Advances in Marine Sciences
Vol.04 No.02(2017), Article ID:20833,6 pages
10.12677/AMS.2017.42008

Research Progress of Virus-Mediated Gene Transfer Technology in Marine Invertebrates

Xuemei Chen1, Xiaotong Shen1, Yan Li1, Huarong Guo1,2*

1Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao Shandong

2Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao Shandong

Received: May 11th, 2017; accepted: May 28th, 2017; published: Jun. 1st, 2017

ABSTRACT

Virus-mediated gene transfer technology can effectively deliver and introduce exogenous genes into the host cells by simulating the infecting and integrating process of virus using a viral vector carrying foreign target gene, one or more packaging plasmids and packaging cells which provide a place and tool to package and produce virions. Up to date, five virus-mediated gene transfer systems have been well-developed including retrovirus, adenovirus, baculovirus, adeno-associated virus and lentivirus. All of them have been widely used in mammalian, bird and insects and only the first three virus systems have been applied in the marine vertebrates. In contrast, only retrovirus and baculovirus systems have been reported in the marine invertebrates. This review has summarized the research progress of retrovirus and baculovirus systems in the marine invertebrates and the future of their applications are also prospected.

Keywords:Marine Invertebrates, Virus Mediated Gene Transfer Technology, Retroviral Vector, Baculoviral Vector

病毒介导的基因转移技术在海洋无脊椎动物中的研究进展

陈学美1,申晓彤1,李炎1,郭华荣1,2*

1中国海洋大学海洋生命学院,海洋遗传育种教育部重点实验室,山东 青岛

2中国海洋大学,进化和海洋生物研究所,山东 青岛

收稿日期:2017年5月11日;录用日期:2017年5月28日;发布日期:2017年6月1日

摘 要

病毒介导的基因转移技术是利用携带外源目的基因的病毒载体、1个或多个包装载体以及包装细胞,模拟病毒的侵染和转移行为,实现将外源目的基因导入宿主细胞的基因转移技术。目前,已建立的比较成熟的病毒基因转移系统包括逆转录病毒、腺病毒、杆状病毒、腺相关病毒和慢病毒系统。这些病毒基因转移系统已在哺乳动物、鸟类和昆虫细胞上得到广泛应用,前三种病毒基因转移系统在海洋脊椎动物鱼类中也已得到很好的应用,而在海洋无脊椎动物中,仅能见到逆转录病毒和杆状病毒基因转移系统的应用报道。本文综述了逆转录病毒和杆状病毒介导的基因转移技术在海洋无脊椎动物中的研究进展,并对其应用前景进行了展望。

关键词 :海洋无脊椎动物,病毒介导的基因转移技术,逆转录病毒载体,杆状病毒载体

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

病毒介导的基因转移技术是利用携带外源目的基因的病毒载体、1个或多个包装载体以及包装细胞,模拟病毒的侵染和转移行为,实现将外源目的基因导入宿主细胞的基因转移技术。病毒的基因组结构简单、易于操作和改造,而且病毒的侵染、转移以及整合的效率都比非病毒介导的基因转移效率高得多,细胞毒性也较小 [1] 。因此,病毒介导的基因转移技术广泛得到科研工作者的青睐。目前,已建立的比较成熟的病毒基因转移系统包括逆转录病毒(Retrovirus)、腺病毒(Adenovirus)、杆状病毒(Baculovirus)、腺相关病毒(Adeno-associated virus, AAV)和慢病毒(Lentivirus)系统 [2] [3] 。这些病毒基因转移系统已在哺乳动物、鸟类和昆虫细胞上得到广泛应用 [4] [5] [6] ,前三种病毒基因转移系统在海洋脊椎动物鱼类中也已得到很好的应用上 [7] - [15] ,而在海洋无脊椎动物中,仅能见到逆转录病毒和杆状病毒基因转移系统的应用报道。本文综述了这两种病毒基因转移系统在海洋无脊椎动物中的应用概况,并对其研究前景进行了展望。

