Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 68407 , 8 pages
10.12677/ACM.2023.1371504

2型糖尿病患者C反应蛋白与肾脏病变的 相关性研究

辛宇,刘传峰*,王颜刚#

青岛大学附属医院内分泌与代谢病科,山东 青岛

收稿日期:2023年6月6日;录用日期:2023年7月1日;发布日期:2023年7月7日

摘要

目的:探讨2型糖尿病(diabetes mellitus type 2, T2DM)患者C反应蛋白(C-reactive protein, CRP)与肾脏病变的关系,探讨CRP是否与糖尿病患者肾功能下降相关。方法:青岛大学医学院附属医院共招募6238名T2DM患者。通过调整潜在混杂变异后的逻辑回归分析,得到了与CRP四分位数相关的优势比(OR)和相应的95%置信区间(CI)。结果:根据CRP的四分位数,以CRP等于0.5、1.5、3.11切点,将CRP分为Q1、Q2、Q3、Q4组,Q1中T2DM患者的肾小球滤过率发生下降的概率几乎都大于其他三组(CKD2组:46.2% vs 34.38%,32.18%,33.61%,p < 0.05;CKD3组:23.19% vs 4.98%,4.37%,13.08%,p < 0.05;CKD4组:3.38% vs 2.17%,1.3%,2.85%,p < 0.05)。与Q4相比,Q1在CKD2、3、4组的OR值分别为2.613、3.37、2.259,p均< 0.05;而Q3在2、3、4组的OR值分别为0.797、0.276、0.378,p均< 0.05。调整收缩压、舒张压、年龄、高密度脂蛋白、低密度脂蛋白、胆固醇、尿酸后,与Q4相比,Q1在CKD2、3、4组的OR值分别为2.701、3.363、2.201,p值均< 0.05;而Q2、Q3在CKD2、3、4组的OR值均小于1且p < 0.05。在研究人群中,CRP与T2DM患者肾小球滤过率的水平呈U型关系。结论:在研究人群中,CRP水平与肾小球滤过率下降呈密切相关,这可能意味着,当CRP < 0.5 mg/L或>3.11 mg/L时是独立危险因素。

关键词

C反应蛋白,2型糖尿病,肾小球滤过率

Correlation Study between C-Reactive Protein and Renal Lesions in Patients with Type 2 Diabetes Mellitus

Yu Xin, Chuanfeng Liu*, Yangang Wang#

Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Jun. 6th, 2023; accepted: Jul. 1st, 2023; published: Jul. 7th, 2023

ABSTRACT

Objective: To investigate the relationship between C-reactive protein (CRP) and renal lesions in type 2 diabetes mellitus (T2DM), and whether CRP is associated with the renal function decline in diabetic patients. Methods: A total of 6238 T2DM patients were recruited from the Affiliated Hospital of Qingdao University School of Medicine. The odds ratio (OR) and the corresponding 95% confidence interval (CI) were obtained by logistic regression analysis after adjusting for potential confounding variants. Results: According to the quartile of the CRP, with CRP equal to 0.5, 1.5, 3.11 cut-points, CRP in groups Q1, Q2, Q3 and Q4, the probability of a decline in T2DM patients in Q1 was almost all greater than that in the other three groups (CKD2:46.2% vs34.38%, 32.18%, 33.61%, P < 0.05; CKD3 group: 23.19% vs 4.98%, 4.37%, 13.08%, p < 0.05; CKD4 group: 3.38% vs 2.17%, 1.3%, 2.85%, p < 0.05). Compared with Q4, the OR of Q1 in CKD2, 3 and 4 was 2.613, 3.37 and 2.259 respectively, all p < 0.05, while the OR of Q3 in groups 2, 3 and 4 was 0.797, 0.276 and 0.378 respectively and p < 0.05. After adjusting for systolic blood pressure, diastolic blood pressure, age, HDL, LDL, cholesterol, and uric acid, Q1 in CKD2 were 2.701 and 2.201 and 3.363, respectively, with p values < 0.05, compared with the Q4, while the Q 1 and Q2 in CKD2, 3 and 4 groups were less than 1 and p < 0.05. CRP and the level of glomerular filtration rate in T2DM patients in the study population. Conclusions: CRP levels were strongly associated with decreased glomerular filtration rate in the study population, which could be an independent risk factor when CRP < 0.5 mg/L or >3.11 mg/L.

