Advances in Marine Sciences
Vol. 07  No. 02 ( 2020 ), Article ID: 35588 , 6 pages
10.12677/AMS.2020.72005

Advances in the Application of Insect Baculovirus-Mediated Gene Transfer and Expression System in Marine Animals

Mengxi Wu1, Huarong Guo2*

1Key Laboratory of Marine Genetics and Breeding, Ministry of Education, and College of Marine Life Sciences, Ocean University of China, Qingdao Shandong

2Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao Shandong

Received: Apr. 19th, 2020; accepted: May 8th, 2020; published: May 15th, 2020

ABSTRACT

Baculovirus-mediated gene transfer and expression system was designed to effectively deliver the foreign genes into the target cells by the translocation of Tn7 transposon, the packaging of insect cells and infection of the recombinant baculovirus, with the merits of biological safety, high expression level and post-translational modification of the recombinant proteins. Thus, the baculovirus-mediated gene transfer and expression system has been widely used in the mammalians, birds, insects and freshwater fishes, but rarely in the marine animals. This review has summarized and prospected the applications of the above-mentioned gene transfer and expression technology in the marine vertebrates and invertebrates.

Keywords:Baculovirus-Mediated Gene Transfer and Expression System, Marine Vertebrates, Marine Invertebrates

昆虫杆状病毒基因转移与表达系统在海洋动物中的应用进展

毋梦茜1,郭华荣2*

1中国海洋大学,海洋生命学院,海洋生物遗传学与育种教育部重点实验室,山东 青岛

2中国海洋大学,海洋生物多样性与进化研究所,山东 青岛

收稿日期:2020年4月19日;录用日期:2020年5月8日;发布日期:2020年5月15日

摘 要

昆虫杆状病毒介导的基因转移与表达系统是基于Tn7转座酶的转座原理而设计的一种基因转移与表达技术,因其安全性能好、重组蛋白表达量高和表达产物可进行翻译后加工等优点,目前已在哺乳动物、鸟类、昆虫与淡水鱼类等动物中得到广泛应用,但是其在海洋动物中的应用还不多。本文对昆虫杆状病毒介导的基因转移与表达技术在海洋脊椎和无脊椎动物中的应用进行了综述与展望。

关键词 :昆虫杆状病毒基因转移与表达系统,海洋脊椎动物,海洋无脊椎动物

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

昆虫杆状病毒(Baculovirus)又称为多角体病毒,是一种节肢动物病毒,主要宿主为鳞翅目、双翅目和膜翅目昆虫。感染杆状病毒的昆虫出现厌食与不喜运动的特点,虫体组织于染毒4~5天完全溶解,表皮完整且易破裂,染毒1~2周内虫体死亡,该病毒不能在哺乳动物体内进行感染和复制。昆虫杆状病毒的生活周期中出现两种不同形态的病毒粒子,即芽生型病毒粒子(Budded virion, BV)和包埋型病毒粒子(Occlusion-derived virion, ODV),这两类病毒体具有相同的核衣壳结构与遗传信息 [1] [2] [3]。在昆虫细胞内感染的病毒粒子为芽生型病毒粒子,而在昆虫细胞与细胞之间进行传播的病毒粒子为包埋型病毒粒子。昆虫杆状病毒是一种双链环状DNA病毒,其基因组较为庞大(80~160 kb),能够编码产生150多种蛋白 [4] [5] [6]。1983年,Smith等将人β-干扰素基因(β-Interferon, β-IFN)克隆至重组杆状病毒的多角体蛋白基因PH (polyhedron)的启动子下游,在体外培养的昆虫细胞内成功表达了重组蛋白β-IFN,标志着昆虫杆状病毒表达载体系统的诞生 [7] [8]。1993年,Kitts等在昆虫杆状病毒的非必须基因ORF603与必须基因ORF1929之间各引入了一个杆状病毒基因组中不存在的Bsu36 I位点,获得了重组杆状病毒BacPAK6,推动了重组杆状病毒技术的发展 [9]。同年,随着细菌人工染色体(Bacterial Artificial Chromosome, BAC)技术的发展,Luckow等(1993)根据F因子载体的构建原理,将F因子复制子、细菌Tn7转座位点attTn7、卡那霉素抗性基因引入昆虫杆状病毒载体质粒中,构建了杆状病毒穿梭质粒Bacmid,从而发明了Bac-to-Bac重组杆状病毒基因转移与表达系统,大大简化了重组杆状病毒的构建过程 [10] [11]。

