Open Journal of Natural Science
Vol. 12  No. 01 ( 2024 ), Article ID: 79734 , 6 pages
10.12677/OJNS.2024.121020

山竹中α-倒捻子素的生物活性研究进展

李昊然,梁啸

辽宁大学药学院,辽宁 沈阳

收稿日期:2023年12月6日;录用日期:2024年1月16日;发布日期:2024年1月23日

摘要

山竹(Garcinia mangostana L.)是一种具有营养和药用价值的热带水果,在传统医学中,其果皮常被用于治疗溃疡、炎症、疼痛、腹泻、痢疾和创伤等。山竹广泛的生物活性可能与山竹中的主要活性成分α-倒捻子素有关。α-倒捻子素是山竹果的主要成分,在山竹的多个部位均有分布,包括果壳,果实和树皮等,近年来受到广泛关注。然而,目前还缺乏对α-倒捻子素生物活性的全面总结,这不利于α-倒捻子素的开发。为进一步促进山竹的商业化,本文综述了近年来有关α-倒捻子素生物活性及其分子机制的研究报道,为α-倒捻子素的进一步开发利用提供理论依据。

关键词

山竹果,氧杂蒽酮,生物活性,α-倒捻子素

Research Progress on the Bioactivity of α-Mangostin in Mangosteen

Haoran Li, Xiao Liang

School of Pharmacy Sciences, Liaoning University, Shenyang Liaoning

Received: Dec. 6th, 2023; accepted: Jan. 16th, 2024; published: Jan. 23rd, 2024

ABSTRACT

The mangosteen (Garcinia mangostana L.) is a tropical fruit with nutritional and medicinal properties. In traditional medicine, its fruit peel is often used to treat ulcers, inflammation, pain, diarrhea, dysentery and trauma. The wide range of bioactivity of mangosteen may be related to α-mangostin, the main active ingredient in mangosteen. α-Mangostin is the main component of mangosteen, which exists in various parts of mangosteen, including the shell, fruit and bark, etc., and it has received extensive attention in recent years. However, there is a lack of comprehensive summary of the ioactivity of α-mangostin, which is not conducive to the development of α-mangostin. In order to further promote the commercialization of mangosteen, the recent reports on the ioactivity and molecular mechanism of α-mangostin were reviewed in this paper, which provided theoretical basis for the further development and utilization of α-mangostin.

Keywords:Mangosteen, Xanthone, Bioactivity, α-Mangostin

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

越来越多的证据表明,水果和水果提取物可以显著增进人类的健康和福祉。除了提供营养,水果还可以促进健康,甚至治疗疾病 [1] [2] 。山竹(Garcinia mangostana L.)是山竹科的一员,被称为“水果女王”。它美味可口,营养丰富,并具有许多生物活性。在传统医学中,山竹果被用于治疗炎症、感染、疼痛、创伤和溃疡等疾病 [3] 。山竹的生物活性可能与其主要成分α-倒捻子素有关。山竹的果实、果皮、树皮、花和种壳中都含有α-倒捻子素。目前,α-倒捻子素相关的综述主要集中于介绍其抗癌活性。然而,α-倒捻子素具有多种生物活性,包括抗癌、抗炎、免疫调节、抗病毒、抗菌、抗糖尿病、抗阿尔茨海默病和保护肝脏等。因此,本文将从以上方面对α-倒捻子素的生物活性及其分子机制进行综述。

2. 抗癌活性

α-倒捻子素对多种癌种具有抑制作用,包括乳腺癌,骨肉瘤,肝癌,口腔癌,子宫颈癌,胰腺癌和肺癌等。此外α-倒捻子素也可用于癌症辅助治疗,在体内实验中亦显示出不错的效果。