Keywords:C-Reactive Protein, Type 2 Diabetes Mellitus, Glomerular Filtration Rate

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

糖尿病肾病(Diabetic Kidney Disease, DKD)是2型糖尿病(diabetes mellitus type 2, T2DM)最常见的并发症,同时也是终末期肾病的主要病因之一 [1] ,随着糖尿病患病率的增加,我国DKD患者也由2010年的19.5%上升到2015年的24.3% [2] 。DKD的发生与多种因素相关,包括代谢紊乱 [3] 、氧化应激 [4] 、炎症细胞和介质浸润 [5] 、自噬 [6] 、糖基化产物累积等 [7] ,其中,炎性反应占据重要地位,比如:分泌趋化因子、巨噬细胞浸润以及多种炎症蛋白表达增加 [8] [9] [10] 。C反应蛋白(C-reactive protein, CRP)作为是一种与炎症反应相关的蛋白,其基线水平的增高会引起脑血管病(cerebrovascular disease, CVD)事件发生率进行性增加 [11] 以及微血管病变增加 [12] ,但其在慢性肾脏病(Chronic kidney disease, CKD)进展中发挥的作用尚有争议,目前有些试验可以得出CRP为CKD的独立危险因素 [13] [14] [15] ,而有一些试验却不会 [16] [17] ,且在低水平情况下与肾脏病变关系尚不明确。本研究旨在研究T2DM患者中CRP水平与肾小球滤过率水平下降的关系。

2. 材料与方法

2.1. 研究人群

我们在青岛大学医学院附属医院建立了T2DM住院患者数据库。分析数据来自2010年至2022年间数据库中的6238名2型糖尿病患者。符合美国糖尿病协会(ADA) 2021标准 [18] 的纳入标准是:HbA1c ≥ 6.5%,或空腹血糖(FPG) ≥ 126 mg/dL (7.0 mmol/L),或在口服葡萄糖耐量试验(OGTT)中2小时血糖 ≥ 200 mg/dL (11.1 mmol/L),或随机血浆葡萄糖 ≥ 200 mg/dL (11.1 mmol/L)。CRP > 5 mg/L,年龄 < 18岁或>80岁,T2DM急性并发症,原发性肾脏疾病,继发性肾脏疾病,严重心力衰竭,严重肝病,肿瘤、血液系统疾病如淋巴瘤、白血病、不明原因造血功能异常、感染等的参与者被排除在外。该方案按照赫尔辛基宣言设计,并经青岛大学医学院附属医院伦理委员会批准。所有参与者均提供书面知情同意书。

2.2. 数据收集

患者的人体测量参数包括年龄,身高,体重,饮酒和吸烟状况以及血压。患者休息五分钟后测量血压(BP),并连续两天或更长时间取平均值。体重指数(BMI)计算为体重(千克)除以身高(米)的平方。通过实验室检查,我们测量了以下指标:血常规、CRP、FPG,HbA1c,胰岛功能c肽(考虑部分患者应用外源性胰岛素)、脂质谱包括低密度脂蛋白胆固醇(LDL-c),高密度脂蛋白胆固醇(HDL-c),游离脂肪酸(FFA),甘油三酯(TG),总胆固醇(TC),肝肾功。禁食至少8小时后,从肘正中静脉采集血液样本,运送到实验室进行检测。