目前,商品化的昆虫杆状病毒表达系统已陆续发展起来,其中以Invitrogen公司的Bac-to-Bac 表达系统与BD公司的BaculoGold表达系统的应用最为广泛。商业化的昆虫杆状病毒也已成功应用于肿瘤治疗、疫苗研究与农业病害防控等方面。王浩等(2011)比较了甲型H1N1病毒血凝素蛋白(HA)在上述两种昆虫杆状病毒表达系统中的表达效率,发现Invitrogen公司的Bac-to-Bac表达系统的表达效率更高 [12]。本文对昆虫杆状病毒介导的基因转移技术在海洋动物中的应用进展进行了综述,并对其研究前景进行了展望。

2. 昆虫杆状病毒介导的基因转移与表达系统简介

昆虫杆状病毒基因转移与表达系统由昆虫杆状病毒供体质粒pFastBac1、大肠杆菌感受态细胞DH10Bac和昆虫包装细胞三部分组成。其中,供体质粒又称转移质粒,用于引入外源基因,含有Tn7转座子的左右两个识别元件:Tn7R和Tn7L,这两个识别元件之间构建有庆大霉素基因(Gentamicin)、苜蓿银纹夜蛾核多角体病毒(Autographa californica multiple nucleopolyhedrovirus, AcMNPV) 多角体蛋白基因启动子PH或P10及其之后的多克隆酶切位点(MCS)。外源基因首先被克隆到供体质粒的MCS,然后携带外源基因的供体质粒被转化到大肠杆菌感受态细胞DH10Bac中。在感受态细胞DH10Bac中,已转化有杆状病毒Bacmid质粒和编码转座酶的Helper质粒,因而在Helper质粒所编码的转座酶的作用下,供体质粒pFastBac1上的两个识别元件之间的序列被转座到Bacmid质粒上的识别位点attTn7。Bacmid质粒中含有miniF复制子和attTn7识别位点,其中,miniF复制子的作用是驱动Bacmid质粒在大肠杆菌中复制,而attTn7识别位点则位于Bacmid质粒中的LacZ基因内部。pFastBac1上的两个识别元件之间的序列的插入,会破坏LacZ (β-半乳糖苷酶)基因的表达,因而可通过蓝白斑筛选的方法,筛选出含有Bacmid重组质粒的菌株,从而实现在大肠杆菌细胞中构建并扩增Bacmid重组质粒的目的。之后,利用脂质体转染技术,将Bacmid重组质粒的DNA转染到昆虫包装细胞中,进行病毒的包装、纯化和浓缩以及病毒滴度的测定。将包装病毒感染靶细胞,则外源基因即可在多角体蛋白启动子PH或P10的驱动下,在宿主细胞中过表达。其中,应用最广泛的包装细胞系为Sf21及其衍生细胞系Sf9,来源于草地贪夜蛾的卵巢细胞。Bac-to-Bac昆虫杆状病毒表达系统所采用的包装细胞就是Sf21或Sf9细胞系。Wickham等(1992)报道,粉蚊夜蛾(Trichoplusia ni)的胚胎细胞系BTI-TN-5B1-4也能够用于包装重组昆虫杆状病毒,并生产出大量的外源蛋白 [13] [14] [15]。目前,重组昆虫杆状病毒表达系统已成功应用于人、鱼、果蝇、蜜蜂、鸡和鱼等的基因转移研究,被誉为最有希望的基因转移技术 [16] - [23]。