2.1. 乳腺癌

乳腺癌是造成妇女疾病负担的主要癌症,影响着全世界许多妇女 [4] 。α-倒捻子素对磷脂酰肌醇-3-激酶/蛋白激酶B (PI3K/AKT)信号通路有调控作用,α-倒捻子素与视黄醛X受体α (RXRα)结合,上调Bcl-2关联X蛋白(Bax)和下调剪切的含半胱氨酸的天冬氨酸蛋白水解酶-3 (cleaved caspase-3)阻断AKT信号通路诱导人乳腺癌MDA-MB-231细胞凋亡 [5] 。α-倒捻子素还会阻断乳腺癌细胞MDA-MB-231细胞的G1期,并通过增加P21cip1和检查点蛋白激酶2 (CHEK2)介导的细胞周期蛋白依赖性激酶(CDKs)和细胞周期蛋白水平降低,抑制乳腺癌的增殖 [6] 。α-倒捻子素通过上调肿瘤抑制因子凋亡-1 (MOAP-1),促进MOAP-1与Bax的相互作用,促进线粒体释放细胞色素C介导的线粒体凋亡途径对乳腺癌MCF-7发挥细胞毒作用 [7] 。

2.2. 骨肉瘤

骨肉瘤是最常见的恶性骨癌,影响许多儿童和青少年。α-倒捻子素通过增加活性氧(ROS)水平诱导人骨肉瘤细胞内质网应激(ER应激),并通过抑制β-catenin核转移激活caspase-3/-8诱导骨肉瘤细胞凋亡 [8] 。α-倒捻子素可通过上调Bak、下调Bcl-2诱导线粒体凋亡通路,促进MG-63骨肉瘤细胞线粒体释放细胞色素C,激活caspase-3/-8/-9级联表达,进而促进MG-63骨肉瘤细胞凋亡 [9] 。

2.3. 肝癌

肝细胞癌是世界上最致命的癌症之一。α-倒捻子素增强了Src同源区2结构域含磷酸酶-1 (SHP1)的稳定性,从而降低信号传导和转录激活因子3 (STAT3)的磷酸化,减少STAT3的二聚化和核易位。然后通过阻断STAT3信号通路抑制肝癌细胞的活性 [10] 。

2.4. 口腔癌

口腔癌会损害面部区域,对人类的饮食和语言能力产生负面影响。α-倒捻子素通过抑制细胞外调节蛋白激酶1/2 (ERK1/2)和丝裂原活化蛋白激酶(p38 MAPK)的激活,进而抑制pERK1/2和p38向细胞核的易位,抑制人舌黏液表皮样癌YD-15细胞的原癌基因。上调caspase-9/-3和剪切的聚腺苷二磷酸核糖聚合酶(cleaved-PARP)诱导YD-15细胞凋亡 [11] 。

2.5. 子宫颈癌

宫颈癌是一种常见的妇科恶性肿瘤,威胁着全世界妇女的健康。α-倒捻子素下调肿瘤干细胞的生物标志物,α-倒捻子素激活线粒体凋亡信号通路,通过上调Bax、下调Bcl-2、Mcl-1、激活caspase-9/-3诱导细胞凋亡,降低宫颈癌SiHa和Hela肿瘤干细胞的细胞活力 [12] 。α-倒捻子素使宫颈癌细胞中ROS水平升高。ROS通过增加活化的凋亡信号调节激酶(p-ASK)、活化的丝裂原活化蛋白激酶3/6 (p-MKK3/6)和p-p38来激活凋亡信号调节激酶1 (ASK1)/应激激活蛋白激酶(SAPKs)信号通路,从而增加caspase-9/-3,诱导Hela细胞发生凋亡 [13] 。

2.6. 胰腺癌

胰腺癌是一种消化系统肿瘤,5年生存率很低。α-倒捻子素通过抑制SHH/Gli信号通路抑制胰腺癌干细胞(PCSC)的增殖。转录因子Gli促进其靶基因Nanog的转录。Nanog与Oct4、c-Myc、Sox-2、KLF4等多能性维持基因的启动子结合,促进PCSC的增殖和多能性。α-倒捻子素通过下调Gli,抑制Nanog与相关基因启动子的结合抑制PCSC的增殖。hedgehog信号通路的激活增加了促进EMT的干细胞标记物。α-倒捻子素通过下调N-cadherin和上调E-cadherin、Snail和Slug抑制胰腺癌细胞的转移 [14] 。

