Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 78134 , 8 pages
10.12677/ACM.2023.13122808

功能性三尖瓣反流与右室–肺动脉耦联关系的研究进展

张曦1,周平安2*

1延安大学医学院,陕西 延安

2延安大学附属医院心脑血管病院超声诊断科,陕西 延安

收稿日期:2023年11月27日;录用日期:2023年12月21日;发布日期:2023年12月27日

摘要

显著的功能性三尖瓣反流是心血管事件的独立预后因素,会导致右心重塑和功能障碍从而增加死亡率,并且死亡率及发病率与反流分级的增加也显著相关。近年来对于在出现严重右心室功能障碍之前进行早期干预这一观点重新引起临床医生的兴趣,对于三尖瓣反流如何干预以及何时干预仍是亟待解决的问题。功能性三尖瓣反流与右室功能、肺动脉负荷关系密切,右室功能适应持续增加的后负荷会维持右室–肺动脉耦联状态,而右心室重构不能适应变化的后负荷可导致其解耦联。因此,准确评估适应性向非适应性重构的转变时机对于对功能性三尖瓣反流患者的病情评估、临床决策、风险分层和预后判断具有重要意义。

关键词

三尖瓣,三尖瓣关闭不全,右室–肺动脉耦联,心室功能,右室重构

Research Progress on the Relationship between Functional Tricuspid Regurgitation and Right Ventricular-Pulmonary Artery Coupling

Xi Zhang1, Ping’an Zhou2*

1Medical School of Yan’an University, Yan’an Shaanxi

2Department of Ultrasound Diagnostics, Yan’an University Affiliated Cardiovascular and Cerebrovascular Disease Hospital, Yan’an Shaanxi

Received: Nov. 27th, 2023; accepted: Dec. 21st, 2023; published: Dec. 27th, 2023

ABSTRACT

Significant functional tricuspid regurgitation is an independent prognostic factor for cardiovascular events, leading to right heart remodeling and dysfunction and thus increased mortality, also mortality and morbidity are significantly associated with increased regurgitant grading. In recent years there has been a resurgence of interest among clinicians in the idea of early intervention before severe right ventricular dysfunction develops. Thus, the question of how and when to intervene in tricuspid regurgitation remains urgent. Functional tricuspid regurgitation is closely related to right ventricular function and pulmonary artery loading; adaptation of right ventricular function to continuously increasing afterload maintains right ventricular-pulmonary artery coupling, whereas failure of right ventricular remodeling to adapt to changing afterload can lead to its uncoupling. Therefore, accurate assessment of the timing of the transition from adaptive to nonadaptive remodeling is important for condition assessment, clinical decision making, risk stratification, and prognosis in patients with functional tricuspid regurgitation.

Keywords:Tricuspid Valve, Tricuspid Insufficiency, Right Ventricle-Pulmonary Artery Coupling, Ventricular Function, Right Ventricular Remodeling

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

右室–肺动脉(right ventricle-pulmonary arterial, RV-PA)耦联是指右心室收缩力与右心室后负荷之间的关系。只有当右心室功能和肺血管阻力匹配时,正常的RV-PA耦联才能维持 [1] 。在疾病进展和慢性后负荷增加的过程中,右心室经历适应性重塑到非适应性重塑(RV-PA解耦联)而心力衰竭。RV-PA耦联良好能够确保右室负荷与肺动脉负荷之间能量传递的有效性,其测量的金标准是来自右心导管测压获得的右室压力–容积环(rightventricular pressure-volume loops, RVP-V loops)。但因其操作有创、复杂、难以广泛应用等缺点,促使临床研发了多种非侵入性超声心动图替代指标 [2] 。鉴于RV-PA耦联在心血管疾病的病理生理和发展进程中起到重要作用,评估耦联向解耦联的转变时机对三尖瓣反流患者的病情评估、临床决策、风险分层和预后判断具有重要意义。本文对现阶段功能性三尖瓣反流(functional tricuspid regurgitation, FTR)与RV-PA耦联关系的研究进展进行综述。

