Journal of Organic Chemistry Research
Vol. 11  No. 04 ( 2023 ), Article ID: 77342 , 15 pages
10.12677/JOCR.2023.114015

近年来N-卤代试剂在芳烃卤化反应中的 研究进展

黄媛媛,王楠,訾由*

南通大学,化学化工学院,江苏 南通

收稿日期:2023年8月21日;录用日期:2023年12月4日;发布日期:2023年12月15日

摘要

芳烃化合物的直接卤代反应是有机反应中最基础也是应用最广的反应类型之一,而得到的芳烃卤化物在有机合成领域中也有着多样化的应用,比如芳烃卤化物能够参与到金属催化的偶联反应中从而合成一系列药物分子、天然产物、材料化合物以及有机半导体化合物等;同时芳烃卤化物也是有机金属试剂的重要前体;此外,芳烃的直接高效的卤代反应也是发现新型药物分子、调节药物分子性质的有效手段之一。因此,芳烃卤化物的合成也显得更加重要。本文主要综述了近年来利用N-卤代试剂对芳烃化合物进行卤化反应的研究进展。

关键词

芳烃化合物,卤代反应,N-卤代试剂,芳烃卤化物

Recent Research Progress of Aromatic Halogenations with N-X Reagents

Yuanyuan Huang, Nan Wang, You Zi*

School of Chemistry and Chemical Engineering, Nantong University, Nantong Jiangsu

Received: Aug. 21st, 2023; accepted: Dec. 4th, 2023; published: Dec. 15th, 2023

ABSTRACT

Direct halogenation of aromatic compounds is one of the most fundamental and widely utilized reactions. The obtained aryl halides possess versatile applications in organic synthesis. For instance, they can participate in metal-catalyzed coupling reactions, leading to the synthesis of various molecules such as drugs, natural products, material compounds, and organic semiconductor compounds. Aromatic halogenated compounds also play an important role as precursors to organometallic reagents. In addition, direct and efficient halogenation of aromatics is one method to discover novel drug molecules and adjust their medicinal properties. Consequently, the synthesis of aromatic halogenated compounds has become of greater importance. This article primarily summarizes the recent advancements in the halogenation of aromatic compounds using N-halogenating reagents.

Keywords:Aromatic Compounds, Halogenation, N-Halogen Reagents, Aryl Halides

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

芳烃卤化物广泛存在于药物以及天然产物分子中,同时在材料领域以及生命科学领域也有着重要的应用 [1] [2] 。随着近几十年金属催化偶联反应的发展,芳烃卤化物作为关键的偶联试剂,在有机合成领域也占据着越来越重要的角色,同时芳烃卤化物也可以作为有机金属试剂的前体以及自由基前体参与到合成反应中,因此,芳烃卤化物的合成也吸引了越来越多的关注,许多芳烃的卤代反应也被逐渐开发出来。

虽然传统的亲电卤代反应具有一定的实用价值,但是需要使用有毒的卤素单质,而且反应条件苛刻,这在一定程度上限制了其应用 [3] [4] [5] ,也使得大家把目光转向了更加温和而且廉价易得的卤代试剂,即N-卤代丁二酰亚胺(NXS)及其衍生物(图1) [6] [7] 。

Figure 1. N-halogen reagents

图1. N-卤代试剂

2. 金属催化

Au催化剂在有机合成中的应用一直是一个热门的研究 [8] [9] [10] ,因为Au能够对芳烃的C-H键进行高效的活化 [11] [12] ,而AuCl3作为Lewis酸在一定程度上也能够活化NXS的羰基 [13] [14] ,因此,Wang课题组希望通过芳烃C-H键以及NXS的同时双活化作用,实现芳烃的卤代反应。他们以此为出发点,开发了一种利用AuCl3作为催化剂的芳烃高效溴代方法(图2) [15] ,只需要1 mol%的催化剂用量就能够以基本当量的产率得到目标芳烃溴化物,而且对于富电子芳烃,催化剂用量可以进一步降低,反应也能够在温和的室温下进行。由于反应的高效性,串联的溴化–偶联反应也能够很好地进行。最后,这种以AuCl3为催化剂的反应也可以扩展到使用NCS和NIS进行氯代和碘代反应。该方法打破以往的通过酸的络合或质子化作用活化NXS的羰基氧原子以增强卤代过程反应性方法,通过对芳环和NXS的双重活化增强反应活性,并取得了优异的反应效果。

Figure 2. AuCl3 catalyzed synthesis of aryl bromides

图2. AuCl3催化的芳烃溴化物的合成

Figure 3. In(OTf)3 catalyzed synthesis of aryl iodides

图3. In(OTf)3催化的芳烃碘化物的合成

考虑到芳烃碘化物在金属催化偶联反应中的重要作用 [16] 以及碘代的天然产物在生物领域的应用 [17] ,Romo等人将目光投向了芳烃的碘代反应。虽然NIS可以在三氟乙酸等强酸催化下实现芳烃的碘代,但是需要较高的温度,而且强酸的条件与天然产物不相容,因此,他们利用In(OTf)3作为催化剂,NIS作为卤代试剂,开发了芳烃化合物室温下的碘代反应(图3)并应用到了自然产物的官能化反应中 [18] ,反应条件温和,反应产率优异,在随后的金属催化Sonogashira、Suzuki、Stille以及Heck偶联反应中也有很好的表现。此外,作者将此方法引入到了天然产物的修饰中,展示了芳烃与天然产物及其衍生物的结构活性关系,有助于确定新型天然产物未知的作用方式以及结构活性关系研究。