2.7. 肺癌

肺癌是一种呼吸系统疾病,仍然是癌症死亡的主要原因。α-倒捻子素抑制过氧化物酶,增加活性氧,上调Bax/Bcl-2比值,促进非小细胞肺癌A549细胞的凋亡 [15] 。此外,α-倒捻子素还会降低细胞表面硬度,抑制A549的侵袭和转移 [16] 。

2.8. 联合治疗

α-倒捻子素在联合治疗和辅助用药方面的研究较多。α-倒捻子素增加了化疗效果,改善了化疗耐药情况和减轻化疗引起的心脏毒性。α-倒捻子素通过促进自噬和抑制Epstein-Barr病毒诱导的基因3 (EBI3)/STAT3通路,提高顺铂耐药胃癌细胞(SGC7901/CDDP)对化疗药物的敏感性 [12] 。α-倒捻子素还能改善阿霉素化疗后的如心脏毒性作用。α-倒捻子素通过其抗凋亡、抗炎和抗氧化作用,降低Bax/Bcl-2、cleaved caspase-3和cleaved caspase-9的水平,下调炎症因子白介素1-β (IL-1β)、肿瘤坏死因子(TNF-α)的表达对阿霉素引起的心脏毒性产生保护作用 [17] 。

3. 抗炎和免疫调节活性

α-倒捻子素可减轻肠炎、关节炎、急性肺损伤等炎症反应,并具有免疫调节作用。α-倒捻子素通过改善体重异常、便血、大便粘稠度、结肠长度缩短等多种结肠炎评价指标,减轻右旋糖酐硫酸钠诱导的结肠炎ICR小鼠的结肠炎症。α-倒捻子素的抗炎作用可能是通过降低结肠中ERK1/2、应激活化蛋白激酶(SAPK)、c-Jun氨基末端激酶(JNK)、p38和核因子kappa-B (NF-κB)的磷酸化来抑制MAPK和NF-κB通路。α-倒捻子素还能降低食道和结肠中髓过氧化物酶的活性,减少结肠粘膜中性粒细胞的浸润来发挥抗炎作用 [18] 。α-倒捻子素通过降低巨噬细胞分泌的炎性因子白介素IL-1β和IL-6,下调脂多糖、前脂肪细胞和巨噬细胞共培养体系中的p-JNK、p-p65和环氧化酶-2 (COX-2)、Toll-样受体4 (TLR4)来减轻关节炎大鼠的炎症 [19] 。α-倒捻子素通过抑制烟酰胺磷酸核糖转移酶(NAMPT)、降低血液中NAMPT、烟酰胺腺嘌呤二核苷酸(NAD)和游离饱和脂肪酸来干扰能量代谢。eNAMPT是一种独特的TLR4内源性激动剂,可以与TLR4受体结合,激活TLR4/NF-𝜅B通路。α-倒捻子素通过下调eNAMPT抑制TLR4/NF-𝜅B的活化进而缓解大鼠肺损伤状况 [20] 。α-倒捻子素通过抑制ORAI1、KCa3.1和KV1.3,抑制钙调素激活活化T细胞的核因子,进而抑制免疫细胞活性 [21] 。

4. 抗病原微生物

α-倒捻子素对多种包括细菌和病毒均有抑制作用。α-倒捻子素破坏细菌细胞质膜,产生抗耐药作用,对耐万古霉素肠球菌和耐甲氧西林金黄色葡萄球菌有抑制作用 [22] 。α-倒捻子素能抑制炭疽菌的生长,其作用机制可能是α-倒捻子素促进炭疽菌线粒体膨胀,进而影响细胞呼吸代谢,减少能量供应,抑制孢子萌发 [23] 。α-倒捻子素在抑制生物膜内念珠菌活性等方面表现较好,具有用于口腔科根管治疗的潜力 [24] 。α-倒捻子素可以抑制人外周血单核细胞中登革热病毒复制,抑制登革热病毒感染的未成熟单核细胞来源树突状细胞中TNF-α、CCL4、CCL5、CXCL10、IL-1β、IL-6、IL-10和IFN-α的转录进而降低细胞因子 [25] 。8 µM α-倒捻子素在体外可完全抑制基孔肯雅病毒(CHIKV)的感染,在体内α-倒捻子素还能显著抑制C57BL/6小鼠血清和肌肉中CHIKV的病毒复制 [26] 。α-倒捻子素通过抑制RNA聚合酶(NS5B)的活性抑制丙型肝炎病毒复制,从而降低丙型肝炎病毒蛋白在体外的表达 [27] 。