2. 右心室解剖及生理

左、右心室具有不同的胚胎起源,对应激的反应也不相同。一般而言,压力、容量超负荷或心肌病变均可导致RV功能障碍。当胚胎在子宫内发育时,RV占总心输出量的60%,此时左、右心室的壁厚相似 [3] [4] 。来自腔静脉氧合不良的血液由三尖瓣经RV进入PA,由于此时肺血管阻力(pulmonary vascular resistance, PVR)较高,因此进入肺的血流量很少,高PVR状态使血液大都绕过肺部,经卵圆孔和动脉导管分流。这一现象在胎儿娩出发生了重要的生理转变,心脏结构和功能变化导致PVR迅速下降 [5] 。成人生理条件下,肺血管对血流的阻力非常低,因此,RV与左心室(left ventricle, LV)不同,正常的RV (无心内分流情况下)心输出量与LV的心输出量相同,但其能量消耗却是LV的六分之一 [6] 。

从解剖学上看,RV通常被认为由三部分组成:1) 入口或流入道,与体循环静脉回流相连,其由三尖瓣、腱索和乳头肌组成;2) 小梁状心尖部,通常壁薄;3) 出口或流出道,连接肺动脉的管状肌肉结构。结构上,正常成人RV薄壁呈新月形,而LV是厚壁,形似子弹。与左心室有三种不同的心肌纤维不同,右心室由浅(环向)纤维和深(纵向)纤维组成,浅表层(约占壁厚的25%)主要由平行于房室沟方向环形排列,且与左心室表浅层心肌延续;深层心肌从房室沟向心尖呈整齐的纵向排列 [7] 。因此,由于其长轴上的三角形几何形状和短轴上的新月形形状,RV不能有效的将收缩力集中于腔室中部。此外,RV以蠕动运动的方式依次收缩,例如当流出道仍在收缩时,漏斗部已经处于收缩结束状态 [8] [9] 。经过RV的血流在穿过三尖瓣时依靠纵向与旋转运动来改变方向使其产生向心力,这种向心力在心脏收缩早期,将血液引导至室间隔方向,进而推动血液流向肺动脉瓣 [10] [11] ;RV与LV不仅通过间隔而且通过心外膜环向肌细胞和心包间隙紧密相连,所有这些构成了双心室收缩和舒张相互依赖的解剖学基础。但与LV相比,RV更依赖于纵向缩短,并且更受负荷条件的影响。

3. FTR患者右室-肺动脉耦联的病理生理

3.1. 右室–肺动脉耦联病理生理

大量研究已经证明RV收缩性能与其所受后负荷密切相关 [12] [13] [14] ,右室后负荷实际上是右室收缩力与肺动脉顺应性、阻力和反射波相互作用的结果,在功能正常的右室中,这两个部分是“耦联的” [15] 。因此在疾病的发生发展过程中,二者作为一个整体共同评估更为合理 [16] 。右室–肺动脉耦联确保了右室负荷与肺动脉负荷之间能量传递的有效性,从而将血液转运至肺动脉。当最大心输出量(cardiac output, CO)以最小的能量消耗转移到肺循环时,此时偶合最佳。

肺小动脉、肺毛细血管和肺静脉收缩、增生或肺动脉闭塞引起的PVR增加可引发肺动脉高压,进而导致右心后负荷增加 [17] [18] [19] 。虽然RV无法良好的适应压力负荷的急剧增加,但在慢性压力超负荷作用下RV早期发生适应性重构,防止心肌过度拉伸以维持心室形状。随着持续的压力超负荷,心肌收缩力不再增加以匹配超载后负荷时,自适应耗尽,RV向适应不良表型转变 [2] ,进行性右室扩张和非同步化以维持每搏量与心输出量,心肌细胞在各种病理状态下,表现为应激状态,细胞胶原含量以及胶原表型将发生改变,心肌间质纤维胶原增加和沉积,心肌出现纤维化从而导致心肌僵硬 [20] [21] 。既往研究表明,RV慢性压力超负荷改变心肌纤维结构,是造成右室收缩不良的主要因素,并最终导致右室功能的恶化 [22] [23] [24] 。随后右室非适应性重构即RV-PA解耦联,将发生明显右心衰。