3. 昆虫杆状病毒基因转移与表达系统在海洋脊椎动物中的研究进展

昆虫杆状病毒基因转移与表达系统在淡水脊椎动物如斑马鱼、罗非鱼和鲤鱼等鱼类中的应用较为广泛 [16] [24] [25] [26] [27],而在海洋脊椎动物的研究较少。Leisy等(2003)构建了细胞肥大病毒(CMV)增强子和鸡肌动蛋白启动子驱动的lacZ报告基因的重组昆虫杆状病毒,并成功在鲑鱼心脏成纤维细胞系(CHH-1)中检测到LacZ报告基因的表达 [17]。Satone等(2013)构建了牙鲆三丁基锡结合蛋白基因(TBT-bps)的重组杆状病毒,并在家蚕中成功表达了重组蛋白rTBT-bp2,并分析了其结合三丁基锡的能力 [28]。Liu等(2013)利用家蚕杆状病毒表达系统成功表达了条纹斑竹鲨的鲨肝活性肽(APSL)并应用于小鼠中,发现其能够显著降低链脲佐菌素诱导的2型糖尿病模型小鼠的血糖水平,并阐明了APSL作为口服药物在糖尿病治疗中的作用(P < 0.05) [29]。Hwang等(2004)克隆病构建了牙鲆穿孔素基因(perforin)的重组杆状病毒质粒,并通过脂质体转染的方法在昆虫细胞中成功表达、纯化和浓缩得到了牙鲆穿孔素蛋白,并对其氨基酸序列及重组蛋白的活性进行分析,为进一步了解鱼类穿孔素蛋白裂解血细胞的机制奠定了基础 [30]。

4. 昆虫杆状病毒基因转移与表达系统在海洋无脊椎动物中的研究进展

与昆虫相比,昆虫杆状病毒介导的基因转移与表达系统在海洋无脊椎动物中的应用则很少,仅限于对虾、海兔与桡足类动物。在体外培养对虾细胞的应用中,Puthuman等(2015) 构建了12型腺病毒早期区域基因1A (12SE1A)的重组杆状病毒BacP2-12SE1A-GFP,并将其感染斑节对虾(Penaeus monodon)的原代培养血淋巴细胞,在感染14天后的血淋巴细胞中检测到癌基因12SE1A的表达,但没有成功诱导对虾血淋巴细胞的永生性转化 [31]。在对虾活体的应用中,Musthaq等(2009)构建了对虾白斑综合征病毒(WSSV)早期基因1 (Ie1)启动子驱动的VP28囊膜蛋白基因昆虫杆状病毒,采用肌肉注射的方式感染对虾成体,成功在对虾组织中表达了VP28囊膜蛋白,提高了染毒对虾对WSSV病毒的抗性 [32]。Puthumana等(2015)对Bac-to-Bac重组杆状病毒表达系统进行了改造,以绿色荧光蛋白GFP为报告基因,分别将对虾WSSV病毒的Ie1启动子和对虾传染性皮下及造血组织坏死病毒(IHHNV)的P2启动子插入至杆状病毒供体质粒的昆虫多角体蛋白基因启动子(PH)的下游,构建了PH-Ie1与PH-P2两种双启动子杆状病毒系统,并应用于斑节对虾成体的研究中。结果表明,未经改造的仅含有PH启动子的重组杆状病毒不能有效感染斑节对虾成体组织,且对虾成体各组织中均未检测到GFP荧光信号,而改造后的重组杆状病毒能够感染对虾成体,但表达效率仅有20% [33]。随后,Shi等(2016)将昆虫杆状病毒表达系统的供体质粒pFastBac1中的多角体蛋白基因启动子(PH)切除,以凡纳滨对虾(Litopenaeus vannamei)的β-actin启动子:SbaP (ENX)替换PH启动子,以红色荧光蛋白基因RFP为报告基因,制备了SbaP (ENX)启动子驱动的RFP基因重组杆状病毒:Bacmid-SbaP (ENX)-RFP,在添加丁酸钠的条件下,以肌肉注射的方式感染凡纳滨对虾成体,在染毒2天的对虾多个组织中包括鳃、附肢、肝胰腺、血淋巴和肌肉组织可以检测到杆状病毒DNA,但是RFP报告基因的mRNA表达仅在肌肉和肝胰腺中能够检测到,而且存在着时空上的组织特异性。其中,在肌肉组织中,染毒后1~7天都能检测到RFP的转录表达,但是肝胰腺中的表达仅能在前3天中检测到 [34]。Citarasu等(2019)构建了罗氏沼虾(Macrobrachium rosenbergii)野田村病毒(MrNV)衣壳蛋白基因的重组杆状病毒,在昆虫细胞内表达并纯化得到了重组MrNV衣壳蛋白,并分析了其在罗氏沼虾中的抗病毒作用。结果表明,口服90 ± 10 mg MrNV衣壳蛋白的罗氏沼虾幼虾在感染MrNV病毒后第30天和60天分别具有65%和80%的存活率,而未口服MrNV衣壳蛋白的罗氏沼虾在染毒后的死亡率为100%,说明杆状病毒表达的MrNV衣壳蛋白可显著提高对罗氏沼虾幼虾抵抗MrNV病毒感染的能力 [35]。