2. 逆转录病毒基因转移系统在海洋无脊椎动物中的研究进展

目前,基于小鼠白血病病毒(MLV)的逆转录病毒基因转移系统已成为在哺乳动物细胞中表达外源基因的强有力工具 [16] 。该系统的逆转录病毒载体由1个转移载体和1个或多个包装载体组成,其中,转移载体上一般含有病毒的包装信号Ψ、5’和3’LTR(长末端重复序列)和多克隆酶切位点(用于插入外源目的基因);包装载体则由编码病毒衣壳蛋白的gag基因、编码病毒复制酶类(包括逆转录酶和整合酶)的pol基因以及编码病毒囊膜蛋白的env基因构成 [17] 。病毒的囊膜蛋白决定了病毒侵染的宿主范围,目前,根据逆转录病毒基因转移系统的亲嗜性,可分为4种:① 单嗜性(Ecotropic),囊膜蛋白为env(gap70),只能感染老鼠细胞;② 双嗜性(Dualtropic),囊膜蛋白采用鼠白血病病毒的囊膜蛋白4070A,能同时感染老鼠和人的细胞;③ 多嗜性(Amphotropic),囊膜蛋白采用鼠白血病病毒的囊膜蛋白10A1,既能感染老鼠和人的细胞,也能感染其它哺乳动物细胞;④ 泛嗜性(Pantropic),囊膜蛋白采用水泡性口炎病毒G蛋白(VSVG),它侵染宿主细胞时,不是与细胞膜上的受体结合,而是直接与脂质结合,然后穿过细胞膜进入宿主细胞,从而扩大了其宿主范围,既能感染哺乳动物细胞,也能感染鱼类等非哺乳动物细胞 [18] [19] [20] 。

Burns et al. (1993)最早构建了泛嗜性逆转录病毒基因转移系统 [21] ,Lin et al. (1994)最早将逆转录病毒基因转移系统应用到低等脊椎动物—鱼类中,他们将逆转录包装病毒注射到斑马鱼囊胚中,并在8尾注射后胚胎发育而成的斑马鱼中检测到了逆转录病毒基因的感染和整合 [7] 。Kurita et al. (2003)将逆转录病毒感染斑马鱼原代培养生殖细胞,并将其继续培养12天后进行体外受精,获得了转基因斑马鱼后代 [8] 。Liu et al. (2015)报道了逆转录病毒成功感染青鳉鱼和斑马鱼胚胎干细胞的结果,并在感染后青鳉鱼和斑马鱼胚胎干细胞中观察到了明显的荧光信号,感染效率可达11%~23% [9] 。但是,逆转录病毒基因转移系统在海洋无脊椎动物中的应用仅见于软体动物侏儒蛤和太平洋牡蛎以及节肢动物对虾中。Lu et al. (1996)最早利用泛嗜性的逆转录病毒结合电穿孔技术将逆转录病毒导入侏儒蛤(Mulinia lateralis)胚胎中,在成体中检测到了13%~33%的阳性率 [22] 。Boulo et al. (2000)将泛嗜性的逆转录病毒基因转移系统感染太平洋牡蛎(Crassostrea gigas)的原代培养胚胎细胞,在基因组水平上检测到了0.1%~0.5%的感染效率,但没有检测外源基因是否整合到培养细胞的基因组中 [23] 。