3.2. 右室重构与RV-PA耦联

RV纤维化从适应性到非适应性重构转变的确切时机仍亟待明确。一方面,胶原纤维可增强心肌,适应性地维持结构并防止超负荷条件下的进一步扩张,从而维持适当的心脏收缩模式并保持RV-PA耦联;另一方面心肌纤维化使室壁僵硬度增加,顺应性下降,最终损害心肌功能,导致RV-PA解耦联 [25] 。此外,关于心肌结构影响器官功能的机制仍不确定,组织学研究认为RV纤维化是肺动脉高压晚期的特征,然而这些研究主要依靠终末期肺动脉高压患者的心肌活检,此时的心脏重塑和纤维化不能反映疾病的早期和代偿阶段的情况。利用无创影像技术能够在病程的早期对患者进行检查,间接评估纤维化的非侵入性成像方法,MRI是心肌纤维化成像的金标准,基于超声斑点追踪技术的心肌应变也是替代指标 [26] 。

3.3. FTR的RV-PA耦联

FTR与RV重构相关,包括右心室机械功能受损、扩张,最终导致收缩功能障碍;也与三尖瓣环和右房扩张相关。FTR、RV重构和右房扩张这三者构成恶性循环,一旦开始,很难中断 [27] 。FTR患者预后是由右心室对负荷增加的反应决定的 [28] ,而RV-PA耦联可用于评估右室收缩力是否能够匹配后负荷的变化以及右室负荷与肺动脉负荷能量传递的有效性 [29] 。压力超负荷可能是FTR患者RV-PA解耦联的主要决定因素:左心疾病和肺动脉高压是FTR的最主要病因,增加的肺动脉压(即右室后负荷)会在纤维、组织和器官水平进行性右心室重塑,导致右心室纵向拉伸和球形变形,进而发生三尖瓣叶栓系和FTR的发展 [30] 。与之不同,由于房颤导致的右房与三尖瓣环扩张引起的FTR主要通过改变右室容量负荷 [31] ,容量超负荷可能导致壁张力增加,心肌纤维化和RV结构改变,直接导致RV收缩力受损,从而RV-PA解耦联 [32] 。因此,RV-PA解耦联代表了FTR中慢性RV压力和容量超负荷的最终结局。

4. RV-PA耦联检测手段

4.1. RV-PA耦联的有创检查手段

由于RV收缩性能与前、后负荷直接相关,因此评估RV-PA耦联需分别独立测量右心收缩功能与后负荷。目前,通过有创侵入性右心导管测压所得的RVP-V loops仍是检测RV-PA耦联的金标准 [33] 。评估RV收缩功能指标为收缩末期弹性(end-systolic elastance, Ees),通过右心导管记录多个RVP-V loops同时降低前负荷(降低前负荷可以通过在下腔静脉中放置充气球囊或通过Valsalva动作)来测量,通过每个单独环路的收缩末期压(end-systolic pressure, ESP)的直线斜率即为Ees。评估后负荷为动脉弹性(arterial effective elastance, Ea),即ESP和每搏量(stroke volume, SV)的比值。RV-PA耦联被量化为收缩末期压力与动脉弹性之间的比率(Ees/Ea) [34] [35] 。但为了避免前负荷对其的潜在影响,Inuzuka等 [36] 开发了评估单次心动周期收缩力的方法,其研究表明与多心动周期测量有较好的一致性。研究显示最佳Ees/Ea值介于1.5和2.0之间 [37] [38] ,然而解耦联发生的确切时机仍不明确。Tabima等研究正常与高血压小鼠模型认为Ees/Ea < 0.5与右室–肺动脉解耦联相关 [39] 。临床试验中Tello等认为Ees/Ea < 0.8可预测肺动脉高压患者即将发生右心衰竭 [40] 。Schmeißer等的研究显示Ees/Ea < 0.68与右心室扩张/重塑和功能障碍相关,并与短期和中期显著增加全因死亡率相关 [41] ;其他相关研究如Hsu等 [42] 证实截断值0.65预示着临床恶化时间更短。