5. 其他活性

α-倒捻子素也具有抗糖尿病,保护肝脏和抗骨质疏松的作用。α-倒捻子素可显著改善2型糖尿病小鼠的空腹血糖、晚期糖基化终产物(AGEs)和糖化血红蛋白(HbA1c)水平,提高血清胰岛素水平和葡萄糖耐量。其降糖机制可能与降低果糖代谢关键酶己糖激酶、抑制肝脏中调节AMPK和AKT活性的酸性鞘磷脂酶(ASMase)分泌、上调脂肪细胞中瘦素和葡萄糖转运蛋白4 (GLUT4)的表达、抑制肥胖及肥胖诱导的巨噬细胞中趋化因子受体2信号传导有关 [28] 。α-倒捻子素通过降低糖尿病大鼠尿中白蛋白水平、减少内质网应激和ASMase,抑制肾细胞凋亡,减轻肾组织病理改变,在中发挥肾脏保护的作用 [29] 。

肝星状细胞的活化会促进肝纤维化,TGF-β/Smad信号通路在肝星状细胞的激活中起着至关重要的作用。TGF-β促进Smad3的磷酸化。Smad3作为一种转录因子,参与平滑肌肌动蛋白(α-SMA)和I型胶原蛋白(Col1α1)等纤维化标志物的转录。α-倒捻子素通过下调人肝星状细胞LX-2中TGF-β、p-Smad3磷酸化和纤维化标志物发挥抗纤维化活性 [30] 。α-倒捻子素可通过下调激活NF-κB的TLR4和激活抗氧化系统的Nrf2来预防ICR小鼠急性肝衰竭 [31] 。此外,α-倒捻子素还通过降低天冬氨酸转氨酶、丙氨酸转氨酶和碱性磷酸酶的表达发挥保护肝脏的作用 [32] 。α-倒捻子素在体外和体内均能抑制破骨细胞的形成,α-倒捻子素通过抑制NF-κB p65和IκBα磷酸化,抑制破骨细胞相关基因NFATc1、CTSK、C-FOS和TRAP进而发挥抗骨质疏松作用 [33] 。

6. 小结

山竹中可食用部分仅有果肉,而大部分果皮都会被丢弃。然而果皮中含有丰富的α-倒捻子素,丢弃果皮不仅会造成环境污染,还会减少对α-倒捻子素的利用 [34] [35] 。本文对α-倒捻子素的生物活性及其分子机制进行综述,为揭示山竹生物活性的科学内涵,并为山竹及山竹中α-倒捻子素进一步开发提供科学依据。本文对α-倒捻子素的生物活性及其分子机制进行综述。山竹的进一步开发仍存在一些问题,譬如α-倒捻子素生物利用度很低,需要加以改善,α-倒捻子素的体内实验还不够多,α-倒捻子素安全性评估还不够全面,对于α-倒捻子素的进一步开发,仍需要更多的实验数据支撑。

基金项目

辽宁省科技厅面上项目:2022-MS-172;沈阳市中青年科技人才支持计划项目:RC210464。

文章引用

李昊然,梁 啸. 山竹中α-倒捻子素的生物活性研究进展
Research Progress on the Bioactivity of α-Mangostin in Mangosteen[J]. 自然科学, 2024, 12(01): 169-174. https://doi.org/10.12677/OJNS.2024.121020

参考文献

  1. 1. Sabahi, S., Homayouni Rad, A., Aghebati-Maleki, L., et al. (2022) Postbiotics as the New Frontier in Food and Pharmaceutical Research. Critical Reviews in Food Science and Nutrition, 63, 8375-8402.