与软体动物动物相比,逆转录病毒基因转移系统在节肢动物对虾中的应用研究要多一些。Shike et al. (2000)年最早将携带lacZ报告基因的逆转录包装病毒感染蓝对虾(Penaeus stylirostris)的Oka器官和卵巢的原代培养细胞,成功检测到了lacZ的表达。该研究还比较了4种启动子:鼠白血病病毒启动子(MLV)、劳氏肉瘤病毒启动子(RSV)、昆虫早期基因IE1和热激蛋白Hsp70的启动子活性,发现MLV和RSV启动子的活性最好 [24] 。Hu et al. (2008)利用泛嗜性逆转录病毒载体(pLXRN-SV40T)将SV40T基因导入到中国对虾(P. chinensis)Oka器官原代培养细胞中,并在mRNA水平上检测到了SV40T基因的表达 [25] 。Han et al. (2015)则发现泛嗜性逆转录病毒基因转移系统(pMxs-c-Myc)不能成功感染对虾Oka器官原代培养细胞,在基因组水平和mRNA水平上都不能检测到基因的导入和表达 [26] 。Pu et al. (2017)对商业化的泛嗜性逆转录病毒基因转移系统(pMCs-GFP)进行了改造,将对虾白斑综合征病毒(WSSV)的两个主要囊膜蛋白VP19和VP28引入该病毒基因转移系统中,结果表明改造后的逆转录病毒可以感染Oka器官原代培养细胞,并且检测到了报告基因eGFP的表达,表明WSSV囊膜蛋白VP19和VP28的引入明显提高了该逆转录病毒系统在对虾原代培养细胞中的侵染能力 [27] 。

3. 杆状病毒基因转移系统在海洋无脊椎动物中的研究进展

杆状病毒基因表达系统(Baculovirus expression vector system,简称BEVS),是一种基于昆虫杆状病毒而建立起来的高效的病毒介导基因转移系统,已被广泛应用于昆虫细胞的重组蛋白表达和亚单位疫苗的开发等 [28] [29] 。纹夜蛾核多角体病毒(Autographa californica multiple nucleopolyhedrovirus, AcMNPV)是一类双链环状DNA病毒,只能够感染鳞翅目及其亚属,而不能在其他无脊椎或脊椎动物中复制,基于该病毒所建立的杆状病毒基因转移系统是目前研究和应用最为广泛的 [30] [31] [32] 。杆状病毒基因转移系统一般由2部分组成:一是可以插入外源目的基因的供体质粒(donor vector);二是含有穿梭质粒(bacmid)和辅助质粒(helper plasmid,编码转座酶)的DH10BacTM大肠杆菌。使用时,需要先将外源目的基因构建到供体质粒上,然后转化到DH10BacTM大肠杆菌中。大肠杆菌细胞中的穿梭质粒含有转座酶识别位点(mini-attTn7),当携带有外源基因的供体质粒被转化到DH10BacTM细胞中时,其上的外源基因可被辅助质粒所表达的转座酶转座到穿梭质粒上,从而构建得到含有外源基因的穿梭质粒。然后再将该重组穿梭质粒转染昆虫细胞sf9或sf21,最终包装出重组杆状病毒颗粒,用于感染靶细胞 [33] 。目前,已经开发出了多种商品化的昆虫杆状病毒表达系统,例如:BD公司的BaculoGold System和Invitrogen公司的Bac- to-Bac System、Baculo Direct和Pro Easy (AB vector)等,并成功用于人、鸡、鱼、果蝇和蜜蜂等多种真核生物细胞的转基因研究 [10] [11] [12] [13] 、 [34] [35] [36] [37] 。

杆状病毒基因转移系统在鱼类中的研究较多,系统也相对比较成熟。目前,杆状病毒系统已成功感染多种鱼类细胞类型,包括:斑马鱼胚胎(ZEM-2s)、罗非鱼卵巢(TO)、鲤鱼上皮细胞(EPC)、大马哈鱼心脏成纤维细胞(CHH-1)、鲑鱼胚胎细胞(CHSE-214)、青鳉鱼胚胎干细胞(MES1)、鲶鱼卵巢细胞(CCO)、草鱼肾脏细胞(CIK)、黑头呆鱼肌肉细胞(FHM)和虹鳟鱼性腺细胞(RTG-2)等 [10] [11] [12] [13] 。该系统在鱼类细胞中的感染效率较高,在EPC和FHM细胞中的感染效率可达100%,而在CHSE-214、CIK、CCO和RTG-2细胞中的感染效率也分别达到了75.97%、70.95%、50.02%和32.18% [13] 。

