Advances in Clinical Medicine
Vol. 12  No. 10 ( 2022 ), Article ID: 56633 , 9 pages
10.12677/ACM.2022.12101297

EIT技术在腹内高压患者机械通气中的 应用研究进展

张金阁,甘桂芬*

青海大学研究生院,青海 西宁

收稿日期:2022年9月15日;录用日期:2022年10月2日;发布日期:2022年10月11日

摘要

电阻抗断层成像技术(Chest electrical impedance tomography, EIT)是近几年来发展起来的一门实现床旁成像的技术,它具有无辐射性、无创性、灵活性、易操作性等优点,实现了呼吸的可视化以及床旁呼吸管理个性化。本文主要阐述了电阻抗断层成像技术的发展、基本原理,就因重症急性胰腺炎、腹部疾患等导致腹内高压患者在机械通气中的应用进行介绍,有助于临床医生掌握该技术应用,从而根据患者的疾病情况适时地采用电阻抗成像技术,对疾病的发生、发展及时做出实时评估,提高临床医生的工作效率,促进医疗水平的进一步的提高。腹腔内高压(Intra-abdominal hypertension, IAH)是指腹腔内压力(Intra-abdominal pressure, IAP)持续≥12 mmHg,其发病率很高,但全世界的重症监护医生仍然没有充分认识到这一点。有相关研究指出约1/4到1/3的患者在入院时会出现IAH,而1/2的患者会在重症监护病房住院的第1周内就出现IAH。IAH与高发病率和死亡率较高。尽管在过去几十年中取得了相当大的进展,但关于IAH患者的最佳通气管理仍存在一些重要问题。在重症监护期间,监测呼吸功能和调整通气设置非常重要,以IAH存在的情况下,肺在较高的闭合压力下在呼气时会塌陷,不合适的PEEP会给患者带来伤害,过低的PEEP并不能阻止肺塌陷,而过高的PEEP会使肺区域过度膨胀造成肺损伤。因此在密切监测氧合和血流动力学反应的同时,PEEP的设置也需要着重关注的目标,为肺内高压患者的肺保护性通气保驾护航。但是近几年的相关研究发现这类患者的最佳PEEP的设置仍然未知。随着EIT技术逐渐发展成熟,在急性呼吸窘迫综合征(Acute distress syndrome, ARDS)最佳PEEP设置中的应用研究越来越多,是否可以将EIT技术应用于腹内高压(IAH)患者中呢?本文就将介绍EIT技术在腹内高压患者中的应用研究。

关键词

电阻抗断层成像,腹内高压,危重症,机械通气,PEEP设置

Research Progress of EIT Technique in Mechanical Ventilation of Patients with Intra-Abdominal Hypertension

Jinge Zhang, Guifen Gan*

Graduate School of Qinghai University, Xining Qinghai

Received: Sep. 15th, 2022; accepted: Oct. 2nd, 2022; published: Oct. 11th, 2022

ABSTRACT

Chest Electrical Impedance tomography EIT is a technology developed in recent years to realize bedside imaging. It has many advantages, such as radiation-free, non-invasive, flexible and easy to operate, and can realize visualization of respiration and personalized beside respiratory management. This article mainly elaborates on the development of electrical impedance tomography imaging technology, basic principle, is caused by severe acute pancreatitis, abdominal diseases such as internal pressure in the application of mechanical ventilation in patients with, help clinical doctors to master the technical application, and according to the patient’s disease situation timely the use of electrical impedance imaging technology, real-time evaluation to the occurrence and development of disease in time, improve the work efficiency of clinicians, promote the further improvement of level. Intra-abdominal hypertension IAH, defined as intra-abdominal pressure IAP that persists for ≥12 mmHg, is highly prevalent but still not fully recognized by intensive care physicians worldwide. Studies have shown that approximately one-quarter to one-third of patients develop IAH on admission, and one-half of patients develop IAH within the first week of admission to the intensive care unit. IAH is associated with higher morbidity and mortality. Despite considerable progress over the past decades, important questions remain regarding the optimal ventilation management of IAH patients. During the period of intensive care, it is very important to monitor respiratory function and adjust ventilation settings. In the presence of IAH, the lungs will collapse during exhalation under high closure pressure, and inappropriate PEEP will bring harm to patients. Too low PEEP cannot prevent lung collapse, while too high PEEP will cause excessive expansion of the lung area and lung injury. Therefore, while closely monitoring oxygenation and hemodynamic response, the setting of PEEP also needs to focus on the target, to protect lung protective ventilation for patients with intrapulmonary hypertension. However, recent studies have found that the optimal PEEP setting for such patients is still unknown. With the gradual development and maturity of EIT technology, there are more and more studies on the application of EIT technology in the setting of the optimal PEEP in acute respiratory distress syndrome ARDS. Can EIT technology be applied in patients with intra-abdominal hypertension (IAH)? This article will introduce the application of EIT technology in patients with intra-abdominal hypertension.