2.3. DKD的评估

根据我国《中国糖尿病肾脏病防治指南(2021年版)》,DKD是指由糖尿病所致的慢性肾脏病,主要表现为尿微量白蛋白/肌酐比值(UACR) ≥ 30 mg/g和(或)估算肾小球滤过率(eGFR) < 60 mL/min/1.73m2 [19] ,即DKD对应CKD3、4、5期。采用CKD-EPI公式 [20] 分别对男性和女性患者eGFR进行评估。并根据eGFR值对所有患者按照CKD标准进行分组,共计分为四组:Normal组(eGFR ≥ 90),CKD2组(90 > eGFR ≥ 60),CKD3组(60 > eGFR ≥ 30),CKD4组(eGFR < 30) [19] 。

3. 统计分析

使用SPSS软件版本24.0 (SPSS IBM Corporation, Armonk, NY, USA)进行统计分析。符合正态分布的连续性变量以 X ¯ ± S 表示,采用独立样本t检验来比较组间的差异;分类变量以百分比(%)表示,采用卡方(χ2)检验比较组间差异;应用卡方检验或Kruskal-Wallis检验比较CRP四分位数分组的临床特征;取CRP四分位数,应用logistic回归进行多因素回归分析,在调整收缩压、舒张压、年龄、高密度脂蛋白、低密度脂蛋白、胆固醇、尿酸等混杂因素后得到最终回归方程。

4. 结果

各组患者基线特征见表1,与CKD2、3、4组相比,Normal组有更高的CRP水平(p < 0.05)以及更高的胆固醇、高密度脂蛋白、低密度脂蛋白(p < 0.05),年龄,舒张压水平较低(p < 0.05),而收缩压、游离脂肪酸则无显著差异。

表2为T2DM患者根据CRP四分位数分组的临床特征,以CRP等于0.5、1.5、3.11位切点,将患者分为四组,Q1~Q4。与其他组相比,Q1组发生CKD的风险较高(CKD2组:46.2% vs 34.38%,32.18%,33.61%,p < 0.05;CKD3组:23.19% vs 4.98%,4.37%,13.08%,p < 0.05;CKD4组:3.38% vs 2.17%,1.3%,2.85%,p < 0.05)。

Table 1. Patient baseline characteristics table

表1. 患者基线特征表

Table 2. Clinical characteristics of the CRP quartile grouping

表2. CRP四分位数分组的临床特征

注:应用卡方检验或Kruskal-Wallis检验比较CRP四分位数分组的临床特征。

Logistics回归的结果为表3表4。Q4相比,Q1在CKD2、3、4组的OR值分别为2.613 (95%CL: 2.22, 3.075)、3.37 (95%CL: 2.736, 4.151)、2.259 (95%CL: 1.489, 3.427),p均 < 0.05;Q2在CKD2、3、4组的OR值分别为:0.905 (95%CL: 0.776, 1.055, p = 0.203)、0.337 (95%CL: 0.255, 0.445, p < 0.05)、0.675 (95%CL: 0.427, 1.066, p = 0.092);Q3在CKD2、3、4组的OR值分别为0.797 (95%CL: 0.683, 0.93)、0.276 (95%CL: 0.206, 0.37)、0.378 (95%CL: 0.221, 0.647),p均 < 0.05。在调整收缩压、舒张压、年龄、高密度脂蛋白、低密度脂蛋白、胆固醇、尿酸等混杂因素后,与Q4相比,Q1在CKD2、3、4组的OR值分别为2.701 (95%CL: 2.275, 3.205)、3.363 (95%CL: 2.714, 4.168)、2.201 (95%CL: 1.445, 3.352),p值均 < 0.05;而Q2在CKD2、3、4组的OR值分别为:0.829 (95%CL: 0.705, 0.975, p = 0.023)、0.309 (95%CL: 0.233, 0.41, p < 0.05)、0.652 (95%CL: 0.441, 1.034, p = 0.069);Q3在CKD2、3、4组的OR值分别为:0.677 (95%CL: 0.575, 0.799)、0.241 (95%CL: 0.179, 0.324)、0.353 (95%CL: 0.206, 0.606) p值均 < 0.05。在研究人群中,CRP与T2DM患者肾脏病变的进展呈U型关系。