昆虫杆状病毒基因转移与表达系统应用于其他海洋无脊椎动物的研究报道很少,仅停留在利用上述表达系统在昆虫细胞中异源表达海洋无脊椎动物来源基因的水平上。Lin等(2014)利用Bac-to-Bac杆状病毒表达系统,在昆虫Sf9细胞中成功表达了海兔乙酰胆碱结合蛋白(Ac-AChBP),并分析了AChBP蛋白的结构与功能 [36]。Larionova等(2018)利用昆虫杆状病毒表达系统,在昆虫细胞内表达了海洋桡足类动物分泌的高斯荧光素酶(Gaussia Luciferase, GpLuc),并分析了高斯荧光素酶的生物发光特性和结构特征 [37]。

5. 前景与展望

昆虫杆状病毒基因转移与表达系统具有容纳大片段、表达量高、筛选阳性克隆耗时短的优点,是理想的基因转移与表达系统。但是,昆虫杆状病毒基因转移与表达系统在海洋动物成体及其体外培养细胞中的表达效率仍然很低,这可能与该表达系统所用的启动子等元件均来源于昆虫,不适用于海洋动物有关,也可能与体外培养的对虾细胞不分裂有关。因此,通过添加海洋无脊椎动物如对虾的启动子与转录元件,对昆虫杆状病毒基因转移与表达系统进行改造的尝试,可以明显提高上述昆虫杆状病毒介导的基因转移与表达系统在对虾中的感染与表达效率 [33] [34]。但是,在上述对昆虫杆状病毒基因转移与表达系统的改造研究中,对虾和对虾病毒来源地启动子成分的引入,一定程度上影响了外源基因在昆虫包装细胞中的表达。我们实验室最近通过引入对虾病毒囊膜蛋白,显著提高了上述昆虫杆状病毒表达系统对对虾细胞的亲嗜性,从而提高了其在对虾成体组织中的感染效率,为促进昆虫杆状病毒基因转移与表达系统在海洋动物中的广泛应用奠定了基础。当然,由于对虾病毒的研究基础最好,所以可以预期的是,未来将最新构建对虾病毒介导的基因转移与表达系统,从而最终在对虾活体及其体外培养细胞中实现基因的高效转移与表达。

基金项目

国家重点研发计划“蓝色粮仓科技创新”专项(2018YFD0901301),中央高校基本科研业务费项目(201822018)。

文章引用

毋梦茜,郭华荣. 昆虫杆状病毒基因转移与表达系统在海洋动物中的应用进展
Advances in the Application of Insect Baculovirus-Mediated Gene Transfer and Expression System in Marine Animals[J]. 海洋科学前沿, 2020, 07(02): 31-36. https://doi.org/10.12677/AMS.2020.72005

参考文献

  1. 1. 朱士茂, 李慧. 杆状病毒包埋型病毒粒子研究进展[J]. 病毒学报, 2016, 32(1): 93-100. https://doi.org/10.7858/eamj.2016.010

  2. 2. Blissard, G.W. (1996) Baculovirus-Insect Cell Interactions. Cytotechnology, 20, 73-93. https://doi.org/10.1007/BF00350390

  3. 3. Faulkner, P. (1981) Baculovirus. In: Davidson, E.W., Ed., Pathogenesis of Invertebrate Microbial Diseases, Allanheld, Osmun, Totowa, NJ, 3-33.