4.2. 超声对RV-PA耦联的无创评估

尽管右心导管是评估RV-PA耦联的金标准,但由于其具有侵入性、耗时、昂贵且应用不广泛,在分析和解释复杂数据方面需要经验,很少被应用。因此已经研发了多种非侵入性超声心动图替代指标。最早描述和最有效的无创多普勒超声心动图获得的替代性指标之一是三尖瓣环平面收缩期位移(tricuspid annular plane systolic excursion, TAPSE)和估计肺动脉收缩压(pulmonary arterial systolic pressure, PASP)的比值(TAPSE/PASP) [43] 。相关研究与金标准Ees/Ea测量值进行对比验证,结果显示TAPSE/PASP临界值0.31mm/mmHg与RV-PA解耦联和右心衰竭相关 [44] [45] 。目前相关研究也通过不同的超声心动图参数替代TAPSE成为RV-PA耦联其他无创替代物,如外侧三尖瓣环的收缩期组织峰值速度、右心室面积分数变化、基于斑点追踪的右心室游离壁纵向应变和整体纵向应变,甚至三维右室射血分数等 [2] [46] [47] 。几乎所有这些公式都依赖于反流速度和右心房压力对PASP的估计,但这两者在严重TR的情况下都可能不准确 [48] 。近期,Gavazzoni等提出了一个新的RV-PA耦联参数,定义为RV正向SV除以三维右室舒张期容积,将负荷压力转化为容量,临床结果证实在单变量和多变量回归模型中,新指标RV正向SV除以三维右室舒张期容积与主要终点的相关性比其他RV-PA耦联指数更强 [49] 。

5. RV-PA耦联在FTR患者中的应用

TAPSE/PASP已被证明与有创血流动力学密切相关,并能够预测心血管疾病的结局,如肺动脉高压、射血分数降低的心力衰竭、射血分数保留的心力衰竭和重度主动脉狭窄 [12] [50] [51] 。2022年ESC/ERS更新的肺动脉高压诊治指南中,将RV-PA耦联纳入超声评估的右心功能指标,也使得对肺动脉高压患者右心功能评估更加全面 [52] 。尽管这些心血管病变可能与显著TR共存,但尚未在显著FTR患者队列研究中广泛研究RV−PA耦联的预后价值。尽管已经证实RV-PA耦联和FTR存在病理生理学相互作用,但对其临床影响知之甚少。近年来随着对FTR的深入研究以及介入治疗的蓬勃发展,对FTR的研究也逐步增多。Yoshida等 [53] 通过构建小鼠模型验证大量TR的存在或导致Ea被低估。因此,在严重TR的情况下,Ees/Ea被高估,这可能导致对RV功能受损的低估。Sugiura等 [29] 通过评估RV-PA耦联及其对接受二尖瓣经导管缘对缘修复术患者TR临床结果的影响,提出TR的临床影响根据RV-PA耦联的程度而变化的设想。该研究中值得注意的是TR等级越高,临床风险越高,因此也提出一个新的概念框架:即TR的预后由两个关键因素决定,TR和RV-PA耦联的严重程度,但仍需要更多的研究来证实这两个参数的对疾病预后的影响。Fortuni等 [15] 纳入1149名FTR患者的一项20年大型回顾性队列研究提出RV-PA解耦联是唯一与全因死亡率独立相关的超声心动图参数(P < 0.001);并且FTR患者的RV-PA解耦联与不良预后独立相关,能够改善风险分层。由此可见,RV-PA耦联在FTR患者的风险分层、临床结果预测和指导治疗中起着关键作用,但仍需更多研究支持。

6. 展望

随着超声心动图技术的不断发展,希望在未来能够取代有创检测成为RV-PA耦联评估的首选方法。现阶段仍需要大量前瞻性研究来明确超声无创技术评估RV-PA耦联向解耦联转变的最佳应用参数或进一步利用运动负荷超声心动图来揭示RV-PA耦联对FTR患者进行风险分层方面的作用以及其在预测FTR预后中的价值,以帮助临床医生更好地评估、管理患者病情,并对治疗方案进行更精确的调整,以改善患者的生活质量和预后。

文章引用

张 曦,周平安. 功能性三尖瓣反流与右室–肺动脉耦联关系的研究进展
Research Progress on the Relationship between Functional Tricuspid Regurgitation and Right Ventricular-Pulmonary Artery Coupling[J]. 临床医学进展, 2023, 13(12): 19934-19941. https://doi.org/10.12677/ACM.2023.13122808