与鱼类相比,杆状病毒在海洋无脊椎动物中的研究报道很少,仅见于对虾中。Lu et al. (2005)在探索白斑综合征病毒(WSSV)启动子的功能时,构建了分别含有WSSV Proie1-512和Pro427启动子的重组杆状病毒(vAc-Proie1-EGFP和vAc-Pro427-EGFP),并对斑节对虾(P. monodon) Oka器官原代培养细胞进行了感染,结果表明,带有Proie1-512启动子的重组杆状病毒感染原代培养细胞后,利用抗GFP的单克隆抗体成功检测到了绿色荧光蛋白的表达,且效率在5%左右,并通过Western blotting检测到了GFP基因在昆虫卵巢细胞sf9和对虾Oka器官原代培养细胞中的的蛋白表达 [38] 。Musthaq et al. (2009)利用杆状病毒基因转移系统成功将WSSV囊膜蛋白基因vp28导入到健康的斑节对虾的鳃、肌肉和眼睑,检测到了绿色荧光蛋白GFP的表达。疫苗接种实验表明,转vp28基因对虾的抗WSSV感染能力明显提高了 [39] 。最近,Shi et al. (2016)将不同长度的凡纳滨对虾β-actin基因启动子(SbaP)分别取代杆状病毒载体中原有的Polh启动子,然后分析其在8种不同动物细胞中的驱动活性,最终筛选出驱动活性最好的启动子SbaP (ENX),发现其在昆虫细胞和凡纳滨对虾活体中的启动子活性均显著高于对虾白斑综合征病毒早期基因1 (immediate early gene 1, ie1)启动子。将所构建的Bac-SbaP (ENX)-RFP重组杆状病毒感染凡纳滨对虾(Litopenaeus vannamei)体外培养血淋巴细胞,在添加丁酸钠的情况下,感染效率不高,低于1%。将Bac-SbaP (ENX)-RFP重组杆状病毒感染凡纳滨对虾活体,在对虾多个组织中也检测到了红色荧光蛋白基因(RFP)的整合与转录表达 [40] [41] 。Puthumana et al. (2016)将对虾WSSV病毒ie1启动子和对虾传染性皮下及造血组织坏死病毒(IHHNV)的P2启动子分别插入杆状病毒表达载体的PH启动子后面,构建了双启动子PH-ie1或PH-P2驱动的杆状病毒表达载体,而且发现所包装的杆状病毒可以成功感染斑节对虾多种组织器官及其体外培养原代细胞,但感染效率只有20%~30% [42] 。

4. 前景与展望

已有的研究报道结果表明,将哺乳动物病毒和昆虫病毒来源的基因转移系统如逆转录病毒和杆状病毒应用到海洋无脊椎动物中仍然存在很大的问题。首先是亲嗜性问题,目前市场上的逆转录病毒基因转移系统都是建立在哺乳动物病毒基础上的,而哺乳动物与对虾的亲缘关系较远,导致其在对虾细胞中的亲嗜性很低,是可以想象得到的;杆状病毒基因转移系统是建立在昆虫杆状病毒基础上的,虽然昆虫与对虾都属于节肢动物,亲缘关系相对较近,但是仍然不能有效感染对虾细胞,必须在杆状病毒载体中引入对虾或对虾病毒来源启动子,才能成功感染对虾细胞,但是感染效率远低于昆虫细胞。其次,体外培养对虾细胞的分裂极其不活跃,这可能是导致逆转录病毒和杆状病毒系统在对虾细胞中感染效率很低的另一重要原因。今后,只有建立起基于对虾病毒的基因转移系统,才能真正促进病毒介导的基因转移系统在海洋无脊椎动物细胞中的广泛应用。

基金项目

国家自然科学基金项目(31472274和31172391);863项目(2012AA10A402);海洋经济创新发展示范项目(12PYY001SF08)。

文章引用

陈学美,申晓彤,李 炎,郭华荣. 病毒介导的基因转移技术在海洋无脊椎动物中的研究进展
Research Progress of Virus-Mediated Gene Transfer Technology in Marine Invertebrates[J]. 海洋科学前沿, 2017, 04(02): 55-60. http://dx.doi.org/10.12677/AMS.2017.42008

