Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 83293 , 11 pages
10.12677/acm.2024.143860

炎症性肠病的生物标志物进展

陈舒1,2,廖璞1,2*

1重庆医科大学,重庆

2重庆市人民医院,重庆

收稿日期:2024年2月27日;录用日期:2024年3月21日;发布日期:2024年3月27日

摘要

炎症性肠病(inflammatory bowel disease, IBD)的发病率持续攀升,预计2025年我国IBD患者将达150万例,其诊断目前需要结合临床、实验室检查、影像学检查、内镜检查和组织病理学表现进行综合分析,血液与粪便来源的生物标志物侵入性低、可重复性高,在疾病诊疗的过程中起到重要的作用。本文对IBD生物标志物的应用现状、前沿新发现的生物标志物等方面的研究进行综述,总结目前研究在疾病诊疗中的应用,旨在更好地为临床应用提供参考,提高生物标志物诊疗的准确性。

关键词

生物标志物,溃疡性结肠炎,克罗恩病,炎症性肠病,代谢组学,蛋白质组学,实验室检查

Progress in Biomarkers of Inflammatory Bowel Disease

Shu Chen1,2, Pu Liao1,2*

1Chongqing Medical University, Chongqing

2Chongqing General Hospital, Chongqing

Received: Feb. 27th, 2024; accepted: Mar. 21st, 2024; published: Mar. 27th, 2024

ABSTRACT

The incidence of inflammatory bowel disease (IBD) continues to climb, and it is expected that the number of IBD patients in China will reach 1.5 million cases in 2025, and its diagnosis currently requires a comprehensive analysis combining clinical, laboratory examination, imaging, endoscopy and histopathological manifestations. Biomarkers of blood and faecal origin are less invasive and more reproducible, and play an important role in the diagnosis and treatment of the disease. In this paper, we review the current status of IBD biomarkers and the newly discovered biomarkers, summarise the application of the current research in the diagnosis and treatment of IBD, and aim to provide a better reference for clinical application and improve the accuracy of biomarker diagnosis and treatment.

Keywords:Biomarkers, Ulcerative Colitis, Crohn’s Disease, Inflammatory Bowel Disease, Metabolomics, Proteomics, Laboratory Tests

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 背景

炎症性肠病(inflammatory bowel disease, IBD)是指原因不明的一组非特异性慢性胃肠道炎症性疾病,主要包括克罗恩病(Crohn’s disease, CD)、溃疡性结肠炎(ulcerative colitis, UC)。随着经济发展的增强,进而环境风险因素、饮食习惯的改变、获得医疗水平、结肠镜检查等医疗技术的提升以及人口自然增长,IBD的发病率将继续攀升,预计2025年我国IBD患者将达到150万例 [1] [2] 。IBD的病因目前仍不明确,近年来的研究揭示其发病机制与宿主的遗传易感性、肠道微生物群、其他环境因素和免疫异常等相关 [3] 。早期诊断疾病并密切监测疾病的病变范围与疾病严重程度有助于IBD的治疗 [4] 。目前IBD的诊断缺乏金标准,主要是结合临床、实验室检查、影像学检查、内镜检查和组织病理学表现进行综合分析 [5] 。内镜检查的主要优势在于可以直观地观察肠道的不同段落,使得临床医生能够评估疾病的严重程度并监测其长期的活动情况,在一项由618名克罗恩患者组成的研究中表明,内窥镜是最不被接受的检查方式(VAS = 4.4 [1.2 - 7.3]) (P < 0.0001),其主要原因包括结肠镜检查需要进行肠道清洁(76.3%)、直肠镜检查引起腹部不适(51.3%),并且内镜检查价格昂贵、特别是可能会造成肠穿孔的风险 [6] [7] [8] 。实验室检查可重复性高,侵入性低,在临床中经常使用。生物标志物包含诊断生物标志物、检测生物标志物、药物反应生物标志物、预测生物标志物、预后生物标志物等多种类型 [9] ,在疾病诊断的多个阶段起到作用,例如初步诊断、疾病活动评估、治疗检测以及预测复发,从而提高IBD的诊断准确性和治疗效果。本综述我们将在回顾IBD中的生物标志物,以期更全面、更深入地了解IBD的生物学特征和进展。