Table 3. Pre-correction Logistics regression analysis

表3. 矫正前Logistics回归分析

Table 4. Post-corrected Logistics regression analysis

表4. 矫正后Logistics回归分析

注:收缩压、舒张压、年龄、高密度脂蛋白、低密度脂蛋白、胆固醇、尿酸被纳入矫正。

5. 讨论

在这项研究中,我们一共招募了2010年~2022年于青岛大学附属医院住院治疗的6238名2型糖尿病患者。在这项研究中,DKD的患病率为13.81%,略低于目前中国DKD发病率,可能与该研究时间跨度较长有关。根据我们的结果显示,在调整收缩压、舒张压、年龄、高密度脂蛋白、低密度脂蛋白、胆固醇、尿酸后,在CRP ≤ 5 mg/L时,随着CRP水平的增高T2DM患者发生肾脏病变的可能性先减小,后增大,这个结果在CKD各个时期均一致。

既往研究表明,炎症在糖尿病患者肾脏病变的发展中起重要作用 [17] [21] ,包括巨噬细胞、NF-κB通路、JAK/STAT以及炎性细胞因子 [22] 等,NF-κB是糖尿病肾脏炎症过程的关键转录因子,可通过JAK/STAT激活。激活后的NF-κB通路可刺激促炎细胞因子、趋化因子和粘附分子的转录,如ICAM-1 [23] 、IL-6 [24] 、IL-18 [25] 等,这些炎性标志物以及炎症相关蛋白被证实与CKD发展相关。ICAM-1蛋白与白细胞粘附蛋白-1 (LFA-1)结合,促进淋巴细胞转移至肾小球细胞和肾单位肾小管周围毛细血管中,导致肾小球和肾小管损伤,蛋白质被释放到尿液中 [26] 。IL-6促进中性粒细胞浸润小管间质,影响细胞外基质动力学,导致肾小球基底膜增厚、足细胞肥大以及细胞周期阻滞 [27] 。IL-18刺激干扰素γ等细胞因子的释放,增加粘附分子的表达,诱导内皮细胞凋亡 [28] 。针对NF-κB [29] 、PI3K/ATK [30] 等炎症通路的治疗能够在一定程度上抑制CKD的进展。

CRP是一种高度保守的蛋白,在炎症、感染情况下水平迅速升高 [31] ,被认为是心血管病变的预测指标 [32] 。此外,CRP与微血管病变同样密切 [33] 。在此之前,CRP是否与CKD独立相关尚无明确定论,部分研究发现,CRP可以增强TGF-β/SMAD3和NF-κB信号通路的激活 [34] ,这可能是其促进肾病炎症和纤维化的机制。此外,CRP也可通过导致脂代谢紊乱以及增加糖基化产物的表达来间接促进肾脏病变的进展。也有一部分研究发现,尽管糖尿病组和非糖尿病组之间CRP存在差异,但其水平与肾损伤并无关系 [17] 。

但以上研究均无法解释为何CRP < 0.5 mg/L时与CKD发病率呈负相关,其发病率甚至高于CRP > 3.11 mg/L时的发病率。我们猜测,一方面可能是因为即使CRP > 3.11 mg/L,机体并未处于一个炎症状态,肾脏未受到炎症打击,且根据既往研究,CRP > 6.9 mg/L时,其终末期肾病发生率显著高于CRP < 6.9 mg/L [15] 。另一方面的原因可能是CRP可以上调缝隙横膈膜蛋白neaffin和CD2AP的表达,以及结构蛋白ezrin和podocalyxin-like protein-1的表达,这些蛋白通过磷脂酰肌醇-3 (PI-3)激酶途径参与信号转导。CRP可以降低caspase-3酶活性,上调了抗凋亡蛋白Bcl-2的表达 [35] ,所以,当CRP减少时,也导致抗凋亡蛋白Bcl-2表达减少。这似乎可以解释极低水平CRP有着较高的CKD发病率。