  4. 4. Volkman, L.E., Blissard, G.W., Friesen, P., Keddie, B.A., Possee, R. and Theilmann, D.A. (1995) Virus Taxonomy. In: Sixth Report of the International Committe on Taxonomy of Viruses, Springer-Verlag, Wien, 104.

  5. 5. Ayres, M.D., Howard, S.C., Kuzio, J., Lopez-Ferber, M. and Possee, R.D. (1994) The Complete DNA Sequence of Autographa Californica Nuclear Polyhedrosis Virus. Virology, 202, 586. https://doi.org/10.1006/viro.1994.1380

  6. 6. Ahrens, C.H., Russell R., Funk, C.J., Evans, J.T., Harwood, S.H. and Rohrmann, G.F. (1997) The Sequence of the Orgyia pseudotsugata Multinucleocapsid Nuclear Polyhedrosis Virus Genome. Virology, 229, 381. https://doi.org/10.1006/viro.1997.8448

  7. 7. Smith, G.E., Summers, M.D. and Fraser, M.J. (1983) Production of Human Beta Interferon in Insect Cells Infected with a Baculovirus Expression Vector. Molecular and Cell Biology, 3, 2156-2165. https://doi.org/10.1128/MCB.3.12.2156

  8. 8. 于永利. 昆虫杆状病毒表达载体系统与疫苗研制的30年回顾[J]. 微生物学免疫学进展, 2015, 43(4): 1-15. https://doi.org/10.7748/ns.30.15.43.s50

  9. 9. Kitts, P.A. and Possee, R.D. (1993) A Method for Producing Recombinant Baculovirus Expression Vectors at High Frequency. Biotechniques, 14, 810-817.

  10. 10. Luckow, V.A., Lee, C.S., Barry, G.F. and Olins, P.O. (1993) Efficient Generation of Infectious Recombinant Baculoviruses by Site-Specific Transposon-Mediated Insertion of Foreign Genes into a Baculovirus Genome Propagated in Escherichia coli. Journal of Virology, 67, 4566-4579. https://doi.org/10.1128/JVI.67.8.4566-4579.1993

  11. 11. Ciccarone, V.C., Polayes, D. and Luckow, V.A. (1997) Genera-tion of Recombinant Baculovirus DNA in E. coli Using Baculovirus Shuttle Vector. In: Reischt, U., Ed., Methods in Molecular Medicine, Humana Press Inc., Totowa, 13.

  12. 12. 王浩, 马驰, 崔莲仙, 巴德年, 何维. 利用两种真核昆虫表达系统表达可溶性甲型H1N1血凝素蛋白[J]. 中华微生物学和免疫学杂志, 2011, 31(4): 345-349. https://doi.org/10.1016/j.nedt.2010.07.003

  13. 13. Vaughn, J.L., Goodwin, R.H., Thompkins, G.J. and McCawley, P. (1977) The Establishment of Two Insect Cell Lines from the Insect Spodoptera frugiperda (Lepidoptera: Noctuidae). InVitro, 13, 213. https://doi.org/10.1007/BF02615077

  14. 14. Summers, M.D. and Smith, G.E. (1987) A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures. Texas Agricultural Experiment Station Bulletin, No. 1555.