Keywords:Electrical Impedance Tomography, Intra-Abdominal Hypertension, Critical Illness, Mechanical Ventilation, PEEP Settings

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 研究背景

腹内高压(IAH)被认为是腹内压力(IAP)持续升高,等于或高于12 mmHg,在综合ICU患者中发病率约为25%。IAH主要是腹腔内容积过大所致,与发病率和死亡率的升高相关,肝脏、肾脏等腹部器官的功能直接受到IAH的影响 [1]。此外IAH还能影响腹腔外器官的功能,包括大脑、心血管系统和肺。

呼气末正压通气(positive end expiratory pressure, PEEP)是常用的机械通气参数之一。联合PEEP通气可以使塌陷的肺泡及支气管扩张,改善肺通气和弥散功能,维持功能残气量稳定预防气道塌陷,改善患者氧合,减少肺不张和肺部感染等并发症的风险 [2]。在以IAH存在的情况下,肺在较高的闭合压力下在呼气时会塌陷,过低的PEEP并不能阻止肺塌陷,而过高的PEEP会使肺区域过度膨胀造成肺损伤。

电阻抗断层成像技术(electrical impedance tomography, EIT)已有30多年发展史,是利用气体不导电的原理,以16或者32个电极围绕胸腔贴一圈(一般是第四或第五肋间,可根据应用适当调整),通过一对电极注入身体感知不到的安全电流,并利用剩余的电极对测量相应的体表电压,可了解在不同状态下肺全部或分层局部的通气情况 [3]。

2. EIT临床应用发展过程

随着医学的发展及需求,医学成像技术已经变得越来越重要了,主要是因为它可以间接地显示人体的生理和解剖结构,为医生们能够做出较明确的诊断提供者可靠的依据。因此它的演变是惊人的。1895年,德国威廉·伦琴在研究阴极射线时偶然发现了X射线,这是医学成像的决定性一步。乳腺造影术、CT扫描、核医学、超声波、正电子发射断层扫描术(PET)、单光子发射计算机断层扫描术(SPECT)、磁共振成像(MRI)都是成像技术,是可视化生物过程的一种无可否认的研究工具。它们对于理解生理学和病理学至关重要。

电阻抗断层成像(EIT)是一种基于生物组织的导电性重建人体特定区域图像的成像技术。在亨德森和韦伯斯特 [4] 设计的阻抗相机之后,巴伯和布朗提出了第一个基于电阻率产生断层图像的电阻抗断层成像系统。最终的研究导致布朗和西格尔设计了一个名为谢菲尔德(Sheffield)的新系统,该系统迄今已被广泛使用 [5]。

自这项技术出现以来,已经过去了近40年,市场上只有少数商业设备可用,包括PulmoVista 500 (德国吕贝克的Dräger Medical)、Enlight 1800 (巴西圣保罗的Timpel)、AirTom (韩国首尔的Bilab Healthcare)和LuMon (瑞士瑟维尔的Sentec)。因此,在中国只有一家 [6]。然而,在中国,胸部EIT的临床研究和日常使用仍在加强。特别是2019冠状病毒疾病2019冠状病毒疾病的发病率,中国人发表了COVID-19治疗指南,EIT被认为是滴定PEEP的标准之一。最近的一项随机对照试验表明,与压力–容积循环相比,EIT引导的呼气末正压滴定可显著提高中重度急性呼吸窘迫综合征患者的生存率 [7]。因此,越来越多的医院和医生对这项技术感兴趣。