参考文献

  1. 1. Wu, Y., Tian, P., Liang, L., et al. (2023) Combined Use of Right Ventricular Coupling and Pulmonary Arterial Elastance as a Comprehensive Stratification Approach for Right Ventricular Function. Clinical and Translational Science, 16, 1582-1593. https://doi.org/10.1111/cts.13568

  2. 2. Rako, Z.A., Kremer, N., Yogeswaran, A., et al. (2023) Adaptive versus Maladaptive Right Ventricular Remodelling. ESC Heart Failure, 10, 762-775. https://doi.org/10.1002/ehf2.14233

  3. 3. Lippmann, M.R. and Maron, B.A. (2022) The Right Ventricle: From Em-bryologic Development to RV Failure. Current Heart Failure Reports, 19, 325-333. https://doi.org/10.1007/s11897-022-00572-z

  4. 4. Friedberg, M.K. and Redington, A.N. (2014) Right versus Left Ventricular Failure: Differences, Similarities, and Interactions. Circulation, 129, 1033-1044. https://doi.org/10.1161/CIRCULATIONAHA.113.001375

  5. 5. Kiserud, T. and Acharya, G. (2004) The Fetal Circulation. Prenatal Diagnosis, 24, 1049-1059. https://doi.org/10.1002/pd.1062

  6. 6. Markel, T.A., Wairiuko, G.M., Lahm, T., et al. (2008) The Right Heart and Its Distinct Mechanisms of Development, Function, and Failure. The Journal of Surgical Research, 146, 304-313. https://doi.org/10.1016/j.jss.2007.04.003

  7. 7. Sanz, J., Sánchez-Quintana, D., Bossone, E., et al. (2019) Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73, 1463-1482. https://doi.org/10.1016/j.jacc.2018.12.076

  8. 8. Rungatscher, A., Hallström, S., Linardi, D., et al. (2015) S-Nitroso Human Serum Albumin Attenuates Pulmonary Hypertension, Improves Right Ventricular-Arterial Coupling, and Re-duces Oxidative Stress in a Chronic Right Ventricle Volume Overload Model. The Journal of Heart and Lung Trans-plantation: The Official Publication of the International Society for Heart Transplantation, 34, 479-488. https://doi.org/10.1016/j.healun.2014.09.041

  9. 9. Peters, J., Mack, G.W. and Lister, G. (2001) The Importance of the Peripheral Circulation in Critical Illnesses. Intensive Care Medicine, 27, 1446-1458. https://doi.org/10.1007/s001340101034

  10. 10. Dahou, A., Levin, D., Reisman, M., et al. (2019) Anatomy and Physiology of the Tricuspid Valve. JACC Cardiovascular Imaging, 12, 458-468. https://doi.org/10.1016/j.jcmg.2018.07.032

  11. 11. Arvidsson, P.M., Töger, J., Carlsson, M., et al. (2017) Left and Right Ventricular Hemodynamic Forces in Healthy Volunteers and Elite Athletes Assessed with 4D Flow Magnetic Resonance Imaging. American Journal of Physiology Heart and Circulatory Physiology, 312, H314-H328. https://doi.org/10.1152/ajpheart.00583.2016

  12. 12. Guazzi, M., Bandera, F., Pelissero, G., et al. (2013) Tricuspid Annular Plane Systolic Excursion and Pulmonary Arterial Systolic Pressure Relationship in Heart Failure: An Index of Right Ventricular Contractile Function and Prognosis. American Journal of Physiology Heart and Circulatory Physiolo-gy, 305, H1373-H1381. https://doi.org/10.1152/ajpheart.00157.2013

  13. 13. Tello, K., Axmann, J., Ghofrani, H.A., et al. (2018) Relevance of the TAPSE/PASP Ratio in Pulmonary Arterial Hypertension. International Journal of Cardiology, 266, 229-235. https://doi.org/10.1016/j.ijcard.2018.01.053

  14. 14. Tello, K., Wan, J., Dalmer, A., et al. (2019) Validation of the Tri-cuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ven-tricular-Arterial Coupling in Severe Pulmonary Hypertension. Circulation Cardiovascular Imaging, 12, e009047. https://doi.org/10.1161/CIRCIMAGING.119.009047

