Nuclear Science and Technology
Vol. 07  No. 01 ( 2019 ), Article ID: 28099 , 9 pages
10.12677/NST.2019.71002

Structure and Size Effects on MOX Fuel Assembly Physical Properties

Ke Ding1, Feng Wang1,2*, Che Chen1, Xiaowei Zhou1,2

1School of Energy and Power Engineering, Chongqing University, Chongqing

2Key Laboratory of Low-Grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing

Received: Nov. 28th, 2018; accepted: Dec. 12th, 2018; published: Dec. 19th, 2018

ABSTRACT

Fuel assembly design is the key of nuclear reactor core design. In this study, Monte Carlo method was adopted for analysis of MOX fuel assembly diameter and pitch to diameter ratio effects on its performance. Results show that, with increasing of MOX fuel diameter, fission rate and Keff decreased, relative radial power peak increased while its power decreased. With increasing of P/D, fission rate, power and Keff increased firstly and then decreased, the highest values occurred at P/D = 1.7. Relative radial power peak deceased with increasing of P/D and it became more and more uniform. Thermal neutron increased with the increasing of P/D, while epithermal neutron and fast neutron fluxes deceased. Comparison was carried out with UO2 fuel.

Keywords:MOX Fuel, Structure and Size, Fuel Assembly, Physical Properties, MCNP

新型MOX燃料组件结构尺寸对其物理性能的 影响

丁克1,王锋1,2*,陈车1,周小为1,2

1重庆大学能源与动力工程学院,重庆

2重庆大学低品位能源利用技术及系统教育部重点实验室,重庆

收稿日期:2018年11月28日;录用日期:2018年12月12日;发布日期:2018年12月19日

摘 要

组件设计是反应堆堆芯设计的核心。采用蒙特卡洛方法分析了MOX燃料组件燃料棒直径和栅径比变化对组件的物理性能的影响。结果表明,MOX燃料棒直径增大,组件裂变反应率和Keff减小,径向相对功率峰值逐渐增大而组件功率减小。组件栅径比增大,其裂变反应率、功率和Keff先增大后减小,最大值出现在组件栅径比1.7下;组件径向相对功率峰值逐渐减小,功率分布越来越均匀。随栅径比增大,组件热中子数增加,超热中子和快中子数减小,并和UO2燃料做了对比。

关键词 :MOX燃料,结构尺寸,燃料组件,物理性能,MCNP

Copyright © 2019 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

超临界水冷堆(SCWR)是第四代反应堆的备选堆型之一,具有机组热效率高,系统简单等突出优点 [1] [2] [3] ,国际上常规水冷堆中铀钚混合燃料组件(MOX燃料组件)的技术已经十分成熟。因此,若设计一种新型的MOX燃料组件,将MOX燃料应用于SCWR [4] ,可以进一步提高系统热效率,优化反应堆性能。在新型MOX燃料组件参数设计中,燃料棒直径和堆芯组件栅径比是两个关键的参数,对堆芯物理和热工参数都有着很大影响 [5] 。因此,针对这种现状,本文分析了不同直径和栅径比下的物理性能。严勇等 [6] 对超临界水冷混合堆快谱组件的结构参数进行了敏感性分析,得到了使组件有良好经济性时的燃料棒直径以及栅径比的尺寸范围。涂晓兰和柴晓明等 [7] 对影响径向功率密度分布的燃料棒半径及距径比进行了敏感性分析以确定燃料棒半径和栅径比是否是关键影响参数。姜夺玉 [8] 在空间核热推进粒子球床堆堆芯设计参数敏感性分析中也重点分析了组件栅径比对粒子球床堆堆芯物理特性的影响。熊鑫 [9] 在加速器驱动的次临界堆研究中做了栅径比对次临界系统物理特性的影响研究。Seong Man Bae [10] 对超临界水堆堆芯组件做了栅径比敏感性分析,发现较大的栅径比慢化充分可以获得好组件性能。可见在反应堆堆芯设计中,第一步需要确定组件的物理参数,所以本文针对MOX燃料堆芯设计,研究了燃料棒直径和栅径比P/D对其物理特性的影响。