  2. 2. Lai, W.F. and Wong, W.T. (2021) Design and Optimization of Quercetin-Based Functional Foods. Critical Reviews in Food Science and Nutrition, 62, 7319-7335. https://doi.org/10.1080/10408398.2021.1913569

  3. 3. Yuvanatemiya, V., Srean, P., Klangbud, W.K., et al. (2022) A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules, 27, Article No. 8775. https://doi.org/10.3390/molecules27248775

  4. 4. Britt, K.L., Cuzick, J. and Phillips, K.A. (2020) Key Steps for Effective Breast Cancer Prevention. Nature Reviews Cancer, 20, 417-436. https://doi.org/10.1038/s41568-020-0266-x

  5. 5. Zhu, X., Li, J., Ning, H., et al. (2021) α-Mangostin Induces Apoptosis and Inhibits Metastasis of Breast Cancer Cells via Regulating RXRα-AKT Signaling Pathway. Frontiers in Pharmacology, 12, Article ID: 739658. https://doi.org/10.3389/fphar.2021.739658

  6. 6. Kurose, H., Shibata, M.A., Iinuma, M., et al. (2012) Altera-tions in Cell Cycle and Induction of Apoptotic Cell Death in Breast Cancer Cells Treated with α-Mangostin Extracted from Mangosteen Pericarp. Journal of Biomedicine and Biotechnology, 2012, Article ID: 672428. https://doi.org/10.1155/2012/672428

  7. 7. Simon, S.E., Lim, H.S., Jayakumar, F.A., et al. (2022) α-Mangostin Activates MOAP-1 Tumor Suppressor and Mitochondrial Signaling in MCF-7 Human Breast Cancer Cells. Evi-dence-Based Complementary and Alternative Medicine, 2022, Article ID: 7548191. https://doi.org/10.1155/2022/7548191

  8. 8. Yang, S., Zhou, F., Dong, Y., et al. (2021) α-Mangostin Induces Apoptosis in Human Osteosarcoma Cells through ROS-Mediated Endoplasmic Reticulum Stress via the WNT Pathway. Cell Transplantation, 30, 1-9. https://doi.org/10.1177/09636897211035080

  9. 9. Park, S.J., Park, B.S., Yu, S.B., et al. (2018) Induction of Apoptosis and Inhibition of Epithelial Mesenchymal Transition by α-Mangostin in MG-63 Cell Lines. Evi-dence-Based Complementary and Alternative Medicine, 2018, Article ID: 3985082. https://doi.org/10.1155/2018/3985082

  10. 10. Zhang, H., Tan, Y.P., Zhao, L., et al. (2020) Anticancer Activity of Dietary Xanthone α-Mangostin against Hepatocellular Carcinoma by Inhibition of STAT3 Signaling via Stabilization of SHP1. Cell Death and Disease, 11, Article No. 63. https://doi.org/10.1038/s41419-020-2227-4

  11. 11. Lee, H.N., Jang, H.Y., Kim, H.J., et al. (2016) Antitumor and Apoptosis-Inducing Effects of α-Mangostin Extracted from the Pericarp of the Mangosteen Fruit (Garcinia mangostana L.) in YD-15 Tongue Mucoepidermoid Carcinoma Cells. International Journal of Molecular Medicine, 37, 939-948. https://doi.org/10.3892/ijmm.2016.2517

  12. 12. Chien, H.J., Ying, T.H., Hsieh, S.C., et al. (2020) α-Mangostin Attenuates Stemness and Enhances Cisplatin-Induced Cell Death in Cervical Cancer Stem-Like Cells through In-duction of Mitochondrial-Mediated Apoptosis. Journal of Cellular Physiology, 235, 5590-5601. https://doi.org/10.1002/jcp.29489

