﻿ 低温两相流垂直管内间歇泉现象的数值模拟研究 Numerical Investigation of Cryogenic Two-Phase Flow Geysering Phenomenon in Vertical Tube

International Journal of Fluid Dynamics
Vol.02 No.04(2014), Article ID:14794,6 pages
10.12677/IJFD.2014.24007

Numerical Investigation of Cryogenic Two-Phase Flow Geysering Phenomenon in Vertical Tube

Kangjie Sun1*, Shuhua Wang2, Jing Wang1

1School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai

2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai

Email: *sunkangjie@sjtu.edu.cn

Received: Jan. 16th, 2015; accepted: Feb. 1st, 2015; published: Feb. 4th, 2015

ABSTRACT

The geysering phenomenon at different conditions in the vertical pipe is studied by CFD simulation. The results show that the slug bubble changes into the lump bubble and moves to the top level when it moves into the pool. When the bubble overflows the top level, the liquid droplet is splashed, and the liquid level changes periodically. The length characteristics of slug bubble are performed in cryogenic vertical geysering phenomenon. The geysering cannot be occurred when the length of slug bubble is too small. With the length of slug bubble is increased, the intensity of geysers is huger. The pressure frequency and intensity are increased when the number of Taylor bubble is increased.

Keywords:Taylor Bubble, Geysering, Cryogenic, CFD

1上海交通大学机械与动力工程学院，上海

2中国科学院上海应用物理研究所，上海

Email: *sunkangjie@sjtu.edu.cn

1. 引言

2. 数学模型及计算方法

(1)

(2)

VOF法在计算多相流时，只求解单一的动量方程，得到的速度场为各相共享，而各相的体积分数对动量方程的影响是通过属性反映到动量方程中的，如式(3)所示：

(3)

3. 间歇泉数值模拟

4. 结果分析

Figure 1. The boundary conditions of computational domain

5. 结论

1) 弹状气泡由垂直管内进入上部存储罐时，破碎成为团状的大气泡，并沿着储罐中心位置向液面移动，在移动过程中，团状气泡发生破碎，并产生摇摆，最终溢出液面，液面伴随有液滴溅出，且液面高度发生周期性变化。

2) 长径比较小、热流密度很大工况下不会产生间歇泉。

3) 不同长度的弹状气泡对间歇泉有直接影响，当初始弹状气泡长度较小时，弹状气泡进入上部贮罐破碎成一个大的球团状气泡，引起管路底部压力波动较小，即间歇泉的强度小；初始弹状气泡长度较大时，弹状气泡进入上部贮罐破碎成多个大的云团状气泡，引起管路底部压力波动较大，即间歇泉的强度大。

4) 当垂直管内存在多个弹状气泡时，随着管内弹状气泡的增多，压力波动的频率增大，压力值整体

(a) 单个弹状气泡 (b) 2个弹状气泡(c) 4个弹状气泡 (d) 实验结果 [13]

Figure 5. Compare between multiple consecutive slug bubbles simulation results and experimental data

Figure 6. Dynamic pressure signals at the bottom of the tube with different system pressure

Numerical Investigation of Cryogenic Two-Phase Flow Geysering Phenomenon in Vertical Tube. 流体动力学,04,62-68. doi: 10.12677/IJFD.2014.24007

1. 1. Sou, A. and Nakajima, T. (2002) Numerical analysis of geysering, Kruger park. 1st International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics, 4, 8-10.

2. 2. Ring, E. (1964) Rocket propellant and pressurization systems. Prentice-Hall, Englewood Cliffs, 85-101.

3. 3. 张亮, 林文胜, 鲁雪生等 (2002) 低温液体输送系统间歇泉现象机理分析与消除措施. 低温与超导, 2, 1-6.

4. 4. Murphy, D.W. (1965) An experimental investigation of gey-sering in vertical tubes. Advances in Cryogenic Engineer- ing, 10, 353-359.

5. 5. Kuncoro, H., Rao, Y.F. and Fukuda, K. (1995) An experimental study on the mechanism of geysering in a closed two-phase thermosyphon. International Journal of Multiphase Flow, 21, 1243-1252.

6. 6. Fujii, T., Fukuda, H., Kimoto, H., et al. (2003) Control of geyser phenomenon in water column by ultrasonic cavitation. 5th International Symposium on Cavitation (CAV2003), Osaka, 1-4 November 2003, 1-8.

7. 7. Khazaee, I., Hosseini, R. and Noie, S.H. (2010) Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon. Applied Thermal Engineering, 30, 406-412.

8. 8. Diblasi, G.A. (1992) Operationally efficient propulsion system study (OEPSS) data book, Vol IX, NAS10-11568-(Mod.8).

9. 9. Diblasi, G.A. (1992) Operationally efficient propulsion system study (OEPSS) data book, Vol IX, NAS10-11568(Mod.8).

10. 10. Tong, L.S. 著, 王孟浩译 (1980) 沸腾传热和两相流动. 机械工业出版社, 北京.

11. 11. Mikic, B.B., Rohsenow, W.M. and Griffith, P. (1970) On bubble growth rates. International Journal of Heat and Mass Transfer, 13, 657-666.

12. 12. Brackbill, J.U., Kothe, D.B. and Zemach, C. (1992) A continuum method for modeling surface tension. Journal of Computational Physics, 100, 335-354.

13. 13. 王淑华 (2010) 垂直管路中低温两相流间歇泉现象及其动态特性的研究. 博士毕业论文, 上海交通大学, 上海.