2. 物理模型

本文采用MCNP程序对超临界水冷堆MOX燃料新型组件及内部结构进行建模 [11] ,见图1,具体参数如表1所示。

通过计算得到的径向功率分布结果与刘晓晶等 [12] 得到的结果进行了对比,发现二者结果比较接近。参考值中径向相对功率峰值与最小值为1.114和0.802,本文计算得到的径向相对功率峰值与最小值为1.098和0.829,对应的相对误差分别为1.43%和3.34%。此外组件每根燃料棒功率计算的相对误差在4%以下。

Figure 1. The XY view of assembly model

图1. 组件模型的XY方向分布图

Table 1. Parameters of the new assembly

表1. 新型组件计算参数

3. 结果和讨论

3.1. 不同棒径组件的物理性能

在燃料棒栅距不变条件下,单一改变燃料棒的直径来改变组件尺寸。计算得到组件的裂变反应率、俘获反应率、有效增值因数Keff、功率、功率峰值以及能谱等物理参数。

有效增值因数Keff的定义为:对于给定系统,新生一代中子数和产生它的直属上一代中子数之比,也可以表示为系统内种子的产生率与总的消失率之比。

裂变反应率的定义为:每秒每单位体积内种子与介质原子核发生裂变反应的总次数。

不同燃料棒直径下,MOX燃料组件的裂变率和俘获率结果如图2。当燃料棒直径增大时,组件的裂变反应率降低,而俘获反应率增大。燃料棒直径增大,水与燃料的体积比减小,能谱硬化,235U、239Pu的裂变率减小,因此组件的裂变反应率降低。同时能谱硬化后238U和240Pu对中子俘获吸收增大,使得组件的俘获反应率增大。

燃料组件设计中,组件Keff能够综合反映组件的物理特性。图3为不同燃料和燃料棒棒直径对组件Keff的影响;当MOX燃料棒直径增大时,水与燃料的体积比减小,组件裂变率减小,MOX燃料组件Keff减小。在燃料棒直径较小时,MOX燃料组件的Keff要大于UO2燃料组件。随着燃料棒直径的逐渐增大,UO2燃料组件的Keff先增大后减小。采用UO2燃料、8 mm棒直径时,组件的Keff最大。而MOX燃料在较大燃料棒直径时组件的Keff较小,会降低组件燃耗。要与8 mm直径UO2燃料棒组件有相同的初始反应性,MOX燃料棒应取小于8 mm的直径。

Figure 2. Effects of fuel rod diameters on fission and capture rate

图2. MOX燃料棒直径对裂变率和俘获率的影响

Figure 3. Effects of fuel rod diameters on Keff of different fuels

图3. 不同燃料条件下燃料棒直径对组件Keff影响

图4可知,MOX燃料组件相对功率峰值随着燃料棒直径增大而逐渐增大,且大于UO2燃料组件的相对功率峰值。燃料棒直径增大,使得水与燃料体积比减小,慢化能力减弱。因此处于超热能区的中子数较多;同时燃料棒直径增加,对中子共振吸收增加,造成功率分布不均匀性增加。所以燃料棒直径对组件相对功率峰值影响较大,直径越大,径向功率分布越不均匀。

进一步计算得到了1/4组件在不同燃料棒直径条件下的功率,如图5所示。从图中可以看出随着MOX燃料棒直径的增大,其组件功率下降。而在相同燃料棒直径下,UO2燃料组件功率要高于MOX燃料组件功率,其组件功率最大值对应的燃料棒直径为8 mm。为保证足够的功率输出需要在MOX燃料组件设计时把燃料棒直径控制在较小的范围。

图6为热中子、超热中子、快中子的中子通量在MOX燃料棒不同直径下的变化。可以看出组件内快中子的中子通量最大,其次是超热中子的通量,最小是热中子的通量。随着MOX燃料棒直径的增加,热中子的中子通量减少,超热中子的中子通量增加,快中子的中子通量增加。原因是MOX燃料棒直径增大,导致燃料相对水的体积增大,慢化能力下降,快中子的数目增加,热中子的数目减小,能谱硬化。

Figure 4. Effects of fuel rod diameters on relative radial power peak of different fuels

图4. 不同燃料条件下燃料棒直径对相对功率峰值影响

Figure 5. Effects of MOX fuel rod diameters on the power

图5. 燃料棒直径对组件功率的影响

Figure 6. Effects of MOX fuel rod diameters on thermal neutron, epithermal neutron and fast neutron fluxes