  15. 15. Fortuni, F., Butcher, S.C., Dietz, M.F., et al. (2021) Right Ventricular-Pulmonary Arterial Coupling in Secondary Tricuspid Regurgitation. The American Journal of Cardi-ology, 148, 138-145. https://doi.org/10.1016/j.amjcard.2021.02.037

  16. 16. Champion, H.C., Michelakis, E.D. and Hassoun, P.M. (2009) Comprehensive Invasive and Noninvasive Approach to the Right Ventricle-Pulmonary Circulation Unit: State of the Art and Clinical and Research Implications. Circulation, 120, 992-1007. https://doi.org/10.1161/CIRCULATIONAHA.106.674028

  17. 17. Vonk Noordegraaf, A., Chin, K.M., Haddad, F., et al. (2019) Pathophysiology of the Right Ventricle and of the Pulmonary Circulation in Pulmonary Hypertension: An Update. The European Respiratory Journal, 53, Article ID: 1801900. https://doi.org/10.1183/13993003.01900-2018

  18. 18. Humbert, M., Guignabert, C., Bonnet, S., et al. (2019) Pathol-ogy and Pathobiology of Pulmonary Hypertension: State of the Art and Research Perspectives. The European Respira-tory Journal, 53, Article ID: 1801887. https://doi.org/10.1183/13993003.01887-2018

  19. 19. Huertas, A., Guignabert, C., Barberà, J.A., et al. (2018) Pul-monary Vascular Endothelium: The Orchestra Conductor in Respiratory Diseases: Highlights from Basic Research to Therapy. The European Respiratory Journal, 51, Article ID: 1700745. https://doi.org/10.1183/13993003.00745-2017

  20. 20. Andersen, S., Nielsen-Kudsk, J.E., Vonk Noordegraaf, A., et al. (2019) Right Ventricular Fibrosis. Circulation, 139, 269-285. https://doi.org/10.1161/CIRCULATIONAHA.118.035326

  21. 21. 程巧, 毕小军. 超声新技术评估心肌僵硬度的研究进展[J]. 华中科技大学学报(医学版), 2022, 51(3): 420-424.

  22. 22. Avazmohammadi, R., Mendiola, E.A., Li, D.S., et al. (2019) Interactions between Structural Remodeling and Hypertrophy in the Right Ventricle in Response to Pulmo-nary Arterial Hypertension. Journal of Biomechanical Engineering, 141, 910161-9101613. https://doi.org/10.1115/1.4044174

  23. 23. Sharifi Kia, D., Benza, E., Bachman, T.N., et al. (2020) Angiotensin Re-ceptor-Neprilysin Inhibition Attenuates Right Ventricular Remodeling in Pulmonary Hypertension. Journal of the Amer-ican Heart Association, 9, e015708. https://doi.org/10.1161/JAHA.119.015708

  24. 24. Avazmohammadi, R., Hill, M., Simon, M., et al. (2017) Transmu-ral Remodeling of Right Ventricular Myocardium in Response to Pulmonary Arterial Hypertension. APL Bioengineering, 1, Article ID: 016105. https://doi.org/10.1063/1.5011639

  25. 25. Frangogiannis, N.G. (2017) Fibroblasts and the Extracellular Matrix in Right Ventricular Disease. Cardiovascular Research, 113, 1453-1464. https://doi.org/10.1093/cvr/cvx146

  26. 26. Rain, S., Handoko, M.L., Trip, P., et al. (2013) Right Ventricular Diastolic Impairment in Patients with Pulmonary Arterial Hypertension. Circulation, 128, 2016-2025. https://doi.org/10.1161/CIRCULATIONAHA.113.001873

  27. 27. Silbiger, J.J. (2019) Atrial Functional Tricuspid Regurgitation: An Underappreciated Cause of Secondary Tricuspid Regurgitation. Echocardiography (Mount Kisco, NY), 36, 954-957. https://doi.org/10.1111/echo.14327

  28. 28. Mendiola, E.A., Da Silva Gonçalves Bos, D., Leichter, D.M., et al. (2023) Right Ventricular Architectural Remodeling and Functional Adaptation in Pulmonary Hypertension. Circu-lation Heart Failure, 16, e009768. https://doi.org/10.1161/CIRCHEARTFAILURE.122.009768

