期调峰能力，实现长期调度中电量效益与调峰效益的兼顾，为我国调峰压力较大的电网水电调度提供了一种高效可行的技术手段。

2) 所提方法通过试算优选调峰效益偏好参数，可有效避免因调峰造成的电量过度损失，或者各月出力变幅过于显著的不利情况，具有良好的实用性。

Long Term Typical Day Peak Load Regulation Method for Hydropower Station Group[J]. 水资源研究, 2017, 06(03): 221-230. http://dx.doi.org/10.12677/JWRR.2017.63026

1. 1. 温权, 张士军, 张勇传. 葛洲坝隔河岩联合调峰长期优化调度[J]. 华中理工大学学报, 1999, 27(2): 55-57. WEN Quan, ZHANG Shijun and ZHANG Yong. Long term optimal dispatch of Gezhouba Dam river rock combined peak shaving. Journal of Huazhong University of Science and Technology, 1999, 27(2): 55-57. (in Chinese)

2. 2. 李承军, 马寅午. 水电站调峰效益期望模型初探[J]. 水电能源科学, 1997, 15(4): 17-21. Li Chengjun, Ma Yinwu. Primary study on the mathematic model of peak load hydroelectric plant. Water Resources and Power, 1997, 15(4): 17-21. (in Chinese)

3. 3. 何莉, 伍永刚, 张勇传, 等. 梯级水电站短期调峰运行方式研究[J]. 水力发电, 2006, 32(5): 71-73. HE Li, WU Yonggang, ZHANG Yong, et al. Research on the short-term peak load operation mode of cascade hydropower stations. Water Power, 2006, 32(5): 71-73. (in Chinese)

4. 4. 苏学灵, 纪昌明, 黄小锋, 等. 混合式抽水蓄能电站在梯级水电站群中的优化调度[J]. 电力系统自动化, 2010(4): 29-33. SU Xueling, JI Changming, HUANG Xiaofeng, et al. Optimal dispatch of hybrid pumped storage power station in cascade hydropower stations. Automation of Electric Power Systems, 2010, 43(3): 29-33. (in Chinese)

5. 5. 李彬艳. 水电站长期调峰初步研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2007. LI Binyan. Research on long term peak regulation of hydropower station. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)

6. 6. 武新宇, 程春田, 李刚, 等. 水电站群长期典型日调峰电量最大模型研究[J]. 水利学报, 2012, 43(3): 363-371. WU Xinyu, CHENG Chuntian, LI Gang, et al. Long term group typical daily maximum peaking capacity model of hydropower station. Journal of Hydraulic Engineering, 2012, 43(3): 363-371. (in Chinese)

7. 7. 程春田, 申建建, 武新宇, 廖胜利. 大规模复杂水电优化调度系统的实用化求解策略及方法[J]. 水利学报, 2012, 43(7): 785-795, 802. CHENG Chuntian, SHEN Jianjian, WU Xinyu, et al. Practical solution strategies and methods of large-scale complex hydropower system operations. Journal of Hydraulic Engineering, 2012, 43(7): 785-795, 802. (in Chinese)

8. 8. 廖胜利, 程春田, 蔡华祥, 等. 改进的火电调峰方式[J]. 电力系统自动化, 2006, 30(1): 89-93. LIAO Shengli, CHENG Chuntian, CAI Huaxiang, et al. Thermal power peaking improved method. Automation of Electric Power Systems, 2006, 30(1): 89-93. (in Chinese)