图6. 燃料棒直径对热中子、超热中子和快中子通量影响

3.2. 栅径比对组件物理性能的影响

保持燃料棒直径8 mm不变,改变燃料棒之间的距离,得到不同的栅径比,研究不同栅径比情况下各参数变化。

不同栅径比下组件的裂变率和俘获率结果如图7所示。当栅径比增大时,组件的裂变反应率在先增大,达到最大值之后开始下降,存在使得组件裂变反应率最大的栅径比1.7。当栅径比增加,能谱软化,235U的裂变反应率增大,组件裂变反应率增大;当栅径比超过1.7后,水对中子的吸收加强,使组件裂变率下降。组件俘获反应率变化趋势与裂变反应率变化趋势相反,存在使得组件俘获裂变率最低的栅径比1.7。栅径比增大时能谱变软后238U、240Pu的俘获反应率降低,栅径比超过1.7时,水对中子的俘获吸收加强,之后组件的俘获反应率增大。

Figure 7. Effects of pitch to diameter ratios on fission rate and capture rate

图7. 组件栅径比对裂变率和俘获率的影响

图8可以看出,随着栅径比的增大,组件Keff值先增大后减小。这是因为当栅径比在达到1.7之前,随着栅径比增大,MOX组件中子得到足够慢化,组件裂变反应率增大,Keff增大。当栅径比值超过1.7时,水与燃料体积比较大,中子与燃料相互碰撞、作用概率减小,轴向中子泄漏概率增加,同时能谱软化也使得Keff值减小。

Figure 8. Effects of pitch to diameter ratios on Keff

图8. 组件栅径比对Keff的影响

在栅径比变化范围内,MOX燃料和UO2燃料组件都存在使Keff最大的栅径比。对比MOX与UO2燃料,发现UO2燃料最大Keff对应的栅径比小于MOX燃料组件最大Keff时的栅径比。所以MOX燃料组件应该选取较大栅径比,获得较大Keff来保证堆芯寿期。

图9反映MOX燃料组件栅径比对功率均匀性分布的影响。从图中可知相对功率峰值随着栅径比的增大而减小,与MOX燃料组件相对功率峰值随燃料棒直径变化的趋势相反。虽然MOX燃料组件的功率分布不均性大于UO2燃料,但是可以通过增大栅径比来克服MOX燃料组件功率较大不均匀性的缺点。

Figure 9. Effect of pitch to diameter ratios on relative radial power peak

图9. 栅径比对MOX燃料组件相对功率峰值的影响

图10为组件功率在不同栅径比情况下的变化情况。相同栅径比条件下,MOX燃料组件的功率小于UO2燃料组件的功率;随栅径比的增大,功率先增大后减小。变化趋势与组件Keff随栅径比变化时规律一样;同样存在使得组件功率达到最大值时的栅径比;相比UO2燃料组件,MOX燃料组件最大功率时的栅径比大于UO2燃料组件最大功率时的栅径比。

Figure 10. Effect of pitch to diameter ratios on the power

图10. 组件栅径比对功率的影响

图11所示,MOX燃料组件的热中子数随组件栅径比的增大而增大,但都小于UO2燃料组件的热中子数,且随着栅径比的增大,这两种燃料组件之间的热中子数差距越来越大,即UO2燃料组件的热中子数随栅径比增大的平均速率大于MOX燃料组件的热中子数随栅径比增大的平均速率。超热中子数随组件栅径比的增大而减小,MOX燃料组件的超热中子数小于UO2燃料组件的超热中子。UO2燃料超热中子数减小的幅度略大于MOX燃料组件。栅径比较大时两种燃料组件内的超热中子相近。MOX燃料组件快中子数随组件栅径比的增大而减小,且MOX燃料组件的快中子数大于UO2燃料组件的快中子数。在组件栅径比较小时,两种燃料组件的快中子数差别不大,随着栅径比的增大,两种燃料组件的快中子数差距增加。中子数差别不大,随着栅径比的增大,两种燃料组件的快中子数差距增加。

Figure 11. Effects of pitch to diameter ratios on thermal neutron, epithermal neutron and fast neutron fluxes