介孔分子筛是一种多功能催化剂或催化剂基底,因为介孔分子筛具有热稳定性、强酸性、高比表面积和大孔容等特点,而这些特性对催化反应非常有利 [19] [20] 。2012年,Huang等人利用以介孔分子筛为基底的Ag纳米催化剂实现了芳烃的选择性溴代反应(图4) [21] ,对于具有活泼质子的苯酚以及苯胺类化合物也能够实现优异溴代反应,而且催化剂可以循环使用,对绿色可持续化学的发展具有重要的价值。此外,该类型的Ag纳米催化剂对芳烃化合物的活化机制因为芳烃参与的其它类型反应提供了可行的方向。

Au配合物因其独特的亲碳特性,已经成为构筑新型碳–杂键的强大工具 [22] [23] [24] 。Frontier课题组基于Au催化剂的亲氧性特性开发了一种芳烃碘代的新颖而又高效的方法,他们利用Ph3PAuNTf2实现了温和条件下芳烃的卤代反应(图4) [25] ,反应具有良好的普适性,不同的官能团在反应条件下能够被很好地容忍,包括羧酸、酯、酰胺、酮和醛等,反应都能够很好地进行。在反应条件下能够合成多卤代芳烃,从而通过交叉偶联策略进一步得到官能化芳烃化合物。

Figure 4. Nano-Ag catalyst and Au-complex catalyzed synthesis of aryl halides

图4. 纳米Ag催化剂以及Au复合物催化的芳烃卤化物的合成

虽然Au等贵金属可以高效地实现芳烃的卤代反应,但是这类催化剂昂贵的价格以及毒性使得它们的应用受到了一定的限制 [26] [27] ,因此,人们将目光投向了廉价且低毒的过渡金属,如Fe、Co以及Ni等 [28] [29] 。2015年,Sutherland等人利用廉价无毒的FeCl3作为催化剂,对芳烃化合物进行了碘代反应 [30] ,该条件对低活性的缺电子芳烃也有很好的效果(图5)。在该反应中,三氟甲基磺酰胺离子液体对反应具有明显的促进作用,并且能够简单回收。与当时已报道的金属催化方法相比,该方法能够在较低温度下实现更快的反应效率,对活性较低的化合物也能够成功碘代。

虽然该方法具有一定的优势,但是还存在一些缺陷,比如活性高的芳烃容易发生双碘代反应,这也影响了单碘代目标产物的产率。因此,Sutherland等人将目光转移到更软性的金属上,从而调节NIS的活化程度,实现高活性芳烃的选择性单碘代反应。基于此,他们利用软性且低电荷的AgNTf2作为催化剂,在一定程度上调节了NIS的活化程度,实现了芳烃的选择性单碘代反应 [31] ,反应表现出了优异的碘代效果(图5)。此外,该方法被成功应用到了一系列重要医药成像试剂以及[125I]标记化合物的合成中,并以高收率得到了目标产物,这也证明了该方法的实用性。

Figure 5. Fe and Ag catalyzed synthesis of aryl halides

图5. Fe和Ag催化的芳烃卤化物的合成

相较于NBS以及NIS,NCS具有更低的活性,因此,如何活化NCS并将其应用到芳烃的氯代反应中一直是人们研究的课题。基于前期的工作,Sutherland利用廉价无毒的FeCl3作为催化剂,三氟甲基磺酰胺离子液体作为促进剂,开发了一种高选择性的芳烃氯代方法 [32] ,得到了一系列的芳烃氯化物(图5)。他们将该方法成功的应用到了天然产物以及生物活性分子的合成中,并利用一锅法的串联式反应,得到了一系列的二卤代芳烃化合物。

3. Lewis碱催化

受Lewis碱催化工作的启发 [33] [34] ,Gustafson等人尝试寻找适当的Lewis碱对NXS进行活化,从而开发一种温和且高效的催化策略,克服目前芳烃卤化物合成中存在的不足。通过研究对比,他们最终利用廉价易操作的三苯基硫化膦作为Lewis碱催化剂实现了NXS的高效活化,并随后参与了芳烃化合物的卤代反应(图6) [35] ,该反应表现出良好的底物普适性,条件温和,并且成功应用到了克级反应,具有很好的实用价值。该反应对催化剂的要求以及依赖性研究为新型硫化膦类催化剂的设计创造了可能性,并实现了选择性的卤代反应。

Figure 6. Triphenyl phosphine sulfide catalyzed synthesis of aryl halides

图6. 三苯基硫化膦催化的芳烃卤化物的合成

由于芳香胺与NXS能够形成N-X化合物,而该化合物可以通过分子内的重排得到芳烃卤化物 [36] ,但是由于生成的芳烃卤化物相比初始芳香胺反应活性降低,因此分子间反应可能比分子内反应更快。基于此假设,Yamamoto等人 [37] 在实验中发现可以利用2,4,6-三甲基苯胺作为Lewis碱催化剂,并在此基础上开展了芳烃化合物的卤代反应研究(图7)。结果表明,在温和条件下,不同的芳烃包括杂芳烃化合物都能够进行选择性的卤代反应。该方法利用了N卤代芳香胺作为反应活性中间体,对各种杂芳烃和芳香化合物进行卤代反应,并在此基础上实现了一锅法的多卤代芳烃的合成,反应具有优异的产率以及选择性。该方法在开发新的由芳香胺衍生的催化剂用于选择性卤代反应方面具有很大潜力。

Figure 7. 2,4,6-Trimethylaniline catalyzed synthesis of aryl halides

图7. 2,4,6-三甲基苯胺催化的芳烃卤化物的合成

然而,当NXS用于芳烃硫醚的卤代反应中时,S中心的氧化被认为是常见的副反应 [38] ,这也对芳烃的卤代反应提出了新的要求。针对这个问题,Yeung等人 [39] 利用超亲脂性吲哚类衍生物与NXS反应生成活化中间体,随后通过卤素的脱除实现芳烃化合物的卤代反应(图8)。反应条件温和,底物普适性好,对于具有活性质子的底物,如苯酚、苯胺等,反应也能够很好地进行并且给出优异的产率。最重要的是,在该反应条件下,芳烃硫醚类化合物的氧化得到了很好的抑制。此外,该反应不需要含卤试剂的参与,也无需柱层析就可以实现卤化产物的简单纯化,这使得该方法成为合成高值芳烃卤化物的一种环境友好且可持续的途径。