3. EIT成像的基本原理

3.1. EIT的测量

EIT设备包括一个胸带,总共有16或32个电极以电极带或类似的形式连接到胸部表面,通常位于第4或第5肋间,电极平面的位置会影响结果 [8] [9] [10],因此,在不同场合进行的检查的可比性要求电极位置相同。不建议将电极放置在低于第六肋间空间的位置,因为隔膜可能会定期进入测量平面 [11] [12] [13]。姿势 [9] 和通气类型 [14] - [19] 会影响结果。应记录具体的通风操作、机械通风模式和设置等,以便于解释EIT结果。注入高频、低振幅电流,并测量相应的表面电压,相应地重建相对阻抗变化,以获得肺部横截面的图像 [20] [21],然后连接到控制台和监视器。随着肺泡在呼吸周期中拉伸和变薄,电阻率下降,从而使EIT能够检测到充气变化。一些组织的平均电导率因各种原因而变化,就肺部而言,传导性取决于它们所含的空气量,而空气的传导性较差;就肌肉而言,导电性取决于肌肉纤维的方向,它在横向上较低,在纵向上较高。值得注意的是,这些值涵盖了大约三个数量级。因此,如果绝对电导率测量具有足够的精度,就可以识别组织类型。显示了EIT常用激励频率下不同组织的电导率平均值 [22]。肺组织的阻抗随空气含量而变化。因此,电极平面上发生的通气和呼气肺容积的变化会导致在身体表面测量的电压发生变化。某些生理现象,如灌注和肺通气,以及液体的病理存在,涉及液体的运动,从而改变胸部的电导率分布。为了研究这一现象,有必要测量这些运动对电导率分布的影响 [6] [23] [24] [25]。因此,独立测量的数量有限,因此分辨率较低。通常,电极的间距均匀,并围绕将要成像的物体表面基本EIT系统由电流注入块组成,通过电极将所需电流注入相关区域。调节信号块处理传感电极上产生的电压信号,并将其传输至数据采集系统。多路复用器模块用于选择适当的注入或检测电极 [26]。此外,一台带有图像重建算法 [27] 和一组电极的计算机连接到受试者,以注入电流和测量电压。在不同的EIT系统中,可以通过将两个电极连接到物体表面,向受试者施加1 kHz至1 MHz的电流来测量电压。

与CT相比,EIT测量已被验证为潮气量和通气分布的准确替代物 [28],与氮气冲洗相比,EIT测量是呼气末肺容量的准确替代物。使用各种EIT测量的指数是正在进行的研究的主题,包括“全球不均匀性指数”,捕捉通气分布的区域异质性 [29],“区域通气延迟”,表征时间异质性,以及“动态相对区域应变”,将潮气阻抗与呼气末肺阻抗进行索引 [30]。

3.2. 肺部ROI分区

EIT图像不仅显示肺部,还显示整个胸部的横截面。为了提高EIT数据分析的灵敏度,理想情况下,只能分析来自肺部区域的波形。EIT图像中肺组织和非肺组织之间的边界模糊。因此,已经提出了几种方法来确定代表肺部的ROI (region of interests) [31] [32]。ROI是指从腹侧到背侧(或者是根据象限分区为4个象限)分割,分别为ROI1、ROI2、ROI3、ROI4。

4. EIT临床应用发展过程

由于EIT可以唯一地识别区域性过度呼吸,许多临床研究已将EIT应用于呼吸衰竭患者,尤其是急性呼吸窘迫综合征(ARDS)患者的呼气末正压(PEEP)滴定。目前的挑战是最大限度地增加依赖性肺不张的复张和通畅,同时最大限度地减少腹侧非依赖性肺的过度张张张,从而避免呼吸机引起的肺损伤和不良的血流动力学影响 [30] [33]。Costa等人首先使用EIT来确定在最大招募后的递减PEEP滴定过程中潮气顺应性的变化(使用EIT导出的潮气量和呼吸机导出的驱动压力),理论上认为,随着PEEP增加,顺应性恶化是由于过度坚持,随着PEEP降低,顺应性恶化是由于衰竭,理想的PEEP是尽量减少过度听诊和肺不张 [34]。EIT确实具有床边可用性、无辐射检测和无需静脉造影的性能优势。

这种监测能够实时显示胸部传导率的变化,并由此推断出每个肺中空气量变化的指数,从而响应临床医生的需求。EIT提供的生理信息使评估单侧肺功能、测量肺动脉压、监测呼吸剖面、分析上呼吸道形状的变化、估计胸液量、研究胸腔感兴趣区域的通气和灌注成为可能 [35]。

EIT是一种很有前途的成像技术,具有很大的潜力和应用前景。这是基于每个生物组织的电特性以特定方式变化的原理。通过在感兴趣区域周围放置电极获得的一系列测量数据重建图像。虽然EIT还没有被认为是一种常规的医学成像方式,但它为低成本的快速断层成像提供了很大的潜力。这项有前途的技术有多种医学应用,如脑活动监测、肺通气监测、心脏活动监测和癌症监测。EIT之所以引起人们的兴趣,有几个原因:该设备价格低廉,易于使用,无创性,并且获取数据的方式对患者来说是舒适的,因为它不使用辐射或需要患者准备。

EIT是一种新型、无创、无辐射的床边成像和监测工具,用于评估和可视化肺通气和灌注的逐呼吸动态区域分布。它目前主要用于研究,但最近越来越多地被证明是一种有用的临床工具,主要用于对患者(如肥胖患者)进行个体化PEEP滴定。