  29. 29. Sugiura, A., Kavsur, R., Spieker, M., et al. (2022) Impact of Right Ventricular-Pulmonary Arterial Coupling on Clinical Outcomes of Tricuspid Regurgitation. Eu-roIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the Eu-ropean Society of Cardiology, 18, 852-861. https://doi.org/10.4244/EIJ-D-22-00045

  30. 30. Medvedofsky, D., Aronson, D., Gomberg-Maitland, M., et al. (2017) Tricuspid Regurgitation Progression and Regression in Pulmonary Arterial Hypertension: Implications for Right Ventric-ular and Tricuspid Valve Apparatus Geometry and Patients Outcome. European Heart Journal Cardiovascular Imaging, 18, 86-94. https://doi.org/10.1093/ehjci/jew010

  31. 31. Florescu, D.R., Muraru, D., Florescu, C., et al. (2022) Right Heart Chambers Geometry and Function in Patients with the Atrial and the Ventricular Phenotypes of Functional Tricuspid Regurgitation. European Heart Journal Cardiovascular Imaging, 23, 930-940. https://doi.org/10.1093/ehjci/jeab211

  32. 32. Fortuni, F., Dietz, M.F., Butcher, S.C., et al. (2020) Prognostic Implica-tions of Increased Right Ventricular Wall Tension in Secondary Tricuspid Regurgitation. The American Journal of Car-diology, 136, 131-139. https://doi.org/10.1016/j.amjcard.2020.09.022

  33. 33. Oakland, H., Joseph, P., Naeije, R., et al. (2021) Arterial Load and Right Ventricular-Vascular Coupling in Pulmonary Hypertension. Journal of Applied Physiology (Bethesda, Md: 1985), 131, 424-433. https://doi.org/10.1152/japplphysiol.00204.2021

  34. 34. Richter, M.J., Peters, D., Ghofrani, H.A., et al. (2020) Eval-uation and Prognostic Relevance of Right Ventricular-Arterial Coupling in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 201, 116-119. https://doi.org/10.1164/rccm.201906-1195LE

  35. 35. Isotani, Y., Amiya, E., Hatano, M., et al. (2023) A New As-sessment Method for Right Ventricular Diastolic Function Using Right Heart Catheterization by Pressure-Volume Loop. Physiological Reports, 11, e15751. https://doi.org/10.14814/phy2.15751

  36. 36. Inuzuka, R., Hsu, S., Tedford, R.J., et al. (2018) Single-Beat Estimation of Right Ventricular Contractility and Its Coupling to Pulmonary Arterial Load in Patients with Pulmonary Hypertension. Journal of the American Heart Association, 7, e007929. https://doi.org/10.1161/JAHA.117.007929

  37. 37. Naeije, R., Brimioulle, S. and Dewachter, L. (2014) Biomechanics of the Right Ventricle in Health and Disease (2013 Grover Con-ference Series). Pulmonary Circulation, 4, 395-406. https://doi.org/10.1086/677354

  38. 38. Lahm, T., Douglas, I.S., Archer, S.L., et al. (2018) Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement. American Journal of Respiratory and Critical Care Medicine, 198, e15-e43. https://doi.org/10.1164/rccm.201806-1160ST

  39. 39. Tabima, D.M., Hacker, T.A. and Chesler, N.C. (2010) Measuring Right Ventricular Function in the Normal and Hypertensive Mouse Hearts Using Admittance-Derived Pressure-Volume Loops. American Journal of Physiology Heart and Circulatory Physiology, 299, H2069-H2075. https://doi.org/10.1152/ajpheart.00805.2010

  40. 40. Tello, K., Dalmer, A., Axmann, J., et al. (2019) Reserve of Right Ventricular-Arterial Coupling in the Setting of Chronic Overload. Circulation Heart Failure, 12, e005512. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005512

  41. 41. Schmeißer, A., Rauwolf, T., Groscheck, T., et al. (2021) Predictors and Prognosis of Right Ventricular Function in Pulmonary Hypertension Due to Heart Failure with Reduced Ejection Fraction. ESC Heart Failure, 8, 2968-2981. https://doi.org/10.1002/ehf2.13386