Figure 8. Indole derivate catalyzed synthesis of aryl bromide

图8. 吲哚衍生物催化的芳烃溴化物的合成

基于近几十年来的研究和发展,Lewis碱的催化已被公认为一种高效温和的促进芳烃亲电卤代反应的催化剂,尤其是N、S中心的Lewis碱能够与亲电的卤代试剂相互作用生成高反应活性的鎓盐阳离子 [33] [34] 。在此基础上,Arai等人 [40] 利用二芳基二硫化物作为催化剂,对1,3-二碘-5,5-二甲基海因进行活化,实现了不同芳烃化合物的高效、高选择性的碘代反应(图9)。该方法底物适用范围广,对于富电子芳烃,反应能够高效地进行,并且给出接近当量的产率,而对于缺电子芳烃,反应的时间有所延长,产率也有所降低。通过对比实验,二芳基二硫化物在反应进程中起到了至关重要的作用,在没有催化剂条件下,反应产率出现明显的降低。该方法为二硫化物衍生物作为Lewis碱催化剂在有机合成中的研究进展及其应用提供了一种思路。

芳烃氯化物在有机合成、天然产物以及材料领域有着重要应用 [41] [42] [43] [44] ,而且芳烃的氯化可以调节物质的理化性质,改善药代动力学以及药理学性质等 [45] [46] [47] 。基于Lewis碱催化剂在NXS活化过程中的表现,Jiao课题组 [48] 发现DMSO对不同的N-氯代试剂具有一定的活化作用,能够实现一系列生物活性分子的后期氯代修饰,反应条件温和。反应中,DMSO作为一种新型高效的有机催化剂,

Figure 9. Diaryldisulfide catalyzed synthesis of aryl iodides

图9. 二芳基二硫化物催化的芳烃碘化物的合成

能够实现NXS的活化,随后对反应机理进行的详细研究表明,DMSO-Cl+是关键的活性氯代中间体(图10) [49] [50] [51] 。在催化量DMSO存在下,芳烃的氯代反应能够顺利进行并得到非常高的转化率,然而随着DMSO用量的增加,反应的效果却发生明显的恶化,因此,他们以DMSO作为催化剂,对不同的芳烃化合物的氯代反应进行了探索,并成功实现了复杂化天然产物、药物分子等的选择性氯代反应。该方法提供了一种实用的芳烃氯代途径,并在生物应用、药物研发领域有着巨大的潜力,也为DMSO在有机合成中的应用开辟了一个新的途径。

Figure 10. DMSO catalyzed synthesis of aryl iodides

图10. DMSO催化的芳烃碘化物的合成

虽然芳烃的卤代反应取得了很大的进展,然而仍然存在着不足之处,比如萘的多卤代、BINOL的区域选择性溴代等 [52] [53] 。以此为出发点,Miura等人 [54] 开发了一类高位阻硫醚类催化剂(Trip-SMe),该催化剂对于低活性芳烃类化合物的卤代反应起到了至关重要的作用(图11)。与简单的二烷基硫醚相比,Trip-SMe在卤化金属络合物中表现出明显的离子对分离特性,能够在温和条件下实现卤代芳烃的合成。然而该方法仍然需要进一步的理论研究,进而为开发更高效的催化体系创造条件。

Figure 11. Steric thioether catalyzed synthesis of aryl halides

图11. 高位阻硫醚催化的芳烃卤化物的合成

Figure 12. DABCO catalyzed synthesis of aryl halides

图12. DABCO催化的芳烃卤化物的合成

虽然报道的Lewis碱催化剂在芳烃卤代方面都有着出色的表现,但是这些反应仍然存在复杂的催化剂或操作等问题,这也表明仍然有需要开发一种更加简单和便捷的Lewis碱催化剂,实现芳烃的卤代反应。因此,基于已有的报道,Huang课题组 [55] 利用廉价易得的DABCO作为催化剂,实现了一系列卤代芳烃化合物的合成,该反应条件温和、高效,而且可以实现反应的克级放大以及芳烃化合物的一锅法选择性多卤代反应(图12),这在一定程度上显示了该反应的应用潜力。

4. 质子酸/氢键作用

在质子酸催化下,芳烃化合物能够实现很好的碘代效果,通常使用的质子酸包括对甲苯磺酸、硫酸或三氟乙酸等 [56] [57] 。然而,对于缺电子芳烃的碘代反应,虽然合适的方法较少,但是仍然可以通过增加质子酸的强度和浓度来实现,如将NIS与三幅甲磺酸结合能形成高活性的反应体系。然而这些反应的条件都非常苛刻,而且底物较低的溶解性以及官能团较低的容忍性会造成一系列的副反应。因此,Unelius等将NIS加入芳烃的三氟乙酸(TFA)溶液中,实现了一系列芳烃化合物的碘代反应 [58] ,包括活性低的缺电子芳烃化合物,反应都能够以良好的收率得到目标碘代产物,没有副产物的生成(图13)。该反应是一种室温下实现低活性芳烃碘代的高效且便捷的方法,这也是对低活性芳烃卤代反应的有效补充。