电阻抗断层扫描(EIT)是一种功能成像工具,可以量化通气均匀性 [36],以及局部肺泡募集和床边过度张张 [33]。因此,EIT可以深入了解局部通气和肺力学,为机械通气下的ARDS患者提供个体化PEEP。越来越多的临床研究已经证实,EIT可用于指导各种临床条件下的PEEP设置,如ARDS、急性低氧血症、全身麻醉和术后心脏手术患者床边 [21] [37] - [42]。电阻抗断层成像(EIT)是一种正在快速发展的无创无辐射技术,可用于监测床边肺通气和灌注的区域分布 [43]。EIT被认为是通过各种可能的技术确定患者最佳PEEP的有效手段 [34] [36] [44] [45] [46]。值得注意的是,EIT还有其他几种可能的临床应用,用于治疗接受机械通气的患者(即,指导无法安全转移到呼吸机的不稳定患者的诊断过程)。

5. 腹内压力

5.1. 腹内高压定义及分级

危重病人的血压通常在5~7 mmHg之间,腹内高压(IAH)是指腹内压(IAP)持续升高等于或高于12 mmHg [47]。根据IAP升高程度IAH可分为4级,12~15 mm Hg为I级,16~20 mm Hg为II级,21~25 mm Hg为III级,>25 mm Hg为IV级 [48]。

5.2. 腹内压力的测量

根据帕斯卡定律,由于腹内压及其内容物具有相对非压缩性、可流动性特点,因而可以在腹部各个部位测量腹内压。测量方法有经膀胱测压、经胃测压、经直肠测压、经下腔静脉测压等。测量膀胱内压可以客观反映腹内压,该方法简单易行、费用低廉,目前仍被大多数学者推荐为标准的腹内压测量方法 [49]。

5.3. 腹内压力对呼吸的影响

腹内高压会显著影响整个呼吸系统,而其核心病理生理过程就是腹内压增高导致膈肌上抬及继发胸腔内压力升高。首要表现为肺容积显著下降,Regli等 [50] 在动物模型中证实:腹内高压时肺容积下降的程度和腹内压水平成正比。但对于能够引起显著肺不张的压力水平,还缺乏有说服力的数据。除此之外,胸腔内压力升高还会继发死腔通气增加、肺内分流、呼吸系统顺应性下降、肺动脉后负荷增加等一系列问题 [51]。

腹内高压患者合并严重急性呼吸窘迫综合征(Acute respiratory distress syndrome, ARDS)时常需要呼吸机辅助呼吸 [47]。总体而言,肺保护通气策略依旧适用于这部分患者,但与非腹内高压患者亦有不同之处 [39]。同样出于肺保护的角度考虑,无创通气一般不适用于持续腹内高压合并ARDS的患者。传统的肺保护通气策略中,并未考虑腹内高压时的病理生理改变。如果一味限制平台压 < 30 cmH2O (1 cmH2O = 0.098 kPa),在腹内高压患者中容易导致呼气末肺泡塌陷。理想的解决方案是采用食道压测量以精确和连续地评估胸腔内压。在测量食道压的前提下,可以简单地采用吸气末跨肺平台压 < 25 cmH2O (平台压–胸腔内压),该指标可避免因平台压过高导致肺泡过度扩张等损伤 [52] [53]。

呼气末正压(PEEP)常用于急性呼吸窘迫综合征(ARDS),目的是打开塌陷的肺区并保持肺开放。然而,PEEP设置不当可能会导致肺组织进一步损伤。对于医生来说,在PEEP设置期间平衡区域招募和过度紧张仍然是一个挑战。PEEP可根据和/或呼吸顺应性进行调整;然而,这些整体参数并不能准确反映PEEP诱发的局部肺生理反应 [54]。基于区域呼吸特征的个性化PEEP设置越来越受到重视。

同样呼气末正压(positive end expiratory pressure, PEEP)的设定时,也必须考虑腹内高压导致的胸腔内压上升问题。遗憾的是,目前尚无可靠的临床证据证实食管压引导的PEEP设定或公式换算的PEEP设定能够改善患者预后。Regli [55] 等一项小型临床研究结果表明:PEEP等于腹内压水平时,可以最大限度改善氧合,15例患者入选。6例(41%)患者因低氧血症、低血压或气管袖漏而不能耐受PEEP = 100% IAP。PaO/FiO比值分别为234 (68)、271 (99)和329 (107)。只有基线和PEEP = 100% IAP之间存在显著差异(p = 0.009)。PEEP = 100% IAP不能很好地耐受,仅能轻微改善IAH通气患者的氧合。

但是多达41%的患者因低血压或气囊漏气等无法耐受该PEEP水平,而PEEP设定在50%腹内压水平时,虽然患者氧合指数稍低,但耐受情况良好。综上,PEEP的设定应更多依赖床旁连续观察,不能仅考虑氧合指数,需综合考虑患者的耐受度,肺顺应性等。