简而言之,该项研究发现在CRP处于0~5 mg/L区间时,其与CKD发生率呈U型关系,该关系在CKD各阶段均适用。CRP作为一个简单获取的预测指标,可以辅助T2DM患者进行肾脏结局的评估。

这项研究有几个局限性需要解释。首先,这项回顾性研究无法推断因果关系。其次,所有招募的患者都住院治疗,因此结果不能代表该国其他地区。第三,该研究仅研究CRP区间在0~5 mg/L的范围,未考虑大于该区间的患者以及感染情况下造成的影响,未来可能需要更广泛的试验进行进一步验证。

致谢

我们感谢所有参与本研究的受试者以及参与本研究的所有研究人员和合作者。

利益冲突

作者声明他们没有利益冲突。

文章引用

辛 宇,刘传峰,王颜刚. 2型糖尿病患者C反应蛋白与肾脏病变的相关性研究
Correlation Study between C-Reactive Protein and Renal Lesions in Patients with Type 2 Diabetes Mellitus[J]. 临床医学进展, 2023, 13(07): 10765-10772. https://doi.org/10.12677/ACM.2023.1371504

参考文献

  1. 1. Cefalu, W.T., Xu, D., Long, J., Shi, Y., Zhang, L., Wang, H., Levin, A. and Zhao, M.-H. (2016) Update and Next Steps for Real-World Translation of Interventions for Type 2 Diabetes Prevention: Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care, 39, 1186-1201. https://doi.org/10.2337/dc16-0873

  2. 2. Huang, Y.M., et al. (2019) Spectrum of Chronic Kidney Disease in China: A National Study Based on Hospitalized Patients from 2010 to 2015. Nephrology, 24, 725-736. https://doi.org/10.1111/nep.13489

  3. 3. Sagoo, M. and Gnudi, L. (2020) Diabetic Nephropathy: An Overview. In: Gnudi, L. and Long, D., Eds., Diabetic Nephropathy, Methods in Molecular Biology, Vol. 2067, Humana, New York, 3-7. https://doi.org/10.1007/978-1-4939-9841-8_1

  4. 4. Winiarska, A., et al. (2021) Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. 22, Article 10822. https://doi.org/10.3390/ijms221910822

  5. 5. Liu, Y., Uruno, A., Saito, R., Matsukawa, N., Hishinuma, E., Saigusa, D., Liu, H. and Yamamoto, M. (2022) Nrf2 Deficiency Deteriorates Diabetic Kidney Disease in Akita Model Mice. Redox Biology, 58, Article ID: 102525. https://doi.org/10.1016/j.redox.2022.102525

  6. 6. Ren, H., Shao, Y., Wu, C., Ma, X., Lv, C. and Wang, Q. (2020) Metformin Alleviates Oxidative Stress and Enhances Autophagy in Diabetic Kidney Disease via AMPK/SIRT1-FoxO1 Pathway. Molecular and Cellular Endocrinology, 500, Article ID: 110628. https://doi.org/10.1016/j.mce.2019.110628

  7. 7. Zheng, W., Guo, J. and Liu, Z.S. (2021) Effects of Metabolic Memory on Inflammation and Fibrosis Associated with Diabetic Kidney Disease: An Epigenetic Perspective. Clinical Epigenetics, 13, Article No. 87. https://doi.org/10.1186/s13148-021-01079-5

  8. 8. Hojs, R., Ekart, R., Bevc, S. and Hojs, N. (2016) Markers of In-flammation and Oxidative Stress in the Development and Progression of Renal Disease in Diabetic Patients. Nephron, 133, 159-162. https://doi.org/10.1159/000447434

  9. 9. Tian, S. and Chen, S.Y. (2015) Macrophage Polarization in Kidney Diseases. Macrophage, 2, e679.