在过去的研究中,氟代醇,如三氟乙醇以及六氟异丙醇等,已被证实在合成中作为溶剂、共溶剂以及添加剂时具有独特的特性 [59] [60] ,这主要归因于氟代醇的高电力能力、强氢键供体性质等,以及氟代醇自身温和的酸性以及低亲和性 [61] [62] 。因此,Crousse等人 [63] 希望将氟代醇作为反应介质,在没有活化剂的条件下实现芳烃的卤代反应。他们通过研究发现,六氟异丙醇由于强氢键作用,无需额外的催化剂或添加剂就能够高效地活化NXS,从而实现芳烃的选择性卤代反应。该反应条件温和,效率高,对不同卤素的引入都能够很好的进行(图13)。通过一锅多步法,该反应还能够应用的芳烃的选择性多卤代反应。

Figure 13. Protonic acid/hydrogen bond promoted synthesis of aryl halides

图13. 质子酸/氢键作用促进的芳烃卤化物的合成

5. 铵盐催化

芳香胺类化合物的芳环亲电卤代反应通常情况下会得到邻位和对位卤代芳香胺的混合物,而且通常情况下位阻较小的对位卤代产物占主要 [64] [65] [66] ,如果要得到邻位卤代的芳香胺则一般需要对对位进行取代修饰 [67] [68] 。然而在对位没有阻碍的情况下实现芳香胺邻位的选择性卤代反应仍然是一项具有挑战性的工作。虽然人们一直致力于寻找方法,比如芳基重氮盐等,然而这些方法存在着选择性低、条件苛刻、底物普适性窄等问题 [69] 。虽然金属催化的芳香胺邻位卤代反应得到了一定的发展,然而定位基团却是必不可少的 [70] [71] [72] [73] 。基于此,Yeung等人致力于开发一种温和、高选择性且高效的芳香胺邻位卤代的方法。他们通过研究发现简单易得且环境稳定二级胺的盐酸盐能够与DCDMH作用生成活化的氯代试剂 [74] ,利用铵盐中的H与苯胺发生氢键作用,生成亚胺类中间体,进而将氯代位点锁定在胺基的邻位,实现的芳香胺的邻位选择性氯代反应(图14)。该反应具有优异的普适性和选择性,对溴代以及碘代反应同样适用,并成功应用到了具有生物活性的化合物的修饰中,为芳香胺的位点选择性修饰以及后期官能化提供了便利的方法。

随后,他们将该方法也应用到了苯酚类化合物的邻位卤代反应中 [75] ,也得到了很好的效果,为多功能化的联苯酚和非对称BINOL配体的制备提供了便捷的途径,也为这种催化体系的应用提供了其它的可能性。

Figure 14. Ammonium salt catalyzed α-halogenation of phenols and anilines

图14. 铵盐催化的苯酚和芳胺的α-卤代反应

6. 光敏催化

光催化反应由于条件温和、直接利用太阳能转化为化学能的优势而备受关注 [76] [77] [78] 。由于研究的深入以及机理的理解,人们更倾向于Ru(II)和Ir(III)参与的光催化历程,这也在一定程度上造成了对有机染料的应用的忽视 [79] [80] [81] 。2019年,Lamar课题组 [82] 将光催化应用到了芳烃化合物的氯代反应中,他们利用有机染料甲基绿作为光敏试剂,可见光为光源,通过NCS的氧化进而实现了芳烃的选择性氯代(图15)。反应能够以优异的产率得到一系列氯代产物,许多官能团都能被很好地容忍。根据机理研究,该反应可能通过可见光光还原途径中亚甲基绿对NCS进行单电子氧化而实现,而亚甲基绿则被氧化回到其基态。该方法通过非传统条件实现了NCS的活化,为生产高值的芳烃氯化物提供了一种经济实惠、实际可行的替代方法。

Figure 15. Photocatalyst catalyzed synthesis of aryl chloride

图15. 光敏试剂催化的芳烃氯化物的合成

7. 总结

作为芳烃官能化的产物,芳烃卤化物同时也可以进一步官能化,这对芳烃化合物合成、修饰的多样化发展有着不可忽视作用。近年来,芳烃的卤代反应得到一定的发展和逐步的完善。不论是金属催化、Lewis碱催化、质子酸/氢键作用、铵盐催化以及光催化,它们都有着各自的优势,但是也有着各自的不足,因此,持续探索并开发新型、高效的芳烃卤化物的合成方法及策略仍然具有重要的意义。

文章引用

黄媛媛,王 楠,訾 由. 近年来N-卤代试剂在芳烃卤化反应中的研究进展
Recent Research Progress of Aromatic Halogenations with N-X Reagents[J]. 有机化学研究, 2023, 11(04): 150-164. https://doi.org/10.12677/JOCR.2023.114015

参考文献

  1. 1. Das, R. and Kapur, M. (2018) Transition-Metal-Catalyzed Site-Selective C-H Halogenation Reactions. Asian Journal of Organic Chemistry, 7, 1524-1541. https://doi.org/10.1002/ajoc.201800142

  2. 2. Lied, F., Patra, T. and Glorius, F. (2017) Group 9 Transition Metal-Catalyzed C-H Halogenations. Israel Journal of Chemistry, 57, 945-952. https://doi.org/10.1002/ijch.201700053

  3. 3. Saikia, I., Borah, A.J. and Phukan, P. (2016) Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chemical Reviews, 116, 6837-7042. https://doi.org/10.1021/acs.chemrev.5b00400

  4. 4. Chen, C., Cao, Y., Wu, X., Cai, Y., Liu, J., Xu, L., Ding, K. and Yu, L. (2020) Energy Saving and Environment-Friendly Element-Transfer Reactions with Industrial Application Potential. Chinese Chemical Letters, 31, 1078-1082. https://doi.org/10.1016/j.cclet.2019.12.019