设置适当水平的呼气末正压(PEEP)是肺保护性通气的基础。呼气结束时,PEEP保持肺泡开放,从而减少肺不张和分流。然而,过度的PEEP可能会导致肺泡过度扩张。PEEP有助于维持充足的氧合,防止呼气末肺泡塌陷,并在不增加机械应变的情况下最大限度地减少肺不张,从而限制呼吸机诱发肺损伤的风险 [30] [36]。尽管如此,过度的PEEP可能会导致肺泡过度扩张,加重机械应力 [30],也会因为静脉回流减少和右心室后负荷增加而导致血流动力学损伤 [33]。

尽管人们越来越认识到个性化PEEP设置的必要性,但PEEP滴定的最佳方法仍然存在争议。虽然已经提出了几种基于患者肺力学 [56] [57]、经肺压力 [53] 或计算机断层扫描 [58] 的PEEP个体化技术,最简单且可能最扩散的方法仍然是针对动脉氧合的PEEP滴定。

Costa等人于2009年在两名因重症肺炎导致急性低氧性呼吸衰竭的插管患者中描述了EIT在PEEP滴定中的首次也是目前最广泛的应用 [34]。由于逐像素评估的局部潮气量与局部胸部阻抗变化密切相关,因此像素肺顺应性可以通过阻抗变化与驱动压力的比率来估计,即高原压力和PEEP之间的差异。Costa等人因此开发了一种基于EIT的算法,该算法可在最大肺复张后进行的递减PEEP试验期间估计局部肺顺应性的变化,并推测最高PEEP水平的顺应性丧失是肺泡过度张紧的结果,而最低PEEP水平的顺应性丧失是继发于肺泡塌陷的。由EIT曲线之间的交点确定的PEEP值(代表因塌陷或过度扩张导致的顺应性损失的累积百分比)被定义为最佳PEEP。事实上,该PEEP值确保了肺塌陷和过度扩张之间的最佳折衷。

目前已经提出了几种基于EIT的PEEP滴定方法。第一种描述的技术是在肺复张后的递减PEEP试验中估计局部肺顺应性的变化。最佳PEEP值由肺塌陷和过度扩张之间的最佳折衷表示。随后,第二种通过呼气末肺阻抗变化评估肺泡募集的技术得到了验证。最后,整体不均匀性指数和区域通风延迟这两个EIT衍生参数显示了令人满意的结果,选择最佳PEEP值作为表示最低整体不均匀性指数或最低区域通风延迟的值。总之,EIT是机械通气患者个体化PEEP的一种有前途的技术。EIT是否是实现这一目的的最佳技术,以及个性化PEEP对临床结果的总体影响仍有待确定。

文章引用

张金阁,甘桂芬. EIT技术在腹内高压患者机械通气中的应用研究进展
Research Progress of EIT Technique in Mechanical Ventilation of Patients with Intra-Abdominal Hypertension[J]. 临床医学进展, 2022, 12(10): 8969-8977. https://doi.org/10.12677/ACM.2022.12101297

参考文献

  1. 1. Napolitano, L. (2019) Intra-Abdominal Hypertension in the ICU: Who to Measure? How to Prevent? Critical Care Med-icine, 47, 608-609. https://doi.org/10.1097/CCM.0000000000003675

  2. 2. Holodinsky, J., et al. (2013) Risk Fac-tors for Intra-Abdominal Hypertension and Abdominal Compartment Syndrome among Adult Intensive Care Unit Pa-tients: A Systematic Review and Meta-Analysis. Critical Care, 17, Article No. R249. https://doi.org/10.1186/cc13075

  3. 3. Bronco, A., et al. (2021) Clinical Value of Electrical Impedance Tomography (EIT) in the Management of Patients with Acute Respiratory Failure: A Single Centre Experience. Physiological Meas-urement, 42, Article ID: 074003. https://doi.org/10.1088/1361-6579/ac0e85

  4. 4. Henderson, R. and Webster, J. (1978) An Impedance Camera for Spatially Specific Measurements of the Thorax. IEEE Transactions on Bio-Medical Engineering, 25, 250-254. https://doi.org/10.1109/TBME.1978.326329

  5. 5. Brown, B. and Seagar, A. (1987) The Sheffield Data Collection System. Clinical Physics and Physiological Measurement, 8, 91-97. https://doi.org/10.1088/0143-0815/8/4A/012

  6. 6. Zhao, Z., Fu, F. and Frerichs, I. (2020) Thoracic Electrical Im-pedance Tomography in Chinese Hospitals: A Review of Clinical Research and Daily Applications. Physiological Meas-urement, 41, Article ID: 04TR01. https://doi.org/10.1088/1361-6579/ab81df

  7. 7. Hsu, H., et al. (2021) Positive End-Expiratory Pressure Titration with Electrical Impedance Tomography and Pressure-Volume Curve: A Randomized Trial in Moderate to Severe ARDS. Physiological Measurement, 42, Article ID: 014002. https://doi.org/10.1088/1361-6579/abd679