  10. 10. Niewczas, M.A., et al. (2019) A Signature of Circulating Inflammatory Proteins and Development of End-Stage Renal Disease in Diabetes. Nature Medicine, 25, 805-813. https://doi.org/10.1038/s41591-019-0415-5

  11. 11. Dong, Y., et al. (2019) High-Sensitivity C Reactive Protein and Risk of Cardiovascular Disease in China—CVD Study. Journal of Epidemiology & Community Health, 73, 188-192. https://doi.org/10.1136/jech-2018-211433

  12. 12. Hermans, M.P., Ahn, S.A. and Rousseau, M.F. (2019) Increased CRP: An Extended Biomarker of Microvascular Risk in Men with Type 2 Diabetes. Journal of Diabetes and its Com-plications, 33, Article ID: 107413. https://doi.org/10.1016/j.jdiacomp.2019.107413

  13. 13. Kugler, E., et al. (2015) C Reactive Protein and Long-Term Risk for Chronic Kidney Disease: A Historical Prospective Study. Journal of Nephrology, 28, 321-327. https://doi.org/10.1007/s40620-014-0116-6

  14. 14. Ren, H., Wu, C., Shao, Y., Liu, S., Zhou, Y. and Wang, Q. (2020) Correlation between Serum miR-154-5p and Urinary Albumin Excretion Rates in Patients with Type 2 Diabetes Mellitus: A Cross-Sectional Cohort Study. Frontiers of Medicine, 14, 642-650. https://doi.org/10.1007/s11684-019-0719-3

  15. 15. Mc Causland, F.R., et al. (2016) C-Reactive Protein and Risk of ESRD: Results From the Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT). American Journal of Kidney Diseases, 68, 873-881. https://doi.org/10.1053/j.ajkd.2016.07.022

  16. 16. Shankar, A., et al. (2011) Markers of Inflammation Predict the Long-Term Risk of Developing Chronic Kidney Disease: A Population-Based Cohort Study. Kidney International, 80, 1231-1238. https://doi.org/10.1038/ki.2011.283

  17. 17. Cao, L., et al. (2019) Inflammation and Kidney Injury in Dia-betic African American Men. Journal of Diabetes Research, 2019, Article ID: 5359635. https://doi.org/10.1155/2019/5359635

  18. 18. Luo, F., et al. (2021) Systemic Immune-Inflammation Index Predicts the Outcome after Aneurysmal Subarachnoid hemorrhage. (Preprint) https://doi.org/10.21203/rs.3.rs-687534/v1

  19. 19. Microvascular Complications Group of Chinese Diabetes (2021) [Clinical Guideline for the Prevention and Treatment of Diabetic Kidney Disease in China (2021 Edition)]. Chinese Journal of Diabetes Mellitus, 13, 762-784. (In Chinese)

  20. 20. Sudchada, P. and Laehn, S. (2016) Comparisons of GFR Estimation Using the CKD Epidemiology Collaboration (CKD-EPI) Equation and other Creatinine-Based Equations in Asian Population: A Systematic Review. International Urology and Nephrology, 48, 1511-1517. https://doi.org/10.1007/s11255-016-1357-1

  21. 21. Navarro-González, J.F., et al. (2011) Inflammatory Molecules and Pathways in the Pathogenesis of Diabetic Nephropathy. Nature Reviews Nephrology, 7, 327-340. https://doi.org/10.1038/nrneph.2011.51

  22. 22. Pérez-Morales, R.E., et al. (2019) Inflammation in Diabetic Kidney Disease. Nephron, 143, 12-16. https://doi.org/10.1159/000493278

  23. 23. Chow, F.Y., et al. (2005) Intercellular Adhesion Molecule-1 Deficiency Is Protective against Nephropathy in Type 2 Diabetic db/db Mice. Journal of the American Society of Nephrology, 16, 1711-1722. https://doi.org/10.1681/ASN.2004070612

  24. 24. Choudhary, N. and Ahlawat, R.S. (2008) Interleukin-6 and C-Reactive Protein in Pathogenesis of Diabetic Nephropathy: New Evidence Linking Inflammation, Glycemic Control and Microalbuminuria. Iran J Kidney Dis, 2, 72-79.