  5. 5. Wang, F., Huang, J., Yang, Y., Xu, L. and Yu, L. (2020) Ton-Scale Production of 1,4-Bis(dichloromethyl)-2, 5-dichlorobenzene via Unexpected Controllable Chlorination of 1,4-Dichloro-2,5-dimethylbenzene. Industrial & Engineering Chemistry Research, 59, 1025-1029. https://doi.org/10.1021/acs.iecr.9b06489

  6. 6. Carreno, M.C., Garcia Ruano, J.L., Sanz, G., Toledo, M.A. and Urbano, A. (1995) N-bromosuccinimide in Acetonitrile: A Mild and Regiospecific Nuclear Brominating Reagent for Methoxybenzenes and Naphthalenes. The Journal of Organic Chemistry, 60, 5328-5331. https://doi.org/10.1021/jo00121a064

  7. 7. Tang, R.-J., Milcent, T. and Crousse, B. (2018) Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol. The Journal of Organic Chemistry, 83, 930-938. https://doi.org/10.1021/acs.joc.7b02920

  8. 8. Hashmi, A.S.K. (2007) Gold-Catalyzed Organic Reactions. Chemical Reviews, 107, 3180-3211. https://doi.org/10.1021/cr000436x

  9. 9. Li, Z., Brouwer, C. and He, C. (2008) Gold-Catalyzed Organic Transformations. Chemical Reviews, 108, 3239-3265. https://doi.org/10.1021/cr068434l

  10. 10. Gorin, D.J., Sherry, B.B.D. and Toste, F.D. (2008) Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108, 3351-3378. https://doi.org/10.1021/cr068430g

  11. 11. Shi, Z. and He, C. (2004) An Au-Catalyzed Cyclialkylation of Electron-Rich Arenes with Epoxides to Prepare 3-Chromanols. Journal of the American Chemical Society, 126, 5964-5965. https://doi.org/10.1021/ja031953a

  12. 12. Li, Z., Capretto, D.A., Rahaman, R.O. and He, C. (2007) Gold(III)-Catalyzed Nitrene Insertion into Aromatic and Benzylic C-H Groups. Journal of the American Chemical Society, 129, 12058-12059. https://doi.org/10.1021/ja0724137

  13. 13. Tanemura, K., Suzuki, T., Nishida, Y., Satsumabayashi, K. and Horaguchi, T. (2003) Halogenation of Aromatic Compounds by N-chloro-, N-bromo-, and N-iodosuccinimide. Chemistry Letters, 32, 932-933. https://doi.org/10.1246/cl.2003.932

  14. 14. Prakash, G.K.S., Mathew, T., Hoole, D., Esteves, P.M., Wang, Q., Rasul, G. and Olah, G.A. (2004) N-Halosuccinimide/BF3-H2O, Efficient Electrophilic Halogenating Systems for Aromatics. Journal of the American Chemical Society, 126, 15770-15776. https://doi.org/10.1021/ja0465247

  15. 15. Mo, F., Yan, J.M., Qiu, D., Li, F., Zhang, Y. and Wang, J. (2010) Gold-Catalyzed Halogenation of Aromatics by N-Halosuccinimides. Angewandte Chemie International Edition, 49, 2028-2032. https://doi.org/10.1002/anie.200906699

  16. 16. Clardy, J. and Walsh, C. (2004) Lessons from Natural Molecules. Nature, 432, 829-837. https://doi.org/10.1038/nature03194

  17. 17. Diederich, F. and Stang, P.J. (1998) Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527612222

  18. 18. Zhou, C.-Y., Li, J., Peddibhotla, S. and Romo, D. (2010) Mild Arming and Derivatization of Natural Products via an In(OTf)3-Catalyzed Arene Iodination. Organic Letters, 12, 2104-2107. https://doi.org/10.1021/ol100587j

  19. 19. Ryoo, R. and Kim, J.M. (1997) Generalised Route to the Preparation of Mesoporous Metallosilicates via Post-Synthetic Metal Implantation. Chemical Communications, No. 22, 2225-2226. https://doi.org/10.1039/a704745b

  20. 20. Mokaya, R. (1999) Ultrastable Mesoporous Aluminosilicates by Grafting Routes. Angewandte Chemie International Edition, 38, 2930-2934. https://doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2930::AID-ANIE2930>3.0.CO;2-8

  21. 21. Zhang, R., Huang, L., Zhang, Y., Chen, X., Xing, W. and Huang, J. (2012) Silver Catalyzed Bromination of Aromatics with N-bromosuccinimide. Catalysis Letters, 142, 378-383. https://doi.org/10.1007/s10562-011-0764-2

  22. 22. Theulier, C.A., García-Rodeja, Y., Miqueu, K., Bouhadir, G. and Bourissou, D. (2023) Lewis Acid-Assisted C(sp3)-C(sp3) Reductive Elimination at Gold. Journal of the American Chemical Society, 145, 10800-10808. https://doi.org/10.1021/jacs.3c01974

  23. 23. Aubert, C., Fensterbank, L., Garcia, P., Malacria, M. and Simonneau, A. (2011) Transition Metal Catalyzed Cycloisomerizations of 1,n-Allenynes and -Allenenes. Chemical Reviews, 111, 1954-1993. https://doi.org/10.1021/cr100376w

  24. 24. Krause, N. and Winter, C. (2011) Gold-Catalyzed Ncleophilic Cyclization of Functionalized Allenes: A Powerful Access to Carbo- and Heterocycles. Chemical Reviews, 111, 1994-2009. https://doi.org/10.1021/cr1004088

  25. 25. Frontier, A., Leboeuf, D. and Ciesielski, J. (2013) Gold(I)-Catalyzed Iodination of Arenes. Synlett, 25, 399-402. https://doi.org/10.1055/s-0033-1340321