2. IBD中常用的生物标志物

2.1. 血液中常用的生物标志物

C-反应蛋白(C-reactive protein, CRP)与红细胞沉降率(erythrocyte sedimentation rate, ESR)是IBD诊断时血液中常用的生物标志物。

CRP是一种急性期蛋白,它在全身炎症反应的急性期能够快速升高 [10] ,在人体发生炎症反应时,细胞释放的白细胞介素-6 (IL-6)能够促使肝脏合成CRP [11] 。Jin、Reena和Dan等人的研究表明,在成人队列和儿童队列中均发现,CRP的水平和疾病临床活动以及内窥镜活动有一定相关性,相较于UC,活动期的CD中CRP升高得更明显,且不同疾病表型的CD患者的CRP水平没有差异 [12] [13] [14] 。一项来自挪威随访5年的研究表明,CD患者1年后CRP水平升高,随后4年极有可能实施肠切除手术 [15] 。CRP也是反应药物治疗疾病效果的良好标志物,治疗4周后CRP恢复正常可以预测疾病在5年内缓解情况 [16] 。但是另一方面,由于CRP的非特异性,在自身免疫相关性疾病和心血管疾病发生时也会有升高的现象 [17] [18] ,导致对疾病监测结果的不准确。Arik和Craig发现CRP水平与内窥镜、组织学和放射学疾病活动的相关性产生了相互矛盾的结果,多达三分之一的IBD患儿在诊断时CRP均正常 [19] [20] 。并且随着炎症部位增加,CRP浓度相应上升但与炎症部位数量较少的组别差异并不明显 [21] ,有研究表明CRP升高可能是一种个体遗传性状,可能与个体的基因特征有关 [22] 。

ESR是一种实验室测试,测量垂直试管中红细胞在重力作用下在1小时内沉降的距离 [23] 。1897年波兰医生Biernacki发现了ESR,并揭示了血沉的临床意义 [24] ,作为对炎症刺激反应缓慢的急性期蛋白的间接测量,当跟踪慢性炎症患者时,考虑使用血沉 [25] 。ESR受多种复合因素的影响,如运动、吸烟、饮酒等生活方式 [26] ,冠心病的炎症、类风湿性关节炎、系统性红斑狼疮等疾病的ESR也会有不同程度的升高 [27] [28] 。在IBD中,研究表明ESR水平与疾病严重程度及疾病活动程度呈正相关 [29] ,ESR可以反映UC的活动和疾病的严重程度,并在儿童队列中也得到验证 [12] ,并且ESR水平与UC患者的内镜活动指数中度相关 [14] ,较高的ESR预测了CD患者瘘管及肠道狭窄的发生 [30] 。

CRP方便、快速、经济,经常作为IBD复查中的检查项目,是对IBD活动程度进行有效监测的指标,是一个很好的长期生物标志物,可通过反复测量来评估治疗效果。ESR通常作为其他临床和实验室检查的补充,如结肠镜检查和组织活检,此外,ESR还可以用于监测IBD患者的治疗效果,与CRP一起使用。但ESR敏感性和特异性较低,故当监测疾病活动性时时,应优先考虑CRP [31] 。

2.2. 粪便中常用的生物标志物

粪便钙卫蛋白(fecal calprotectin, FC)和粪便乳铁蛋白(fecal lactoferrin, FL)是IBD诊断时粪便中常用的生物标志物。

FC是一种钙和锌结合的中性粒细胞胞浆蛋白,于20世纪80年代首次发现,由S100A8和S100A9两个亚基异质复合体形成,FC浓度与机体的炎症的程度成正比 [32] [33] 。FC可提供一种无创手段来筛查有肠应激综合征症状的IBD患者,IBD与肠应激综合征有相似的临床表现,FC ≤ 40 μg/g时,IBD发生的概率 ≤ 1% [34] 。较CRP、WBC等指标来说,FC与疾病肠道炎症活检结果有更好的相关性 [21] ,FC与内窥镜下疾病活动性高度相关并可作为预测儿童CD患者临床缓解和黏膜愈合的替代标志物 [35] [36] 。FC同时可以预测疾病复发,Roblin等人发现,TLI (<2 µg/ml)和FC (>250 μg/g)的组合是预测疾病复发的良好模型 [37] 。