  15. 15. Wickham, T.J., Davis, T., Granados, R.R., Shuler, M.L. and Wood, H.A. (1992) Screening of Insect Cell Lines for the Production of Recombinant Proteins and Infectious Virus in the Baculovirus Expression System. Biotechnology Program, 8, 391. https://doi.org/10.1021/bp00017a003

  16. 16. Wagle, M. and Jesuthasan, S. (2003) Baculovirus-Mediated Gene Expression in Zebrafish. Marine Biotechnology, 5, 58-63. https://doi.org/10.1007/s10126-002-0050-9

  17. 17. Leisy, D.J., Lewis, T.D., Leong, J.A.C. and Rohrmann, G.F. (2003) Transduction of Cultured Fish Cells with Recombinant Baculoviruses. Journal of General Virology, 84, 1173-1178. https://doi.org/10.1099/vir.0.18861-0

  18. 18. Yan, Y., Du, J., Chen, T., Yi, M., Li, M., Wang, S., Li, C.M. and Hong Y. (2009) Establishment of Medakafish as a Model for Stem Cell-Based Gene Therapy: Efficient Gene Delivery and Potential Chromosomal Integration by Baculoviral Vectors. Experimental Cell Research, 315, 2322-2331. https://doi.org/10.1016/j.yexcr.2009.04.015

  19. 19. Huang, F., Cao, S., Cui, X., Xiong, C., Wang, M., Lu, Y., Wang, W., Ye, J. and Liu, X. (2011) Efficient Gene Delivery into Fish Cells by an Improved Recombinant Baculovirus. Journal of Virological Methods, 173, 294-299. https://doi.org/10.1016/j.jviromet.2011.02.022

  20. 20. Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P. and Strauss, M. (1995) Efficient Gene Transfer into Human Hepatocytes by Baculovirus Vectors. Proceedings of the National Academy of Sciences of the United States of America, 92, 10099-10103. https://doi.org/10.1073/pnas.92.22.10099

  21. 21. Ping, W., Ge, J., Li, S., Zhou, H., Wang, K., Feng, Y. and Lou, Z. (2006) Baculovirus-Mediated Gene Expression in Chicken Primary Cells. Avian Diseases, 50, 59-63. https://doi.org/10.1637/7418-080705R.1

  22. 22. Lee, D.F., Chen, C.C., Hsu, T.A. and Juang, J.L. (2000) A Baculovirus Superinfection System: Efficient Vehicle for Gene Transfer into Drosophila S2 Cells. Journal of Virology, 74, 11873-11880. https://doi.org/10.1128/JVI.74.24.11873-11880.2000

  23. 23. Ando, T., Fujiyuki, T., Kawashima, T., Morioka, M., Kubo, T. and Fujiwara, H. (2007) In Vivo Gene Transfer into the Honeybee Using a Nucleopolyhedrovirus Vector. Biochemical and Biophysical Research Communications, 352, 335-340. https://doi.org/10.1016/j.bbrc.2006.11.020

  24. 24. Keiter, S., Burkhardt-Medicke, K., Wellner, P., Kais, B., Färber, H., Skutlarek, D., Engwall, M., Braunbeck, T., Keiter, S.H. and Luck-enbach, T. (2016) Does Perfluorooctane Sulfonate (PFOS) Act as Chemosensitizer in Zebrafish Embryos? Science of the Total Environment, 548-549, 317-324. https://doi.org/10.1016/j.scitotenv.2015.12.089

  25. 25. Cunha, V., Burkhardt-Medicke, K., Wellner, P., Santos, M.M., Moradas-Ferreira, P., Luckenbach, T. and Ferreira, M. (2017) Effects of Pharmaceuticals and Personal Care Products (PPCPs) on Multixenobiotic Resistance (MXR) Related Efflux Transporter Activity in Zebrafish (Danio rerio) Embryos. Ecotoxicology and Environmental Safety, 136, 14-23. https://doi.org/10.1016/j.ecoenv.2016.10.022

  26. 26. Fischer, S., Klüver, N., Burkhardt-Medicke, K., Pietsch, M., Schmidt, A.M., Wellner, P., Schirmer K. and Luckenbach, T. (2013) Abcb4 Acts as Multixenobiotic Transporter and Active Barrier against Chemical Uptake in Zebrafish (Danio rerio) Embryos. BMC Biology, 11, 69. https://doi.org/10.1186/1741-7007-11-69