  26. 26. Kalyani, D., Dick, A.R., Anani, W.Q. and Sanford, M.S. (2006) A Simple Catalytic Method for the Regioselective Halogenation of Arenes. Organic Letters, 8, 2523-2526. https://doi.org/10.1021/ol060747f

  27. 27. Wang, L. and Ackermann, L. (2014) Ruthenium-Catalyzed Ortho-C-H Halogenations of Benzamides. Chemical Communications, 50, 1083-1085. https://doi.org/10.1039/C3CC47852A

  28. 28. Bauer, I. and Knölker, H.-J. (2015) Iron Catalysis in Organic Synthesis. Chemical Reviews, 115, 3170-3387. https://doi.org/10.1021/cr500425u

  29. 29. Su, B., Cao, Z.-C. and Shi, Z.-J. (2015) Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. Accounts of Chemical Research, 48, 886-896. https://doi.org/10.1021/ar500345f

  30. 30. Racys, D.T., Warrilow, C.E., Pimlott, S.L. and Sutherland, A. (2015) Highly Regioselective Iodination of Arenes via Iron(III)-Catalyzed Activation of N-Iodosuccinimide. Organic Letters, 17, 4782-4785. https://doi.org/10.1021/acs.orglett.5b02345

  31. 31. Racys, D.T., Sharif, S.A.I., Pimlott, S.L. and Sutherland, A. (2016) Silver(I)-Catalyzed Iodination of Arenes: Tuning the Lewis Acidity of N-iodosuccinimide Activation. The Journal of Organic Chemistry, 81, 772-780. https://doi.org/10.1021/acs.joc.5b02761

  32. 32. Mostafa, M.A.B., Bowley, R.M., Racys, D.T., Henry, M.C. and Sutherland, A. (2017) Iron(III)-Catalyzed Chlorination of Activated Arenes. The Journal of Organic Chemistry, 82, 7529-7537. https://doi.org/10.1021/acs.joc.7b01225

  33. 33. Denmark, S.E. and Beutner, G.L. (2008) Lewis Base Catalysis in Organic Synthesis. Angewandte Chemie International Edition, 47, 1560-1638. https://doi.org/10.1002/anie.200604943

  34. 34. Denmark, S.E., Kuester, W.E. and Burk, M.T. (2012) Catalytic, Asymmetric Halofunctionalization of Alkenes-Acritical Perspective. Angewandte Chemie International Edition, 51, 10938-10953. https://doi.org/10.1002/anie.201204347

  35. 35. Maddox, S.M., Nalbandian, C.J., Smith, D.E. and Gustafson, J.L. (2015) A Practical Lewis Base Catalyzed Electrophilic Chlorination of Arenes and Heterocycles. Organic Letters, 17, 1042-1045. https://doi.org/10.1021/acs.orglett.5b00186

  36. 36. Wilkie, C.A. and Dimme, D.R. (1972) N-Chloro-N-Lithioaniline. Generation and Characterization of a Nitrenoid. Journal of the American Chemical Society, 94, 8600 - 8601. https://doi.org/10.1021/ja00779a063

  37. 37. Samanta, R.C. and Yamamoto, H. (2015) Selective Halogenation Using an Aniline Catalyst. Chemistry—A European Journal, 21, 11976-11979. https://doi.org/10.1002/chem.201502234

  38. 38. Yang, Z., Yang, S. and Xu, J.S. (2017) Sulfur-Directed Metal-Free and Regiospecific Methyl C(sp3)-H Imidation of Thioanisoles. Tetrahedron, 73, 3240-3248. https://doi.org/10.1016/j.tet.2017.04.054

  39. 39. Shi, Y., Ke, Z. and Yeung, Y.-Y. (2018) Environmentally Benign Indole-Catalyzed Position-Selective Halogenation of Thioarenes and Other Aromatics. Green Chemistry, 20, 4448-4452. https://doi.org/10.1039/C8GC02415D

  40. 40. Iida, K., Ishida, S., Watanabe, T. and Arai, T. (2019) Disulfide-Catalyzed Iodination of Electron-Rich Aromatic Compounds. The Journal of Organic Chemistry, 84, 7411-7417. https://doi.org/10.1021/acs.joc.9b00769

  41. 41. Gribble, G.W. (2004) Natural Organohalogens: A New Frontier for Medicinal Agents. Journal of Chemical Education, 81, 1441-1449. https://doi.org/10.1021/ed081p1441

  42. 42. Tang, M.L. and Bao, Z. (2011) Halogenated Materials as Organic Semiconductors. Chemistry of Materials, 23, 446-455. https://doi.org/10.1021/cm102182x

  43. 43. Auffinger, P., Hays, F.A., Westhof, E. and Ho, P.S. (2004) Halogen Bonds in Biological Molecules. Proceedings of the National Academy of Sciences of the United States of America, 48, 16789-16794. https://doi.org/10.1073/pnas.0407607101

  44. 44. Hernandes, M.Z., Cavalcanti, S.M., Moreira, D.R., de Azevedo Junior, W.F. and Leite, A.C. (2010) Halogen Atoms in the Modern Medicinal Chemistry: Hints for the Drug Design. Current Drug Targets, 11, 303-314. https://doi.org/10.2174/138945010790711996

  45. 45. Cernak, T., Dykstra, K.D., Tyagarajan, S., Vachal, P. and Krska, S.W. (2016) The Medicinal Chemist’s Toolbox for Late Stage Functionalization of Drug-Like Molecules. Chemical Society Reviews, 45, 546-576. https://doi.org/10.1039/C5CS00628G

  46. 46. Wencel-Delord, J. and Glorius, F. (2013) C-H Bond Activation Enables the Rapid Construction and Late-Stage Diversification of Functional Molecules. Nature Chemistry, 5, 369-375. https://doi.org/10.1038/nchem.1607

