﻿ 单线隧道缓冲结构参数的优化 Optimization of Structural Parameters of the Single-Line Tunnel Entrance Hood

Open Journal of Transportation Technologies
Vol.07 No.03(2018), Article ID:24930,11 pages
10.12677/OJTT.2018.73016

Optimization of Structural Parameters of the Single-Line Tunnel Entrance Hood

Jun Yang, Renxian Li

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu Sichuan

Received: Apr. 26th, 2018; accepted: May 10th, 2018; published: May 17th, 2018

ABSTRACT

The hood, built on high-speed railway tunnel entrance, can reduce pressure pulse effects produced by the train running into tunnels. In order to optimize structural parameters of a single-line tunnel entrance hood, the method of three-dimensional computational fluid dynamics was used to analyze the effects of the length, the sectional area and the opening ratio of an entrance hood on the maximum pressure and the maximum pressure gradient of the initial compression wave in the tunnel. The optimal structural parameters are obtained when the three factors are combined. The results show that the interaction between the length, the sectional area, and the opening area ratio of entrance hood is obvious. The maximum pressure gradient can be reduced effectively when the length is 80 m, the sectional area is 120 m2 and the opening ratio is 40%. Based on this study, the entrance hood with the length of 80 m, the sectional area of 140 m2 and the opening ratio of 20% can effectively reduce the maximum pressure.

Keywords:High-Speed Railway, Entrance Hood of Tunnel, Compression Wave, Numerical Calculation

1. 引言

2. 计算方法与计算模型

3. 单因素计算结果与分析

Figure 1. Computational domain of flow field model

Figure 2. Grid model

Figure 3. Variation of the pressure in the tunnel without hood

(a) (b)

Figure 4. Variation of the pressure and the pressure gradient in the tunnel with hood

Figure 5. Effect of the length of entrance hood

Figure 6. Effect of the opening ratio of entrance hood

4. 多因素计算结果与分析

4.1. 构建模型及检验

(a) (b)

Figure 7. Effect of the sectional area of entrance hood

Table 1. Calculation plan and calculation results

4.2. 各因素对压力梯度值的交互影响

Table 2. Significant test of regression equations

Figure 8. The interaction on pressure gradient of L and S

Figure 9. The interaction on pressure gradient of L and β

Figure 10. The interaction on pressure gradient of S and β

4.3. 各因素对最大正压值的交互影响

Table 3. Statistical analysis of errors in the equation R1

Table 4. Statistical analysis of errors in the equation R2

Figure 11. The interaction on pressure of L and S

Figure 12. The interaction on pressure of L and β

Figure 13. The interaction on pressure of S and β

5. 结论

1) 缓冲结构各参数对压缩波的最大压力梯度值的交互影响十分明显。通过缓冲结构的多参数综合优化得到：缓冲结构的长度为80 m，截面积为120 m2，开孔率为40%时，最大压力梯度值能得到最有效降低。

2) 增加缓冲结构长度和截面积可以有效缓解最大正压值，而隧道开孔不利于降低最大正压值。在本文研究范围内，最大正压最小时所对应的缓冲结构长度为80 m，截面积为140 m2，开孔率为20%。

3) 由于微气压波强度正比于隧道出口处压缩波压力梯度最大值，即微气压波强度主要受压力梯度大小的影响，所以优化缓冲结构参数时主要考虑压力梯度值的变化。综合考虑，本文计算模型所得到的单线隧道最优缓冲结构为：长度为80 m，截面积为120 m2，开孔率为40%。

Optimization of Structural Parameters of the Single-Line Tunnel Entrance Hood[J]. 交通技术, 2018, 07(03): 129-139. https://doi.org/10.12677/OJTT.2018.73016

1. 1. Ozawa, S. (1979) Studies of Micro-Pressure Wave Radiated from a Tunnel Exit. RTRI Report, 1121, 1-92.

2. 2. Yamamoto, A. (1977) Micro-Pressure Wave Radiated from Tunnel Exit. Preprint of Spring Meeting of Physical Society of Japan, Japan.

3. 3. 骆建军, 姬海东. 高速列车进入有缓冲结构隧道的压力变化研究[J]. 铁道学报, 2011, 33(9): 114-118.

4. 4. 骆建军, 王梦恕, 高波, 等. 高速列车进入带缓冲结构隧道的压力变化研究(I) [J]. 空气动力学学报, 2007, 25(4): 488-494.

5. 5. 骆建军, 高波, 王英学. 高速列车突入隧道与缓冲结构时的数值模拟[J]. 空气动力学学报, 2003, 21(3): 376-381.

6. 6. 骆建军, 马伟斌. 高速铁路长隧道内缓冲结构的气动效应分析[J]. 中国铁道科学, 2016, 37(2): 48-55.

7. 7. 王英学, 高波, 赵文成, 等. 缓冲结构对列车突入隧道时的瞬变压力的影响[J]. 铁道工程学报, 2004, 21(1): 94-98.

8. 8. 闫亚光, 杨庆山, 骆建军. 缓冲结构对隧道气动效应减缓效果[J]. 北京交通大学学报, 2013, 37(4): 7-12.

9. 9. Ozawa, S. and Maeda, T. (1988) Tunnel Entrance Hoods for Reduction of Micro-Pressure Wave. Quarterly Report of Railway Technical Research Institutes, 29, 134-139.

10. 10. Vardy, A.E. (1975) Ventilated Approach Regions for Railway Tunnels. Transportation Engineering Journal of the American Society of Civil Engineers, 101, 609-619.

11. 11. 李人宪. 高速列车气动影响[M]. 北京: 中国铁道出版社, 2016.

12. 12. 李人宪. 有限体积法基础(第2版) [M]. 北京: 国防工业出版社, 2008.

13. 13. CD Adapoo Group. User Guide of Star-CD Version 3.22. CD Adapoo Group, London, 403-430.

14. 14. Howe, M.S. (1999) On the Compression Wave Generated When a High-Speed Train Enters a Tunnel with a Flared Portal. Journal of Fluids & Structures, 13, 481-498. https://doi.org/10.1006/jfls.1999.0217

15. 15. 葛宜元. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.

16. 16. 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45.