  8. 8. Frerichs, I., Hahn, G. and Hellige, G. (1999) Thoracic Electrical Impedance Tomographic Measurements during Volume Controlled Ventilation-Effects of Tidal Volume and Positive End-Expiratory Pressure. IEEE Transactions on Medical Imaging, 18, 764-773. https://doi.org/10.1109/42.802754

  9. 9. Reifferscheid, F., et al. (2011) Regional Ventilation Distribution Determined by Electrical Impedance Tomography: Reproducibility and Effects of Posture and Chest Plane. Respirology, 16, 523-531. https://doi.org/10.1111/j.1440-1843.2011.01929.x

  10. 10. Krueger-Ziolek, S., et al. (2015) Positioning of Electrode Plane Systematically Influences EIT Imaging. Physiological Measurement, 36, 1109-1118. https://doi.org/10.1088/0967-3334/36/6/1109

  11. 11. Frerichs, I., et al. (2003) Distribution of Lung Ventilation in Spontaneously Breathing Neonates Lying in Different Body Positions. Intensive Care Medicine, 29, 787-794. https://doi.org/10.1007/s00134-003-1726-y

  12. 12. Heinrich, S., et al. (2006) Body and Head Position Effects on Re-gional Lung Ventilation in Infants: An Electrical Impedance Tomography Study. Intensive Care Medicine, 32, 1392-1398. https://doi.org/10.1007/s00134-006-0252-0

  13. 13. Lupton-Smith, A., et al. (2014) Challenging a Paradigm: Position-al Changes in Ventilation Distribution Are Highly Variable in Healthy Infants and Children. Pediatric Pulmonology, 49, 764-771. https://doi.org/10.1002/ppul.22893

  14. 14. Frerichs, I., et al. (1998) Monitoring Perioperative Changes in Distribution of Pulmonary Ventilation by Functional Electrical Impedance Tomography. Acta Anaesthesiologica Scandi-navica, 42, 721-726. https://doi.org/10.1111/j.1399-6576.1998.tb05308.x

  15. 15. Humphreys, S., et al. (2011) The Effect of Induction of Anesthesia and Intubation on End-Expiratory Lung Level and Regional Ventilation Distribution in Cardiac Children. Paediatric Anaesthesia, 21, 887-893. https://doi.org/10.1111/j.1460-9592.2011.03547.x

  16. 16. Yoshida, T., et al. (2013) Spontaneous Effort Causes Oc-cult Pendelluft during Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine, 188, 1420-1427. https://doi.org/10.1164/rccm.201303-0539OC

  17. 17. Frerichs, I., et al. (2001) Non-Invasive Radia-tion-Free Monitoring of Regional Lung Ventilation in Critically Ill Infants. Intensive Care Medicine, 27, 1385-1394. https://doi.org/10.1007/s001340101021

  18. 18. Blankman, P., et al. (2013) Ventilation Distribution Measured with EIT at Varying Levels of Pressure Support and Neurally Adjusted Ventilatory Assist in Patients with ALI. Intensive Care Medicine, 39, 1057-1062. https://doi.org/10.1007/s00134-013-2898-8

  19. 19. Mauri, T., et al. (2013) Topographic Distribution of Tidal Ventila-tion in Acute Respiratory Distress Syndrome: Effects of Positive End-Expiratory Pressure and Pressure Support. Critical Care Medicine, 41, 1664-1673. https://doi.org/10.1097/CCM.0b013e318287f6e7

  20. 20. Zhao, Z., et al. (2019) Detection of Pulmonary Oedema by Electrical Impedance Tomography: Validation of Previously Proposed Approaches in a Clinical Setting. Physiological Measurement, 40, Article ID: 054008. https://doi.org/10.1088/1361-6579/ab1d90

  21. 21. Heines, S., et al. (2019) Clinical Implementation of Electric Im-pedance Tomography in the Treatment of ARDS: A Single Centre Experience. Journal of Clinical Monitoring and Com-puting, 33, 291-300. https://doi.org/10.1007/s10877-018-0164-x

  22. 22. McCann, H., Pisano, G. and Beltrachini, L. (2019) Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topography, 32, 825-858. https://doi.org/10.1007/s10548-019-00710-2

  23. 23. Brovman, E., et al. (2018) Intraoperative Ventilation Patterns in Morbidly Obese Patients Undergoing Laparoscopic Bariatric Surgery. Journal of Laparoendoscopic & Advanced Surgi-cal Techniques. Part A, 28, 1463-1470. https://doi.org/10.1089/lap.2018.0297

  24. 24. Mellenthin, M., et al. (2019) The ACE1 Electrical Impedance Tomog-raphy System for Thoracic Imaging. IEEE Transactions on Instrumentation and Measurement, 68, 3137-3150. https://doi.org/10.1109/TIM.2018.2874127