  13. 13. Lee, C.H., Ying, T.H., Chiou, H.L., et al. (2017) α-Mangostin Induces Apoptosis through Activation of Reactive Oxygen Species and ASK1/p38 Signaling Pathway in Cervical Cancer Cells. Oncotarget, 8, 47425-47439. https://doi.org/10.18632/oncotarget.17659

  14. 14. Ma, Y., Yu, W., Shrivastava, A., et al. (2019) Inhibition of Pancreatic Cancer Stem Cell Characteristics by α-Mangostin: Molecular Mechanisms Involving Sonic Hedgehog and Nanog. Journal of Cellular and Molecular Medicine, 23, 2719-2730. https://doi.org/10.1111/jcmm.14178

  15. 15. Zhang, C., Yu, G. and Shen, Y. (2018) The Naturally Occurring Xanthone α-Mangostin Induces ROS-Mediated Cytotoxicity in Non-Small Scale Lung Cancer Cells. Saudi Journal of Biological Sciences, 25, 1090-1095. https://doi.org/10.1016/j.sjbs.2017.03.005

  16. 16. Phan, T.K.T., Shahbazzadeh, F. and Kihara, T. (2020) α-Mangostin Reduces Mechanical Stiffness of Various Cells. Human Cell, 33, 347-355. https://doi.org/10.1007/s13577-020-00330-0

  17. 17. Eisvand, F., Imenshahidi, M., Ghasemzadeh Rahbardar, M., et al. (2022) Cardioprotective Effects of α-Mangostin on Doxorubicin-Induced Cardiotoxicity in Rats. Phytotherapy Research, 36, 506-524. https://doi.org/10.1002/ptr.7356

  18. 18. You, B.H., Chae, H.S., Song, J., et al. (2017) α-Mangostin Ameliorates Dextran Sulfate Sodium-Induced Colitis through Inhibition of NF-kappaB and MAPK Pathways. International Immunopharmacology, 49, 212-221. https://doi.org/10.1016/j.intimp.2017.05.040

  19. 19. Hu, Y.H., Han, J., Wang, L., et al. (2021) α-Mangostin Al-leviated Inflammation in Rats with Adjuvant-Induced Arthritis by Disrupting Adipocytes-Mediated Metabo-lism-Immune Feedback. Frontiers in Pharmacology, 12, Article ID: 692806. https://doi.org/10.3389/fphar.2021.692806

  20. 20. Tao, M., Jiang, J., Wang, L., et al. (2018) α-Mangostin Alle-viated Lipopolysaccharide Induced Acute Lung Injury in Rats by Suppressing NAMPT/NAD Controlled Inflam-matory Reactions. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID: 5470187. https://doi.org/10.1155/2018/5470187

  21. 21. Kim, H.J., Park, S., Shin, H.Y., et al. (2021) Inhibitory Effects of α-Mangostin on T Cell Cytokine Secretion via ORAI1 Calcium Channel and K(+) Channels Inhibition. PeerJ, 9, e10973. https://doi.org/10.7717/peerj.10973

  22. 22. Wang, M.-H., Zhang, K.-J., Gu, Q.-L., et al. (2017) Phar-macology of Mangostins and Their Derivatives: A Comprehensive Review. Chinese Journal of Natural Medicines, 15, 81-93. https://doi.org/10.1016/S1875-5364(17)30024-9

  23. 23. Ye, H., Wang, Q., Zhu, F., et al. (2020) An-tifungal Activity of α-Mangostin against Colletotrichum gloeosporioides in Vitro and in Vivo. Molecules, 25, Article No. 5335. https://doi.org/10.3390/molecules25225335

  24. 24. Leelapornpisid, W. (2022) Efficacy of α-Mangostin for Antimicrobial Activity against Endodontopathogenic Microorganisms in a Multi-Species Bacteri-al-Fungal Biofilm Model. Archives of Oral Biology, 133, Article ID: 105304. https://doi.org/10.1016/j.archoralbio.2021.105304