  47. 47. Yamamoto, K., Li, J., Garber, J.A.O., Rolfes, J.D., Boursalian, G.B., Borghs, J.C., Genicot, C., Jacq, J., van Gastel, M., Neese, F. and Ritter, T. (2018) Palladium-Catalysed Electrophilic Aromatic C-H Fluorination. Nature, 554, 511-514. https://doi.org/10.1038/nature25749

  48. 48. Song, S., Li, X., Wei, J., Wang, W., Zhang, Y., Ai, L., Zhu, Y., Shi, X., Zhang, X. and Jiao, N. (2019) DMSO-Catalysed Late-Stage Chlorination of (Hetero)arenes. Nature Catalysis, 3, 107-115. https://doi.org/10.1038/s41929-019-0398-0

  49. 49. Cresswell, A.J., Eey, S.T.-C. and Denmark, S.E. (2015) Catalytic, Stereospecific Syn-Dichlorination of Alkenes. Nature Chemistry, 7, 146-152. https://doi.org/10.1038/nchem.2141

  50. 50. Samanta, R.C. and Yamamoto, H. (2017) Catalytic Asymmetric Bromocyclization of Polyenes. Journal of the American Chemical Society, 139, 1460-1463. https://doi.org/10.1021/jacs.6b13193

  51. 51. Sakakura, A., Ukai, A. and Ishihara, K. (2007) Enantioselective Halocyclization of Polyprenoids Induced by Nucleophilic Phosphoramidites. Nature, 445, 900-903. https://doi.org/10.1038/nature05553

  52. 52. Zhang, Q.-W., Li, D., Li, X., White, P.B., Mecinovic, J., Ma, X., Ågren, H., Nolte, R.J.M. and Tian, H. (2016) Multicolor Photoluminescence Including White-Light Emission by a Single Host-Guest Complex. Journal of the American Chemical Society, 138, 13541-13550. https://doi.org/10.1021/jacs.6b04776

  53. 53. Narute, S., Parnes, R., Toste, F.D. and Pappo, D. (2016) Enantioselective Oxidative Homocoupling and Cross Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes. Journal of the American Chemical Society, 138, 16553-16560. https://doi.org/10.1021/jacs.6b11198

  54. 54. Nishii, Y., Ikeda, M., Hayashi, Y., Kawauchi, S. and Miura, M. (2020) Triptycenyl Sulfide: A Practical and Active Catalyst for Electrophilic Aromatic Halogenation Using N-Halosuccinimides. Journal of the American Chemical Society, 142, 1621-1629. https://doi.org/10.1021/jacs.9b12672

  55. 55. Xu, H., Hu, L., Zhu, G., Zhu, Y., Wang, Y., Wu, Z.G., Zi, Y. and Huang, W. (2022) DABCO as a Practical Catalyst for Aromatic Halogenation with N-Halosuccinimides. RSC Advances, 12, 7115-7119. https://doi.org/10.1039/D2RA00197G

  56. 56. Bovonsombat, P., Leykajarakul, J., Khan, C., Pla-On, K., Krause, M.M., Khanthapura, P., Ali, R. and Doowa, N. (2009) Regioselective Iodination of Phenol and Analogues Using N-Iodosuccinimide and P-Toluenesulfonic Acid. Tetrahedron Letters, 50, 2664-2667. https://doi.org/10.1016/j.tetlet.2009.03.128

  57. 57. Rogers, D.A., Hopkins, M.D., Rajagopal, N., Varshney, D., Howard, H.A., LeBlanc, G. and Lamar, A.A. (2020) U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics. ACS Omega, 5, 7693-7704. https://doi.org/10.1021/acsomega.0c00631

  58. 58. Bergström, M., Suresh, G., Naidu, V.R. and Unelius, C.R. (2017) N-Iodosuccinimide (NIS) in Direct Aromatic Iodination. European Journal of Organic Chemistry, 2017, 3234-3239. https://doi.org/10.1002/ejoc.201700173

  59. 59. Tang, R.-J., Milcent, T. and Crousse, B. (2017) Hexafluoro-2-Propanol Promotes Para-Selective C-H Amination of Free Anilines with Azodicarboxylates. European Journal of Organic Chemistry, 32, 4753-4757. https://doi.org/10.1002/ejoc.201700794

  60. 60. Vukovic, V.D., Richmond, E., Wolf, E. and Moran, J. (2017) Catalytic Friedel-Crafts Reactions of Highly Electronically Deactivated Benzylic Alcohols. Angewandte Chemie International Edition, 56, 3085-3089. https://doi.org/10.1002/anie.201612573

  61. 61. Laurence, C., Legros, J., Chantzis, A., Planchat, A. and Jacquemin, D. (2015) A Database of Dispersion-Induction DI, Electrostatic ES, and Hydrogen Bonding α1 and β1 Solvent Parameters and Some Applications to the Multiparameter Correlation Analysis of Solvent Effects. The Journal of Physical Chemistry B, 119, 3174-3184. https://doi.org/10.1021/jp512372c

  62. 62. Gennen, S., Alves, M., Mereau, R., Tassaing, T., Gilbert, B., Detrembleur, C., Jerome, C. and Grignard, B. (2015) Fluorinated Alcohols as Activators for the Solvent-Free Chemical Fixation of Carbon Dioxide into Epoxides. ChemSusChem, 8, 1845-1849. https://doi.org/10.1002/cssc.201500103

  63. 63. Tang, R.J., Milcent, T. and Crousse, B. (2018) Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol. The Journal of Organic Chemistry, 83, 930-938. https://doi.org/10.1021/acs.joc.7b02920

  64. 64. Bora, U., Bose, G., Chaudhuri, M.K., Dhar, S.S., Gopinath, R., Khan, A.T. and Patel, B.K. (2000) Regioselective Bromination of Organic Substrates by Tetrabutylammonium Bromide Promoted by V2O5-H2O2:  An Environmentally Favorable Synthetic Protocol. Organic Letters, 2, 247-249. https://doi.org/10.1021/ol9902935

