﻿ 直流内部电感解析式 DC Internal Inductance Analysis Formula

Open Journal of Circuits and Systems
Vol.06 No.04(2017), Article ID:23093,7 pages
10.12677/OJCS.2017.64014

DC Internal Inductance Analysis Formula

Baojun Chen, Yanjie Ju

School of Electronics and Information Engineering, Dalian Jiaotong University, Dalian Liaoning

Received: Nov. 28th, 2017; accepted: Dec. 14th, 2017; published: Dec. 21st, 2017

ABSTRACT

In the super-large-scale integration, the influence of interconnecting wire inductance effect on the circuit performance is increasingly obvious as the clock frequency increases, the signal rise time decreases and the copper technology is adopted. Both the moment method and high-order basis function method are the numerical methods with the advantage of accurate computing result and disadvantage of low computing efficiency. Therefore, the paper proposes a analysis formula of the dc internal and the formula can improve the computing efficiency.

Keywords:Interconnect, Inductance, IC

1. 引言

${L}_{in}=\frac{{\Psi }_{in}}{I}$${L}_{ext}=\frac{{\Psi }_{ext}}{I}$ (1)

$L={L}_{in}+{L}_{ext}$ (2)

${L}_{dc}={L}_{in}+{L}_{ext}$ (3)

Figure 1. Equivalent circuit for skin-effect

${L}_{hf}={L}_{ext}$${L}_{in}=0$ (4)

${L}_{hf}$ 为高频时电感值。该式表明外部电感等于高频率时的电感值。

${L}_{in}={L}_{dc}-{L}_{hf}$ (5)

${L}_{in}=\frac{{\mu }_{0}}{8\text{π}}=5×{10}^{-8}$ (6)

${L}_{in}={10}^{-7}\left[0.3+0.28{\text{e}}^{-0.14\frac{w}{t}}\right]$ (7)

2. 直流内部电感的数值计算结果

Figure 2. The direct inductance of different line

(a) (b) (c) (d)

Figure 3. The inductance of different line

${f}_{high}=1028075\cdot {f}_{b}=1028075\cdot \frac{{\omega }_{b}}{2\text{π}}$ (8)

$\text{error}=100×\left({L}_{in}^{{t}_{x}}-{L}_{in}^{{t}_{0}}\right)/{L}_{in}^{{t}_{0}}$ (9)

3. 直流内部电感计算公式

Figure 4. The internal inductance of different line

Figure 5. The relative error of internal inductance

${L}_{in}^{r}=\frac{1}{a+b{x}^{-1}-c{x}^{-2}+d{x}^{-3}}$ (10)

$b=8.0288×{10}^{5}$$c=-1.6278×{10}^{4}$$d=134.8696$

Figure 6. The error between Formula (10) and MOM

Figure 7. The error of the Formula (13)

$\left({x}_{0},{y}_{0}\right),\cdots ,\left({x}_{k},{y}_{k}\right)$

$L\left(x\right)=\sum _{j=0}^{k}{y}_{j}{l}_{j}\left(x\right)$ (11)

${l}_{j}\left(x\right)=\prod _{i=0,i\ne j}^{k}\frac{x-{x}_{i}}{{x}_{j}-{x}_{i}}=\frac{x-{x}_{0}}{{x}_{j}-{x}_{0}}\cdots \frac{x-{x}_{j-1}}{{x}_{j}-{x}_{j-1}}\frac{x-{x}_{j+1}}{{x}_{j}-{x}_{j+1}}\cdots \frac{x-{x}_{k}}{{x}_{j}-{x}_{k}}$ (12)

${L}_{in}^{l}={h}_{0}-{h}_{1}x+{h}_{2}{x}^{2}-{h}_{3}{x}^{3}+{h}_{4}{x}^{4}-{h}_{5}{x}^{5}+{h}_{6}{x}^{6}$ (13)

4. 结论

DC Internal Inductance Analysis Formula[J]. 电路与系统, 2017, 06(04): 111-117. http://dx.doi.org/10.12677/OJCS.2017.64014

1. 1. Nei, S. and Ismail, Y.I. (2003) Modeling Skin Effect with Reduced Decoupled R-L Circuits Circuits and Systems. International Symposium on Circuits & Systems, 4, 588-591.

2. 2. Choudhury, J. and Seetharaman, G.S. (2003) Accurate Modeling of Thin-Film Inductance for Nano-Chip. Nanotechnology IEEE-NANO Third IEEE Conference on Nanotechnology, 1, 351-355. https://doi.org/10.1109/NANO.2003.1231790

3. 3. Maheshwaril, V. and Lacanial, S. (2011) An Explicit Crosstalk Aware Delay Modeling for on-Chip VLSI RLC Interconnect with Skin Effect. Journal of Electron Devices, 10, 499-505.

4. 4. Mei, S. and Amin, C. (2003) Efficient Model Order Reduction Including Skin Effect. Design Automation Conference, 27, 232-237. https://doi.org/10.1145/775832.775892

5. 5. Huerta, C.J. (2009) A Modified Model for the Self Inductance of Metal Lines on Si. IEEE Mtt-s International Microwave Workshop Series on Signal Integrity & High-speed Interconnects, 111-114. https://doi.org/10.1109/IMWS.2009.4814920

6. 6. Modal, M. and Massoud, Y. (2005) Analytical Modeling of Loop Self Inductance Bound for Inductance-Aware Physical Synthesis. Circuits and Systems, 2, 1721-1724.

7. 7. Chung, K. (2000) Interconnect Analysis and Synthesis. Wiley- Interscience Press, New York.

8. 8. Grover, F. (1962) Inductance Calculations: Working Formulas and Tables. Dover Press, New York.

9. 9. Hoer, C. and Loce, C. (1965) Exact Inductance Equations for Rectangular Conductors with Applications to More Complicated Geometries. Journal of Research of the National Bureau of Standards, 69, 127-137. https://doi.org/10.6028/jres.069C.016

10. 10. Kim, H. Be Careful of Self and Mutual Inductance Formu-lae.

11. 11. Hsiao, Y. (2009) A Physical De-embedding Method for Silicon-based Device Applications. Piers Online, 5, 301-305. https://doi.org/10.2529/PIERS080907133328