  25. 25. Mansouri, S., et al. (2021) Electrical Impedance Tomogra-phy—Recent Applications and Developments. Journal of Electrical Bioimpedance, 12, 50-62. https://doi.org/10.2478/joeb-2021-0007

  26. 26. Liang, C., Li, Y. and Luo, J. (2016) A Novel Method to Detect Func-tional MicroRNA Regulatory Modules by Bicliques Merging. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13, 549-556. https://doi.org/10.1109/TCBB.2015.2462370

  27. 27. Lionheart, W. (2004) EIT Reconstruction Algorithms: Pitfalls, Challenges and Recent Developments. Physiological Measurement, 25, 125-142. https://doi.org/10.1088/0967-3334/25/1/021

  28. 28. Victorino, J., et al. (2004) Imbalances in Regional Lung Ventila-tion: A Validation Study on Electrical Impedance Tomography. American Journal of Respiratory and Critical Care Medicine, 169, 791-800. https://doi.org/10.1164/rccm.200301-133OC

  29. 29. Hinz, J., et al. (2003) End-Expiratory Lung Impedance Change Enables Bedside Monitoring of End-Expiratory Lung Volume Change. Intensive Care Medicine, 29, 37-43. https://doi.org/10.1007/s00134-002-1555-4

  30. 30. Sahetya, S., Goligher, E. and Brower, R. (2017) Fifty Years of Research in ARDS. Setting Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome. American Jour-nal of Respiratory and Critical Care Medicine, 195, 1429-1438. https://doi.org/10.1164/rccm.201610-2035CI

  31. 31. Pulletz, S., et al. (2006) Comparison of Different Methods to Define Regions of Interest for Evaluation of Regional Lung Ventilation by EIT. Physiological Measurement, 27, S115-S127. https://doi.org/10.1088/0967-3334/27/5/S10

  32. 32. Becher, T., et al. (2016) Functional Regions of In-terest in Electrical Impedance Tomography: A Secondary Analysis of Two Clinical Studies. PLOS ONE, 11, e0152267. https://doi.org/10.1371/journal.pone.0152267

  33. 33. Schmitt, J., et al. (2001) Positive End-Expiratory Pressure Titra-tion in Acute Respiratory Distress Syndrome Patients: Impact on Right Ventricular Outflow Impedance Evaluated by Pulmonary Artery Doppler Flow Velocity Measurements. Critical Care Medicine, 29, 1154-1158. https://doi.org/10.1097/00003246-200106000-00012

  34. 34. Costa, E., et al. (2009) Bedside Estimation of Recruitable Alveolar Collapse and Hyperdistension by Electrical Impedance Tomography. Intensive Care Medicine, 35, 1132-1137. https://doi.org/10.1007/s00134-009-1447-y

  35. 35. Franchineau, G., et al. (2017) Bedside Contribution of Electrical Impedance Tomography to Setting Positive End-Expi- ratory Pressure for Extracorporeal Membrane Oxygena-tion-Treated Patients with Severe Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 196, 447-457. https://doi.org/10.1164/rccm.201605-1055OC

  36. 36. Becher, T., et al. (2021) Individualization of PEEP and Tidal Volume in ARDS Patients with Electrical Impedance Tomography: A Pilot Feasibility Study. Annals of Intensive Care, 11, Article No. 89. https://doi.org/10.1186/s13613-021-00877-7

  37. 37. Karsten, J., et al. (2015) Positive End-Expiratory Pressure Titra-tion at Bedside Using Electrical Impedance Tomography in Post-Operative Cardiac Surgery Patients. Acta Anaesthesio-logica Scandinavica, 59, 723-732. https://doi.org/10.1111/aas.12518

  38. 38. van Der Zee, P., et al. (2020) Electrical Impedance Tomography for Positive End-Expiratory Pressure Titration in COVID-19-Related Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 202, 280-284. https://doi.org/10.1164/rccm.202003-0816LE

  39. 39. Liu, K., et al. (2019) PEEP Guided by Electrical Impedance Tomography during One-Lung Ventilation in Elderly Patients Un-dergoing Thoracoscopic Surgery. Annals of Translational Medicine, 7, 757. https://doi.org/10.21037/atm.2019.11.95

  40. 40. Zhao, Z., et al. (2019) Positive End-Expiratory Pressure Titration with Electrical Impedance Tomography and Pressure-Volume Curve in Severe Acute Respiratory Distress Syndrome. Annals of Intensive Care, 9, Article No. 7. https://doi.org/10.1186/s13613-019-0484-0

  41. 41. Fumagalli, J., et al. (2019) Lung Recruitment in Obese Patients with Acute Respiratory Distress Syndrome. Anesthesiology, 130, 791-803. https://doi.org/10.1097/ALN.0000000000002638