参考文献 (References)

  1. 1. Zhang, X. and Godbey, W.T. (2006) Viral Vectors for Gene Delivery in Tissue Engineering. Advanced Drug Delivery Reviews, 58, 515-534. https://doi.org/10.1016/j.addr.2006.03.006

  2. 2. Walther, W. and Stein, U. (2000) Viral Vectors for Gene Transfer. Drugs, 60, 249-271. https://doi.org/10.2165/00003495-200060020-00002

  3. 3. Kay, M.A., Glorioso, J.C. and Naldini, L. (2001) Viral Vectors for Gene Therapy: The Art of Turning Infectious Agents into Vehicles of Therapeutics. Nature Medicine, 7, 33-40. https://doi.org/10.1038/83324

  4. 4. Kost, T.A. and Condreay, J.P. (2002) Recombinant Baculoviruses as Mammalian Cell Gene-Delivery Vectors. Trends in Biotechnology, 20, 173-180. https://doi.org/10.1016/S0167-7799(01)01911-4

  5. 5. Kost, T.A., Condreay, J.P. and Jarvis, D.L. (2005) Bacu-lovirus as Versatile Vectors for Protein Expression in Insect and Mammalian Cells. Nature biotechnology, 23, 567-575. https://doi.org/10.1038/nbt1095

  6. 6. Becker, T.C., Noel, R.J., Coats, W.S., et al. (1994) Use of Recombinant Adenovirus for Metabolic Engineering of Mammalian Cells. Methods in Cell Biology, 43, 161-189. https://doi.org/10.1016/S0091-679X(08)60603-2

  7. 7. Lin, S., Gaiano, N., Culp, P., et al. (1994) Integration and Germ-Line Transmission of a Pseudotyped Retroviral Vector in Zebrafish. Science-New York Then Washington-, 265, 666-666. https://doi.org/10.1126/science.8036514

  8. 8. Kurita, K., Burgess, S.M. and Sakai, N. (2004) Transgenic Zebrafish Produced by Retroviral Infection of in Vitro-Cultured Sperm. Proceedings of the National Academy of Sciences of the United States of America, 101, 1263- 1267. https://doi.org/10.1073/pnas.0304265101

  9. 9. Liu, Q., Wang, Y., Lin, F., et al. (2015) Gene Transfer and Genome-Wide Insertional Mutagenesis by Retroviral Transduction in Fish Stem Cells. PloS one, 10, e0127961. https://doi.org/10.1371/journal.pone.0127961

  10. 10. Wagle, M. and Jesuthasan, S. (2003) Baculovirus-Mediated Gene Expression in Zebrafish. Marine Biotechnology, 5, 58-63. https://doi.org/10.1007/s10126-002-0050-9

  11. 11. Leisy, D.J., Lewis, T.D., Leong, J.A.C., et al. (2003) Transduc-tion of Cultured Fish Cells with Recombinant Baculoviruses. Journal of General Virology, 84, 1173-1178. https://doi.org/10.1099/vir.0.18861-0

  12. 12. Yan, Y., Du, J., Chen, T., et al. (2009) Establishment of Medakafish as a Model for Stem Cell-Based Gene Therapy: Efficient Gene Delivery and Potential Chromosomal Integration by Bac-uloviral Vectors. Experimental Cell Research, 315, 2322-2331.

  13. 13. Huang, F., Cao, S., Cui, X., et al. (2011) Efficient Gene Delivery into Fish Cells by an Improved Recombinant Baculovirus. Journal of Virological Methods, 173, 294-299.

