Hans Journal of Civil Engineering
Vol.3 No.04(2014), Article ID:13809,11 pages
DOI:10.12677/HJCE.2014.34014

Rubber Isolation Bearing Element Secondary Development Based on ABAQUS

Hui Wang, Mingsheng Fang, Zuoyu Sun

College of Civil Engineering of Guangzhou University, Guangzhou

Email: 601063037@qq.com, fangms89@163.com, sunzuoyu@163.com

Received: May 26th, 2014; revised: Jun. 20th, 2014; accepted: Jun. 28th, 2014

Rubber isolation technology is an effective means to mitigate the dynamic responses of a building under seismic excitations, now it has been applied widely in engineering, from those lower stiff buildings to some complicated structures, such as large scale irregular stadium, bridges, and even high rise buildings recently. Such trends lead to higher requirements for dynamics response analysis, especially for those larger scale structure, the arisen key problem is how to simulate the nonlinear hysteresis property of the rubber bearing, and incorporate the programs in the finite element analysis. Based on the secondary development platform of ABAQUS, we program for the rubber bearing element, in which, the Bouc-Wen model is employed to describe the hysteresis behavior in lateral, while the strength-differences of vertical stiffness are treated as well. An iregular building is simulated to investigate the effects of base isolation by using the developed program.

Keywords:Rubber Isolation, Non-Linear Hysteresis, ABAQUS, Secondary Development, Simulation

1967年Bouc首先提出了一种光滑迟滞模型[6] ，随后针对结构动力滞回性能的研究，Wen[7] 通过对Bouc提出的模型进行归纳总结，采用光滑的曲线处理了滞回曲线的拐点，使得该模型得到了完善和发展，在当前工程领域中被广泛使用[8] -[12] ，可以较好地模拟铅芯隔震橡胶支座的水平恢复力特性。根据Wen提出的微分滞回模型，结合铅芯橡胶支座的力学特点，其力学模型可由线性弹簧和滞回弹簧组合表示如图1所示，数学表达式如下：

(1)

(2)

3.1. 隔震支座单元力学模型

(3)

Figure 1. The hysteretic curve and sketch maps of Bouc-Wen model

Figure 2. Vertical mechanical properties of rubber isolation bearing

(4)

(5)

e为水平弹性变形，并处于的范围内，它通过对下面微分方程在每个时间步长进行数值积分计算出来：

(6)

(7)

(8)

3.2. 隔震支座子程序开发

(9)

Figure 3. Horizontal mechanical properties of rubber isolation bearing

Figure 4. Sketch of a rubber isolation bearing

Figure 5. DOF of a rubber isolation bearing

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

3.3. UEL单元开发原理与流程

ABAQUS主程序在增量步开始时将节点有关参数和状态变量等值传入UEL子程序中，UEL根据传入参数更新状态变量并将其传入主程序。在每一个分析步中，UEL的作用是向主程序提供作用于节点上的“力” (依赖于节点的自由度)。若自由度为旋转，那么对应的为力矩；若自由度为位移，那么相关的为节点力。其中为残留量，其表达式为：，其中是节点N处的外力(由施加的外部荷载产生)，是节点N出的内力(由内部的应力产生)。在非线性单元中，往往依赖自由度增量和内部状态变量必须在单元子程序中不断更新。

3.4. UEL单元相关参数列表

4.1. 结构概况

Figure 6. Flow chart of UEL

Table 1. Input parameters of rubber bearing

Figure 7. Elevation vertical plan of the structure

Table 2. List of the state vector parameter

4.2. 结构自振特性

4.3. 时程分析

4.3.1. 加速度响应

4.3.2. 位移反应及层间位移角

Table 3. Structural periods before and after isolation

(a) El Centro            (b)Taft

Figure 8.Acceleration envelopes under frequent earthquake

4.3.3. 基底剪力

4.3.4. 扭转响应

(a) El Centro波作用X方向(b) Taft波作用X方向

Figure 9. The largest inter story drifts under rare earthquake

Table 4. Inter story drift ratios in X direction under rare earthquake (1/θ)

Table 5. The biggest displacement of rubber bearing under rare earthquake

Table 6. The maximum base shear under rare earthquake (kN)

Figure 10. Torsional angular displacements of top floor under rare earthquake

4.4. 滞回参数的影响

Figure 11. Torsional angular accelerations of top floor under rare earthquake

(a) (b) (c) (d)

Figure 12.Horizontal resorting force curves of rubber bearing

1) 所开发的模型可以较好地描述橡胶隔震支座的非线性滞回特性；

2) 通过合理地设置模型参数，可以根据需要分析或设计橡胶隔震支座的非线性滞回特性，并对实际工程结构进行地震动力响应分析；

1. [1]  日本建筑学会, 著 (2006) 刘文光, 译. 隔震结构设计. 地震出版社, 北京.

2. [2]  刘文光 (2003) 橡胶隔震支座力学性能及隔震结构的地震反应分析研究. 博士学位论文, 北京工业大学, 北京.

3. [3]  唐家祥, 刘再华 (1993) 建筑结构基础隔震. 华中理工大学出版杜, 武汉.

4. [4]  周福霖 (1997) 工程结构减震控制. 地震出版社, 北京.

5. [5]  Skinner, R.I., Robinson, W.H. and Mcverry, G.H. (1996) An introduction to seismic isolation. Geological Magazine, 133, 631-632.

6. [6]  Bouc, R. (1967) Forced vibration of mechanical systems with hysteresis. Proceedings of Fourth Conference on NonLinear Oscillation, Prague, 5-9 September 1967.

7. [7]  Wen, Y.K. (1986) Stochastic response and damage analysis of inelastic structures. Probabilistic Engineering Mechanics, 1, 49-57.

8. [8]  徐赵东, 沈亚鹏 (2003) 磁流变阻尼器的计算模型及仿真分析. 建筑结构, 1, 68-70.

9. [9]  杨广强, Spencer, B.F., Sain, M.K., 等 (2001) 足尺磁流变阻尼器的建模及动态特性. 地震工程与工程振动, 4, 8-23.

10. [10]  关新春, 欧进萍 (2001) 磁流变耗能器的阻尼力模型及其参数确定. 振动与冲击, 1, 5-8.

11. [11]  黄建文, 赵斌 (2000) 叠层橡胶支座基础隔震建筑的非线性时程分析. 西安科技学院学报, 4, 317-321.

12. [12]  冷小磊, 李军强, 等 (2002) 地震激励下主次结构的非线性隔振与动力吸振分析. 西北工业大学学报, 3, 373-377.