图11. 栅径比对热中子、超热中子和快中子通量的影响

综合可知,随着栅径比的增加热中子、超热中子通量上升,快中子通量下降,组件能谱变软。两种燃料组件在选定的栅径比变化区间,热中子份额小于快中子份额,MOX燃料组件能谱较UO2燃料要硬化。同时随着栅径比的增大,慢化加强,使得MOX燃料组件能谱逐渐软化。

4. 结论

本文分析了MOX燃料组件燃料棒直径和栅径比变化对组件的物理性能的影响。

MOX燃料棒直径在0.7 cm~0.9 cm的变化区间,燃料棒直径增大,组件的裂变反应率、Keff逐渐减小;组件径向相对功率峰值随着燃料棒径的增大也逐渐增大而组件功率逐渐减小;MOX燃料棒直径增大时,热中子数减小,超热中子数和快中子数增大,组件能谱硬化。

MOX燃料组件栅径比在1.2~1.8区间变化,组件栅径比逐渐增大,其裂变反应率、Keff、功率先增大后减小,最大值对应栅径比1.7;组件径向相对功率峰值逐渐减小,功率分布越来越均匀;MOX燃料组件热中子数和超热中子数都低于UO2燃料组件中的热中子数和超热中子数,但MOX燃料组件中的快中子数却高于UO2燃料组件中的快中子数。

致谢

感谢核反应堆系统设计技术重点实验室基金项目(JG2018119)的资助和重庆大学教学改革研究项目(2017Y44,0212001104466)的资助。

文章引用

丁 克,王 锋,陈 车,周小为. 新型MOX燃料组件结构尺寸对其物理性能的影响
Structure and Size Effects on MOX Fuel Assembly Physical Properties[J]. 核科学与技术, 2019, 07(01): 7-15. https://doi.org/10.12677/NST.2019.71002

参考文献

  1. 1. 卢迪, 夏榜样, 甯忠豪, 等. 超临界水冷堆混合慢化燃料组件设计[J]. 强激光与粒子束, 2017(5): 108-111.

  2. 2. 王锋, 陈车. PuO2含量对MOX燃料组件物理特性的影响[J]. 材料导报, 2016, 30(18): 138-142.

  3. 3. 王锋, 徐晗, 张晗, 等. 超临界水冷堆MOX燃料组件控制棒特性研究[J]. 核科学与工程, 2017(6): 1039-1044.

  4. 4. 刘晓黎, 宫宇. MOX燃料组件装入现役M310堆芯对堆芯核设计的影响研究[J]. 原子能科学技术, 2015(9): 1629-1636.

  5. 5. 李小生, 靳忠敏. MOX燃料对压水堆堆芯性能影响研究[J]. 原子能科学技术, 2013(z2): 583-587.

  6. 6. 严勇. 超临界水冷混合堆快谱组件研究与设计[D]: [硕士学位论文]. 上海: 上海交通大学, 2009.

  7. 7. 涂晓兰, 柴晓明, 尹强. 燃料棒性能分析软件FUPAC中燃料棒径向功率密度分布模型研发[J]. 核动力工程. 2014(S2): 197-199.

  8. 8. 姜夺玉, 江新标, 王立鹏. 空间核热推进粒子球床堆堆芯设计参数敏感性分析[J]. 原子能科学技术, 2015(S1): 107-112.

  9. 9. 熊鑫, 杨永伟. 铅铋冷却的加速器驱动的次临界堆的燃耗分析[J]. 核科学与工程, 2014(1): 67-72.

  10. 10. Bae, S.M. and Kim, Y.B. (2009) Fuel to Moderator Ratio Sensitivity Study Using Water Rod Moderator in SCWR Conceptual Core Design. Jeju, Korea.

  11. 11. 宋婧, 孙光耀, 陈珍平. 蒙特卡罗有效增殖因子计算方法研究[J]. 核科学与工程, 2015(2): 241-245.

  12. 12. Liu, X.J. and Cheng, X. (2009) Thermal-Hydraulic and Neutron-Physical Characteristics of a New SCWR Fuel Assembly. Annals of Nuclear Energy, 36, 28-36. https://doi.org/10.1016/j.anucene.2008.11.001

  13. NOTES

    *通讯作者。

期刊菜单