  42. 42. Hsu, S., Simpson, C.E., Houston, B.A., et al. (2020) Multi-Beat Right Ventricular-Arterial Coupling Predicts Clinical Worsening in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 9, e016031. https://doi.org/10.1161/JAHA.119.016031

  43. 43. Bashline, M.J. and Simon, M.A. (2019) Use of Tricuspid Annular Plane Systolic Excursion/Pulmonary Artery Systolic Pressure as a Non-Invasive Method to Assess Right Ventricular-PA Coupling in Patients with Pulmonary Hypertension. Circulation Cardiovascular Imaging, 12, e009648. https://doi.org/10.1161/CIRCIMAGING.119.009648

  44. 44. Richter, M.J., Yogeswaran, A., Husain-Syed, F., et al. (2022) A Novel Non-Invasive and Echocardiography-Derived Method for Quantification of Right Ventricular Pres-sure-Volume Loops. European Heart Journal Cardiovascular Imaging, 23, 498-507. https://doi.org/10.1093/ehjci/jeab038

  45. 45. Guazzi, M. (2018) Use of TAPSE/PASP Ratio in Pulmonary Arterial Hypertension: An Easy Shortcut in a Congested Road. International Journal of Cardiology, 266, 242-244. https://doi.org/10.1016/j.ijcard.2018.04.053

  46. 46. Dong, Y., Li, Y. and Song, L. (2022) Evaluation of Right Ven-tricular Function in Patients with Pulmonary Arterial Hypertension by Different Right Ventricular-Pulmonary Artery Coupling Methods. Medicine, 101, e30873. https://doi.org/10.1097/MD.0000000000030873

  47. 47. Aubert, R., Venner, C., Huttin, O., et al. (2018) Three-Dimensional Echocardiography for the Assessment of Right Ventriculo-Arterial Coupling. Journal of the Ameri-can Society of Echocardiography: Official Publication of the American Society of Echocardiography, 31, 905-915. https://doi.org/10.1016/j.echo.2018.04.013

  48. 48. Hsiao, S.H., Lin, S.K., Wang, W.C., et al. (2006) Severe Tricuspid Regurgitation Shows Significant Impact in the Relationship among Peak Systolic Tricuspid Annular Velocity, Tricuspid Annular Plane Systolic Excursion, and Right Ventricular Ejection Fraction. Journal of the American Society of Echocar-diography: Official Publication of the American Society of Echocardiography, 19, 902-910. https://doi.org/10.1016/j.echo.2006.01.014

  49. 49. Gavazzoni, M., Badano, L.P., Cascella, A., et al. (2023) Clinical Value of a Novel Three-Dimensional Echocardiography-Derived Index of Right Ventricle-Pulmonary Artery Coupling in Tricuspid Regurgitation. Journal of the American Society of Echocardiography: Official Publication of the American So-ciety of Echocardiography, 36, 1154-1166.e3. https://doi.org/10.1016/j.echo.2023.06.014

  50. 50. Inciardi, R.M., Abanda, M., Shah, A.M., et al. (2023) Right Ven-tricular Function and Pulmonary Coupling in Patients with Heart Failure and Preserved Ejection Fraction. Journal of the American College of Cardiology, 82, 489-499. https://doi.org/10.1016/j.jacc.2023.05.010

  51. 51. Stąpór, M., Sobczyk, D., Wasilewski, G., et al. (2023) Right Ven-tricular-Pulmonary Arterial Coupling in Patients with Implanted Left Ventricular Assist Devices. Hellenic Journal of Cardiology. https://doi.org/10.1016/j.hjc.2023.06.002

  52. 52. Humbert, M., Kovacs, G., Hoeper, M.M., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 43, 3618-3731. https://doi.org/10.1093/eurheartj/ehac237

  53. 53. Yoshida, K., Axelsen, J.B., Saku, K., et al. (2023) How to Incorporate Tricuspid Regurgitation in Right Ventricular-Pulmonary Arterial Coupling. Journal of Applied Physiology (Bethesda, Md: 1985), 135, 53-59. https://doi.org/10.1152/japplphysiol.00081.2023

  54. NOTES

    *通讯作者。

期刊菜单