﻿ 基于相对温差判据红外成像套管漏油检测技术 Oil Leakage Detection Technology of Casing Based on Relatively Infrared Imaging and Temperature Difference Criterion

Transmission and Distribution Engineering and Technology
Vol. 08  No. 01 ( 2019 ), Article ID: 28773 , 8 pages
10.12677/TDET.2019.81002

Oil Leakage Detection Technology of Casing Based on Relatively Infrared Imaging and Temperature Difference Criterion

You Ding, Zhaojin Sima, Xiufang Yuan, Yuanchao Liu, Lan Zhu, Dan Zheng, Mengli Deng, Chang Li

Yichang Operation and Maintenance Division, State Grid Hubei Electric Power Company Maintenance Company, Wuhan Hubei

Received: Jan. 4th, 2019; accepted: Jan. 26th, 2019; published: Feb. 2nd, 2019

ABSTRACT

During the operation of the transformer bushing, oil leakage often occurs for a variety of reasons. The traditional oil level detection method is inefficient and the accuracy cannot be guaranteed. In order to find out and take corrective measures in time, a temperature difference based on this is proposed. We use the criteria for infrared imaging casing leak detection methods to illustrate. Based on the infrared imaging, combined with the temperature criterion and the casing fault area, this method can accurately determine whether the oil leakage and oil leakage degree, remind the operation and maintenance personnel to find the problem in time and take corresponding measures to ensure the normal operation of the transformer.

Keywords:Casing Oil Leakage, Fault Detection, Infrared Temperature Measurement

1. 引言

1) 主要依靠例行巡检观测发现油渗漏情况；

2) 例行巡检对象多为变压器套管。

2. 基于相对温差判据渗漏油红外检测法

2.1. 红外检测原理

Figure 1. Infrared detection schematic

2.2. 红外检测相对温差判据的方法

2.2.1. 相对温差判断原理

${P}_{j}+{P}_{a}={P}_{h}+{P}_{r}+{P}_{c}$

${P}_{j}\text{=}{I}^{\text{2}}R$

${\tau }_{\text{1}}\text{=}{B}_{1}{R}_{1}{I}_{1}^{k}$

${\tau }_{\text{2}}\text{=}{B}_{\text{2}}{R}_{\text{2}}{I}_{1}^{k}$

${\delta }_{t}=\frac{{\tau }_{1}-{\tau }_{2}}{{\tau }_{1}}×100%=\frac{{B}_{1}{R}_{1}{I}_{1}^{k}-{B}_{2}{R}_{2}{I}_{2}^{k}}{{B}_{1}{R}_{1}{I}_{1}^{k}}$ (1)

(2)

${\delta }_{r}=\frac{{R}_{1}-{R}_{2}}{{R}_{1}}×100%$ (3)

${\delta }_{t}\approx {\delta }_{r}$ (4)

2.2.2. 相对温差特性及判断尺度

DL/T596-1996《电力设备预防性试验规程》(下文中简称为《规程》)中所制定的预防漏油的温差判据，其对应内容如表1所示。

Table 1. Relative temperature difference criterion for current heating type equipment

《规程》中将载流设备故障根据温差范围分为3个等级：一般热故障、重大热故障和紧急热故障。对不同类型设备的重大热故障或紧急热故障的划定是相同的。根据电流制热型设备的相对温差判据，当相对温差值大于80%时认定为重大热故障，此时故障电阻点电阻值相当于正常点电阻值的5倍以上；当相对温差值大于95%时认定为为紧急热故障，此时故障点电阻值超过正常点电阻值的20倍。

2.2.3. 相对温差判断应用

Figure 2. Infrared judgment method

1) 基准图像

Figure 3. Benchmark image analysis

2) 温差判别

3) 温度异常面积

Figure 4. Temperature difference color discrimination legend

Figure 5. Thermal image of 220 kV transformer bushing

3. 基于温差判据红外检测方法应用

Figure 6. Casing oil leakage infrared detection process

Figure 7. 66 kV transformer bushing lack of oil 1

Figure 8. 66 kV transformer bushing lack of oil 2

4. 结论

Oil Leakage Detection Technology of Casing Based on Relatively Infrared Imaging and Temperature Difference Criterion[J]. 输配电工程与技术, 2019, 08(01): 19-26. https://doi.org/10.12677/TDET.2019.81002

1. 1. 陈金法. 电力设备载流部件红外诊断的相对温差判断法[J]. 浙江电力, 2002: 27-29.

2. 2. 徐雪涛. 基于红外成像技术的电气设各故障诊断[D]: [硕士学位论文]. 保定: 华北电力大学, 2014.

3. 3. 张明. 基于红外图像的变电设备分类及在故障诊断中的应用[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2012.

4. 4. 林晋. 基于红外测温技术的设备缺陷诊断方法研究[D]: [硕士学位论文]. 保定: 华北电力大学, 2010: 21-30.