  14. 14. Kawasaki, T., Saito, K., Mitsui, K., et al. (2009) Introduction of a Foreign Gene into Zebrafish and Medaka Cells Using Adenoviral Vectors. Zebrafish, 6, 253-258. https://doi.org/10.1089/zeb.2009.0596

  15. 15. Suehiro, Y., Kinoshita, M., Okuyama, T., et al. (2010) Transient and Permanent Gene Transfer into the Brain of the Teleost Fish Medaka (Oryzias latipes) Using Human Adenovirus and the Cre-loxP System. FEBS Letters, 584, 3545-3549. https://doi.org/10.1016/j.febslet.2010.06.047

  16. 16. Koo, B.C., Kwon, M.S., Kim, D., et al. (2016) Production of Germline Transgenic Chickens Expressing High Levels of Recom-binant hEPO Using a MoMLV-Based Retrovirus Vector. The 16th International Symposium on Developmental Bio-technology, October 2016, 164-164.

  17. 17. Heilbronn, R. and Weger, S. (2010) Viral Vectors for Gene Transfer: Current Status of Gene Therapeutics. In: Schäfer- Korting, M., Ed., Drug Delivery, Springer, Berlin, Heidelberg, 143-170. https://doi.org/10.1007/978-3-642-00477-3_5

  18. 18. 许建, 李世崇, 陈昭烈. 逆转录病毒表达系统及其在外源蛋白高效表达中的应用[J]. 中国生物工程杂志, 2008, 28(5): 116-121.

  19. 19. Whittaker, G.R. and Helenius, A. (1998) Nuclear Import and Export of Viruses and Virus Genomes. Virology, 246, 1-23.

  20. 20. 张杰, 王彦刈, 吕磊, 郁建平. 单嗜性包装细胞包装逆转录病毒方法研究[J]. 贵州大学学报(自然科学版), 2015, 32(3): 28-31.

  21. 21. Burns, J.C., Friedmann, T., Driever, W., et al. (1993) Vesicular Stomatitis Virus G Glycoprotein Pseudotyped Retroviral Vectors: Concentration to Very High Titer and Efficient Gene Transfer into Mammalian and Nonmammalian Cells. Proceedings of the National Academy of Sciences of the United States of America, 90, 8033-8037. https://doi.org/10.1073/pnas.90.17.8033

  22. 22. Lu, J.K., Chen, T.T., Allen, S.K., et al. (1996) Production of Transgenic Dwarf Surfclams, Mulinia lateralis, with Pantropic Retroviral Vectors. Proceedings of the National Academy of Sciences of the United States of America, 93, 3482- 3486. https://doi.org/10.1073/pnas.93.8.3482

  23. 23. Boulo, V., Cadoret, J.P., Shike, H., et al. (2000) Of Cultured Embryo Cells of the Pacific Oyster, Crassostrea gigas, by Pantropic Retroviral Vectors. In Vitro Cellular & Developmental Biology-Animal, 36, 395-399. https://doi.org/10.1290/1071-2690(2000)036<0395:IOCECO>2.0.CO;2

  24. 24. Shike, H., Shimizu, C., Klimpel, K.S., et al. (2000) Expression of Foreign Genes in Primary Cultured Cells of the Blue Shrimp Penaeus stylirostris. Marine Biology, 137, 605-611. https://doi.org/10.1007/s002270000381

  25. 25. Hu, G.B., Wang, D., Wang, C.H., et al. (2008) A Novel Immortalization Vector for the Establishment of Penaeid Shrimp Cell Lines. In Vitro Cellular & Developmental Biology-Animal, 44, 51-56. https://doi.org/10.1007/s11626-007-9076-7

  26. 26. Han, Q., Dong, D., Zhang, X., et al. (2015) Problems with the Use of Liposome- and Retrovirus-Mediated Gene Transfer Methods in the Primary Lymphoid Cells of the Oka Organs of the Greasyback Shrimp, Metapenaeus ensis (De Haan, 1844). Crustaceana, 88, 1351-1365. https://doi.org/10.1163/15685403-00003498

  27. 27. Pu, L., Wang, J., Zhang, X., et al. (2017) Development of Pseudotyped Retroviral System for Effective Gene Transfer and Expression in Penaeid Shrimp Cells. Aquaculture, 467, 198-210.

  28. 28. Du, H., Xu, Z., Wu, X., et al. (2006) Increased Resistance to White Spot Syndrome Virus in Procambarus clarkii by Injection of Envelope Protein VP28 Expressed Using Recombinant Baculovirus. Aquaculture, 260, 39-43.