  25. 25. Sugiyanto, Z., Yohan, B., Hadisaputro, S., et al. (2019) Inhibitory Effect of α-Mangostin to Dengue Virus Replication and Cytokines Expression in Human Peripheral Blood Mononuclear Cells. Natural Products and Bioprospecting, 9, 345-349. https://doi.org/10.1007/s13659-019-00218-z

  26. 26. Patil, P., Agrawal, M., Almelkar, S., et al. (2021) In Vitro and in Vivo Studies Reveal α-Mangostin, a Xanthonoid from Garcinia mangostana, as a Promising Natural Antiviral Compound against Chikungunya Virus. Virology Journal, 18, Article No. 47. https://doi.org/10.1186/s12985-021-01517-z

  27. 27. Yongpitakwattana, P., Morchang, A., Panya, A., et al. (2021) α-Mangostin Inhibits Dengue Virus Production and Pro- Inflammatory Cytokine/Chemokine Expression in Dendritic Cells. Archives of Virology, 166, 1623-1632. https://doi.org/10.1007/s00705-021-05017-x

  28. 28. Chen, S.P., Lin, S.R., Chen, T.H., et al. (2021) Mangosteen Xanthone Gamma-Mangostin Exerts Lowering Blood Glucose Effect with Potentiating Insulin Sensitivity through the Mediation of AMPK/PPARgamma. Biomedicine & Pharmacotherapy, 144, Article ID: 112333. https://doi.org/10.1016/j.biopha.2021.112333

  29. 29. Liu, T., Duan, W., Nizigiyimana, P., et al. (2018) α-Mangostin Attenuates Diabetic Nephropathy in Association with Suppression of Acid Sphingomyelianse and Endoplasmic Reticulum Stress. Biochemical and Biophysical Research Communications, 496, 394-400. https://doi.org/10.1016/j.bbrc.2018.01.040

  30. 30. Rahmaniah, R., Yuyuntia, Y., Soetikno, V., et al. (2018) Al-pha Mangostin Inhibits Hepatic Stellate Cells Activation through TGF-beta/Smad and Akt Signaling Pathways: An in Vitro Study in LX2. Drug Research (Stuttg), 68, 153-158. https://doi.org/10.1055/s-0043-119074

  31. 31. Fu, T., Li, H., Zhao, Y., et al. (2018) Hepatoprotective Effect of α-Mangostin against Lipopolysaccharide/d-Galacto- samine-Induced Acute Liver Failure in Mice. Biomedicine & Pharmacotherapy, 106, 896-901. https://doi.org/10.1016/j.biopha.2018.07.034

  32. 32. Tatiya-Aphiradee, N., Chatuphonprasert, W. and Ja-rukamjorn, K. (2021) Ethanolic Garcinia mangostana Extract and α-Mangostin Improve Dextran Sulfate Sodi-um-Induced Ulcerative Colitis via the Suppression of Inflammatory and Oxidative Responses in ICR Mice. Journal of Ethnopharmacology, 265, Article ID: 113384. https://doi.org/10.1016/j.jep.2020.113384

  33. 33. Zhang, W., Jiang, G., Zhou, X., et al. (2022) α-Mangostin In-hibits LPS-Induced Bone Resorption by Restricting Osteoclastogenesis via NF-kappaB and MAPK Signaling. Chi-nese Medicine, 17, Article No. 34. https://doi.org/10.1186/s13020-022-00589-5

  34. 34. Li, J.X., Su, W.P., Pei, Y., et al. (2023) Ball Milling Extrac-tion as a Green and Efficient Approach for the Extraction of Sixteen Xanthone-Type QR-2 and PTP1B Inhibitors from Garcinia mangostana L. Pericarp. Food Analytical Methods, 16, 1069-1078. https://doi.org/10.1007/s12161-023-02495-4

  35. 35. 汤卓雅, 潘月华, 张君生, 等. 山竹果皮中异戊烯基双苯吡酮类成分(英文) [J]. 中山大学学报(自然科学版), 2020, 59(6): 21-32. https://doi.org/10.13471/j.cnki.acta.snus.2020.02.27.2020c005

期刊菜单