  27. 27. Lassen, N.,Estey, T., Tanguay, R.L., Pappa, A., Reimers, M.J. and Vasi-liou, V. (2005) Molecular Cloning, Baculovirus Expression, and Tissue Distribution of the Zebrafish Aldehyde Dehydrogenase 2. Drug Metabolism and Disposition, 33, 649-659. https://doi.org/10.1124/dmd.104.002964

  28. 28. Satone, H., Akahoshi, E., Nakamura, A., Lee, J.M., Honda, M., Shimasaki, Y., Kawabata, S., Kusakabe, T. and Oshima, Y. (2013) Expression and Functional Characterization of Recombinant Tributyltin-Binding Protein Type 2. The Journal of Toxicological Sciences, 38, 885-890. https://doi.org/10.2131/jts.38.885

  29. 29. Liu, Y., Chen, Y., Chen, J., Zhang, W., Sheng, Q., Chen, J., Yu, W., Nie, Z., Zhang, Y., Wu, W., Wang, L., Indran, I.R., Li, J., Qian, L. and Lv, Z. (2013) A Shark Liver Gene-Derived Active Peptide Expressed in the Silkworm, Bombyx mori: Preliminary Studies for Oral Administration of the Recombinant Protein. Marine Drugs, 11, 1492-1505. https://doi.org/10.3390/md11051492

  30. 30. Hwang, J., Ohira, T., Hirono, I. and Aoki, T. (2004) A Pore-Forming Protein, Perforin, from a Non-Mammalian Organism, Japanese Flounder, Paralichthys olivaceus. Immunogenetics, 56, 360-367. https://doi.org/10.1007/s00251-004-0688-8

  31. 31. Puthumana, J., Prabhakaran, P., Philip, R. and Bright-Singh, I.S. (2015) Attempts on Producing Lymphoid Cell Line from Penaeus monodon by Induction with SV40-T and 12S EIA Oncogenes. Fish Shellfish Immunology, 47, 655-663. https://doi.org/10.1016/j.fsi.2015.08.010

  32. 32. Musthaq, S.S., Madhan, S., Sahul-Hameed, A.S. and Kwang, J. (2009) Localization of VP28 on the Baculovirus Envelope and Its Immunogenicity against White Spot Syndrome Virus in Penaeus monodon. Virology, 391, 315-324. https://doi.org/10.1016/j.virol.2009.06.017

  33. 33. Puthumana, J., Philip, R. and Bright-Singh, I.S. (2015) Transgene Ex-pression in Penaeus monodon Cells: Evaluation of Recombinant Baculoviral Vectors with Shrimp Specific Hybrid Promoters. Cytotechnology, 68, 1147-1159. https://doi.org/10.1007/s10616-015-9872-y

  34. 34. Shi, Y., Xiang, J., Zhou, G., Ron, T.B, Tong, H.I., Kang, W., Sun, S. and Lu, Y. (2016) The Pacific White Shrimp β-Actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus. Marine Biotechnology, 18, 349-358. https://doi.org/10.1007/s10126-016-9700-1

  35. 35. Citarasu, T., Lelin, C., Babu, M.M., Anand, S.B., Nathan, A.A. and Vakharia, V.N. (2019) Oral Vaccination of Macrobrachium Rosenbergii with Baculovirus-Expressed M. rosenbergii Noda-virus (MrNV) Capsid Protein Induces Protective Immunity against MrNV Challenge. Fish Shellfish Immunology, 86, 1123-1129. https://doi.org/10.1016/j.fsi.2018.12.010

  36. 36. Lin, B., Meng, H., Bing, H., Zhangsun, D. and Luo, S. (2014) Efficient Expression of Acetylcholine-Binding Protein fromAplysia californicain Bac-to-Bac System. BioMed Research International, 2014, 1-9. https://doi.org/10.1155/2014/691480

  37. 37. Larionova, M.D., Markova, S.V. and Vysotski, E.S. (2018) Bioluminescent and Structural Features of Native Folded Gaussia Luciferase. Journal of Photochemistry and Photobiology B, Biology, 183, 309-317. https://doi.org/10.1016/j.jphotobiol.2018.04.050

  38. NOTES

    *通讯作者。

期刊菜单