  29. 29. Xu, Z., Du, H., Xu, Y., et al. (2006) Crayfish Procambarus clarkii Protected against White Spot Syndrome Virus by Oral Administration of Viral Proteins Expressed in Silkworms. Aquaculture, 253, 179-183.

  30. 30. Madhan, S., Prabakaran, M. and Kwang, J. (2010) Baculovirus as Vaccine Vectors. Current Gene Therapy, 10, 201- 213. https://doi.org/10.2174/156652310791321233

  31. 31. Gao, H., Wang, Y., Li, N., et al. (2007) Efficient Gene Delivery into Mammalian Cells Mediated by a Recombinant Baculovirus Containing a Whispovirus ie1 Promoter, a Novel Shuttle Promoter between Insect Cells and Mammalian Cells. Journal of Biotechnology, 131, 138-143.

  32. 32. Lin, S.Y., Chung, Y.C. and Hu, Y.C. (2014) Update on Baculovirus as an Expression and/or Delivery Vehicle for Vaccine Antigens. Expert Review of Vaccines, 13, 1501-1521. https://doi.org/10.1586/14760584.2014.951637

  33. 33. Barry, G.F. (1988) A Broad-Host-Range Shuttle System for Gene Insertion into the Chromosomes of Gram-Negative Bacteria. Gene, 71, 75-84.

  34. 34. Hofmann, C., Sandig, V., Jennings, G., et al. (1995) Efficient Gene Transfer into Human Hepatocytes by Baculovirus Vectors. Proceedings of the National Academy of Sciences of the United States of America, 92, 10099-10103. https://doi.org/10.1073/pnas.92.22.10099

  35. 35. Ping, W., Ge, J., Li, S., et al. (2006) Baculovirus-Mediated Gene Expression in Chicken Primary Cells. Avian Diseases, 50, 59-63. https://doi.org/10.1637/7418-080705R.1

  36. 36. Lee, D.F., Chen, C.C., Hsu, T.A., et al. (2000) A Baculovirus Superinfection System: Efficient Vehicle for Gene Transfer into Drosophila S2 Cells. Journal of Virology, 74, 11873-11880. https://doi.org/10.1128/JVI.74.24.11873-11880.2000

  37. 37. Ando, T., Fujiyuki, T., Kawashima, T., et al. (2007) In Vivo Gene Transfer into the Honeybee Using a Nucleopolyhedron Virus Vector. Biochemical and Biophysical Research Communications, 352, 335-340.

  38. 38. Lu, L., Wang, H., Manopo, I., et al. (2005) Baculovirus-Mediated Promoter Assay and Transcriptional Analysis of White Spot Syndrome Virus orf427 Gene. Virology Journal, 2, 71. https://doi.org/10.1186/1743-422X-2-71

  39. 39. Musthaq, S.S., Madhan, S., Hameed, A.S., et al. (2009) Localization of VP28 on the Baculovirus Envelope and Its Immunogenicity against White Spot Syndrome Virus in Penaeus monodon. Virology, 391, 315-324. https://doi.org/10.1016/j.virol.2009.06.017

  40. 40. 史英力. 以凡纳滨对虾β-actin基因启动子为元件的重组昆虫杆状病毒表达系统的建立[D]: [博士学位论文]. 青岛: 中国科学院研究生院(海洋研究所), 2016.

  41. 41. Shi, Y., Xiang, J., Zhou, G., et al. (2016) The Pacific White Shrimp β-Actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus. Marine Biotechnology, 18, 349-358. https://doi.org/10.1007/s10126-016-9700-1

  42. 42. Puthumana, J., Philip, R. and Singh, I.B. (2016) Transgene Expression in Penaeus monodon Cells: Evaluation of Recombinant Baculoviral Vectors with Shrimp Specific Hybrid Promoters. Cytotechnology, 68, 1147-1159. https://doi.org/10.1007/s10616-015-9872-y.

期刊菜单