  42. 42. Sella, N., et al. (2020) Positive End-Expiratory Pressure Ti-tration in COVID-19 Acute Respiratory Failure: Electrical Impedance Tomography vs. PEEP/FiO2 Tables. Critical Care, 24, Article No. 540. https://doi.org/10.1186/s13054-020-03242-5

  43. 43. Frerichs, I., et al. (2017) Chest Electrical Impedance Tomogra-phy Examination, Data Analysis, Terminology, Clinical Use and Recommendations: Consensus Statement of the Transla-tional EIT Development Study Group. Thorax, 72, 83-93. https://doi.org/10.1136/thoraxjnl-2016-208357

  44. 44. Zhao, Z., et al. (2010) PEEP Titration Guided by Ventilation Homogeneity: A Feasibility Study Using Electrical Impedance Tomography. Critical Care, 14, Article No. R8. https://doi.org/10.1186/cc8860

  45. 45. Muders, T., et al. (2012) Tidal Recruitment Assessed by Electrical Impedance Tomography and Computed Tomography in a Porcine Model of Lung Injury. Critical Care Medicine, 40, 903-911. https://doi.org/10.1097/CCM.0b013e318236f452

  46. 46. Eronia, N., et al. (2017) Bedside Selection of Positive End-Expiratory Pressure by Electrical Impedance Tomography in Hypoxemic Patients: A Feasibility Study. Annals of In-tensive Care, 7, Article No. 76. https://doi.org/10.1186/s13613-017-0299-9

  47. 47. Regli, A., Pelosi, P. and Malbrain, M. (2019) Ventilation in Pa-tients with Intra-Abdominal Hypertension: What Every Critical Care Physician Needs to Know. Annals of Intensive Care, 9, Article No. 52. https://doi.org/10.1186/s13613-019-0522-y

  48. 48. Caldas, B. and Ascenção, A. (2020) Protocols for Diagnosis and Management of Intra-Abdominal Hypertension in Intensive Care Units. Revista Do Colegio Brasileiro De Cirurgioes, 47, e20202378. https://doi.org/10.1590/0100-6991e-20202415

  49. 49. De Laet, I., Malbrain, M. and De Waele, J. (2020) A Clini-cian’s Guide to Management of Intra-Abdominal Hypertension and Abdominal Compartment Syndrome in Critically Ill Patients. Critical Care, 24, Article No. 97. https://doi.org/10.1186/s13054-020-2782-1

  50. 50. Regli, A., et al. (2012) Matching Positive End-Expiratory Pres-sure to Intra-Abdominal Pressure Prevents End-Expiratory Lung Volume Decline in a Pig Model of Intra-Abdominal Hypertension. Critical Care Medicine, 40, 1879-1886. https://doi.org/10.1097/CCM.0b013e31824e0e80

  51. 51. Pelosi, P., Quintel, M. and Malbrain, M. (2007) Effect of Intra-Abdominal Pressure on Respiratory Mechanics. Acta Clinica Belgica, 62, 78-88. https://doi.org/10.1179/acb.2007.62.s1.011

  52. 52. Mietto, C., Malbrain, M. and Chiumello, D. (2015) Transpulmo-nary Pressure Monitoring during Mechanical Ventilation: A Bench-to-Bedside Review. Anaesthesiology Intensive Ther-apy, 47, S27-S37. https://doi.org/10.5603/AIT.a2015.0065

  53. 53. Talmor, D., et al. (2008) Mechanical Ventilation Guided by Esopha-geal Pressure in Acute Lung Injury. The New England Journal of Medicine, 359, 2095-2104. https://doi.org/10.1056/NEJMoa0708638

  54. 54. Cavalcanti, A., et al. (2017) Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients with Acute Respiratory Distress Syn-drome: A Randomized Clinical Trial. JAMA, 318, 1335-1345. https://doi.org/10.1001/jama.2017.14171

  55. 55. Regli, A., et al. (2018) Positive End-Expiratory Pressure Adjusted for Intra-Abdominal Pressure—A Pilot Study. Journal of Critical Care, 43, 390-394. https://doi.org/10.1016/j.jcrc.2017.10.012

  56. 56. Kallet, R. (2016) Should PEEP Titration Be Based on Chest Mechanics in Patients with ARDS? Respiratory Care, 61, 876-890. https://doi.org/10.4187/respcare.04657

  57. 57. Mercat, A., et al. (2008) Positive End-Expiratory Pressure Setting in Adults with Acute Lung Injury and Acute Respiratory Distress Syndrome: A Randomized Controlled Trial. JAMA, 299, 646-655. https://doi.org/10.1001/jama.299.6.646

  58. 58. Cressoni, M., et al. (2014) Compressive Forces and Computed To-mography-Derived Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome. Anesthesiology, 121, 572-581. https://doi.org/10.1097/ALN.0000000000000373

期刊菜单