  65. 65. Smith, M.B., Guo, L., Okeyo, S., Stenzel, J., Yanella, J. and Lachapelle, E. (2002) Regioselective One-Pot Bromination of Aromatic Amines. Organic Letters, 4, 2321-2323. https://doi.org/10.1021/ol0259600

  66. 66. Toda, F. and Schmeyers, J. (2003) Selective Solid-State Brominations of Anilines and Phenols. Green Chemistry, 5, 701-703. https://doi.org/10.1039/b306612f

  67. 67. Hajipour, A.R., Arbabian, M. and Ruoho, A.E. (2002) Tetramethylammonium Dichloroiodate:  An Efficient and Environmentally Friendly Iodination Reagent for Iodination of Aromatic Compounds under Mild and Solvent-Free Conditions. The Journal of Organic Chemistry, 67, 8622-8624. https://doi.org/10.1021/jo0264628

  68. 68. Wang, M., Zhang, Y., Wang, T., Wang, C., Xue, D. and Xiao, J. (2016) Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2-benziodoxol-3-one. Organic Letters, 18, 1976-1979. https://doi.org/10.1021/acs.orglett.6b00547

  69. 69. Snieckus, V. (1990) Directed Ortho Metalation. Tertiary Amide and O-carbamate Directors in Synthetic Strategies for Polysubstituted Aromatics. Chemical Reviews, 90, 879-933. https://doi.org/10.1021/cr00104a001

  70. 70. Wan, X., Ma, Z., Li, B., Zhang, K., Cao, S., Zhang, S. and Shi, Z. (2006) Highly Selective C-H Functionalization/Halogenation of Acetanilide. Journal of the American Chemical Society, 128, 7416-7417. https://doi.org/10.1021/ja060232j

  71. 71. Bedford, R.B., Haddow, M.F., Mitchell, C.J. and Webster, R.L. (2011) Mild C-H Halogenation of Anilides and the Isolation of an Unusual Palladium(I)-Palladium(II) Species. Angewandte Chemie International Edition, 50, 55245527. https://doi.org/10.1002/anie.201101606

  72. 72. Schrçder, N., Delord, J.W. and Glorius, F. (2012) High-Yielding, Versatile, and Practical [Rh(III)Cp*]-Catalyzed Ortho Bromination and Iodination of Arenes. Journal of the American Chemical Society, 134, 8298-8301. https://doi.org/10.1021/ja302631j

  73. 73. Moghaddam, F.M., Tavakoli, G., Saeednia, B., Langer, P. and Jafari, B. (2016) Palladium-Catalyzed Carbamate-Directed Regioselective Halogenation: Aroute to Halogenated Anilines. The Journal of Organic Chemistry, 81, 3868-3876. https://doi.org/10.1021/acs.joc.6b00329

  74. 74. Xiong, X. and Yeung, Y.-Y. (2016) Highlyortho-Selective Chlorination of Anilines Using a Secondary Ammonium Salt Organocatalyst. Angewandte Chemie International Edition, 55, 16101-16105. https://doi.org/10.1002/anie.201607388

  75. 75. Xiong, X. and Yeung, Y.-Y. (2018) Ammonium Salt-Catalyzed Highly Practical Ortho-Selective Monohalogenation and Phenylselenation of Phenols: Scope and Applications. ACS Catalysis, 8, 4033-4043. https://doi.org/10.1021/acscatal.8b00327

  76. 76. Trifonov, A.L., Panferova, L.I., Levin, V.V., Kokorekin, V.A. and Dilman, A.D. (2020) Visible-Light-Promoted Iododifluoromethylation of Alkenes via (Phosphonio)difluoromethyl Radical Cation. Organic Letters, 22, 2409-2413. https://doi.org/10.1021/acs.orglett.0c00604

  77. 77. Pan, S., Jiang, M., Hu, J., Xu, R., Zeng, X. and Zhong, G. (2020) Synthesis of 1,2-Amino Alcohols by Decarboxylative Coupling of Amino Acid Derived α-Amino Radicals to Carbonyl Compounds via Visible-Light Photocatalyst in Water. Green Chemistry, 22, 336-341. https://doi.org/10.1039/C9GC03470F

  78. 78. Lei, T., Liang, G., Cheng, Y.Y., Chen, B., Tung, C.H. and Wu, L.Z. (2020) Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. Organic Letters, 22, 5385-5389. https://doi.org/10.1021/acs.orglett.0c01709

  79. 79. Nicewicz, D.A. and Nguyen, T.M. (2014) Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis. ACS Catalysis, 4, 355-360. https://doi.org/10.1021/cs400956a

  80. 80. Joshi-Pangu, A., Levesque, F., Roth, H.G., Oliver, S.F., Campeau, L.-C., Nicewicz, D. and Di Rocco, D.A. (2016) Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis. The Journal of Organic Chemistry, 81, 7244-7249. https://doi.org/10.1021/acs.joc.6b01240

  81. 81. Romero, N.A. and Nicewicz, D.A. (2016) Organic Photoredox Catalysis. Chemical Reviews, 116, 10075-10166. https://doi.org/10.1021/acs.chemrev.6b00057

  82. 82. Rogers, D.A., Gallegos, J.M., Hopkins, M.D., Lignieres, A.A., Pitzel, A.K. and Lamar, A.A. (2019) Visible-Light Photocatalytic Activation of N-Chlorosuccinimide by Organic Dyes for the Chlorination of Arenes and Heteroarenes. Tetrahedron, 75, 130498-130505. https://doi.org/10.1016/j.tet.2019.130498

期刊菜单