  25. 25. Zhou, Y., et al. (2019) Expression of Urokinase-Type Plas-minogen Activator Receptor and Its Soluble Form in Type 2 Diabetic Kidney Disease. Archives of Medical Research, 50, 249-256. https://doi.org/10.1016/j.arcmed.2019.08.007

  26. 26. Gu, H., et al. (2012) Association of Intercellular Ad-hesion Molecule 1 (ICAM1) with Diabetes and Diabetic Nephropathy. Frontiers in Endocrinology, 3, Article 179. https://doi.org/10.3389/fendo.2012.00179

  27. 27. Sanchez-Alamo, B., et al. (2022) Serum Interleukin-6 Levels Pre-dict Kidney Disease Progression in Diabetic Nephropathy. Clinical Nephrology, 97, 1-9. https://doi.org/10.5414/CN110223

  28. 28. Al-Rubeaan, K., Nawaz, S.S., Youssef, A.M., Al Ghonaim, M. and Sid-diqui, K. (2019) IL-18, VCAM-1 and P-selectin as Early Biomarkers in Normoalbuminuric Type 2 Diabetes Patients. Future Medicine, 13, 467-478. https://doi.org/10.2217/bmm-2018-0359

  29. 29. Zhong, Y., et al. (2019) Arctigenin Attenuates Diabetic Kidney Dis-ease through the Activation of PP2A in Podocytes. Nature Communications, 10, Article No. 4523. https://doi.org/10.1038/s41467-019-12433-w

  30. 30. Das, N.A., et al. (2020) Empagliflozin Reduces High Glu-cose-Induced Oxidative Stress and miR-21-Dependent TRAF3IP2 Induction and RECK Suppression and Inhibits Hu-man Renal Proximal Tubular Epithelial Cell Migration and Epithelial-to-Mesenchymal Transition. Cellular Signalling, 68, Article ID: 109506. https://doi.org/10.1016/j.cellsig.2019.109506

  31. 31. Du Clos, T.W. and Mold, C. (2004) C-Reactive Protein: An Ac-tivator of Innate Immunity and a Modulator of Adaptive Immunity. Immunologic Research, 30, 261-277. https://doi.org/10.1385/IR:30:3:261

  32. 32. Krychtiuk, K.A., Kastl, S.P., Speidl, W.S. and Wojta, J. (2013) Inflamma-tion and Coagulation in Atherosclerosis. Hamostaseologie, 33, 269-282. https://doi.org/10.5482/HAMO-13-07-0039

  33. 33. Wang, L.-K., Wang, H., Wu, X.-L., Shi, L., Yang, R.-M. and Wang, Y.-C. (2020) Relationships among Resistin, Adiponectin and Leptin and Microvascular Complications in Patients with Type 2 Diabetes Mellitus. Journal of International Medical Research, 48. https://doi.org/10.1177/0300060519870407

  34. 34. You, Y.K., Wu, W.-F., Huang, X.-R., Li, H.-D., Ren, Y.-P., Zeng, J.-C. Chen, H. and Lan, H.Y. (2021) Deletion of Smad3 Protects against C-Reactive Protein-Induced Renal Fibro-sis and Inflammation in Obstructive Nephropathy. International Journal of Biological Sciences, 17, 3911-3922. https://doi.org/10.7150/ijbs.62929

  35. 35. Pawluczyk, I.Z., Yang, B., Patel, S.R., Saleem, M.A. and Topham, P.S. (2011) Low-Level C-Reactive Protein Levels Exert Cytoprotective Actions on Human Podocytes. Nephrology Dialysis Transplantation, 26, 2465-2475. https://doi.org/10.1093/ndt/gfq830

  36. NOTES

    *Email: liucf2015@126.com

    #通讯作者Email: wangyg@qdu.edu.cn

期刊菜单