FL是一种由粘膜分泌的铁结合糖蛋白,分子量约为80,000 U,是中性粒细胞中发现的一种铁结合蛋白 [38] 。FL具有铁结合/转移、抗菌、抗病毒、抗真菌、抗炎和抗致癌特性 [39] ,FL在IBD、阿尔茨海默病和干眼病等多种疾病的诊断中广泛应用,在肠道疾病中应用最为广泛 [40] [41] [42] 。Sunanda和Stacy的研究表明FL与IBD的肠道炎症高度相关 [34] [43] ,FL同样有助于区分IBD和肠易激综合征。多项对IBD患者在内窥镜检查后内对FL检测结果进行回顾性分析表明,FL可用于区别疾病的严重程度,并与内镜下评密切相关 [44] [45] 。在一项大型长期随访研究中,FL升高可预测3个月内CD和UC患者疾病复 [46] ,在肠切除的患者中,FL在术后长期随访中仍会保持高水平,也可在术后随访期间预测疾病的复发 [47] 。

FC较为稳定,便于检测,Anders的研究表明,在室温下放置3天,FC浓度变化不大 [48] ,故患者可以在家收集样本。由于粪便生物标志物与肠道黏膜直接接触,对比血清生物标志物来说,在确定胃肠道炎症时可能更准确,并且可以一定程度避免反复侵入性肠镜检查,但具有高敏感性和低特异性,肠道的感染、HIV、新冠病毒的感染都可以引起FC的变化,因此,在诊断IBD之前,需结合IBD的临床表现,并排除粪便中FC浓度升高的其他原因。FL水平较低时,可避免进一步检测肠镜。ESR在怀孕期间会增高,儿童则不易进行内镜,故FL在一些情况下可以更好的预测疾病活动。

3. 近几年新发现的生物标志物

3.1. 外周血慢性炎症比值

许多研究发现外周血慢性炎症比率可能在IBD的临床实践中有一定的应用价值,这些比值无需额外的检查,易于获得。NLR (neutrophil-to-lymphocyte ratio)、CRP/ALB、PLR (platelet-lymphocyte ratio)、AGR (albumin/globulin ratio)、LMR (lymphocyte to monocyte ratio)可以将IBD患者从健康人中区分开 [49] [50] [51] [52] [53] ,并且与疾病的活动性关系密切。处于活动期的IBD患者的NLR、CRP/ALB、PLR水平显著高于非活动期IBD患者,AGR、LMR低于非活动期IBD患者,对成人与儿童UC患者的研究中均发现NLR与PLR可作为判断疾病活动性的指标 [54] [55] 。CRP/ALB可以预测CD患者的黏膜愈合,同时区分是否有肠穿孔情况 [56] ;CRP/ALB同样能作为评估UC患者临床活性的潜在生物标志物 [53] [57] 。一项纳入362名IBD患者的研究发现NPAR (neutrophil percentage-to-albumin ratio)和AGR在IBD和健康对照之间有很好的诊断价值,NPAR水平在IBD患者患CRC (结直肠癌)风险的预测可能起到作用 [58] ,并且无论在UC还是CD中,AGR与疾病的临床活动性呈负相关 [59] [60] 。多项研究也表明IBD患者的单核细胞增多,LMR降低可以预测IBD患者的疾病活动,并且可以在3个月内预测治疗情况 [49] [61] [62] 。

因为外周血慢性炎症比值是一个比率而不是绝对值,所以不会受到脱水或液体潴留等因素的影响,在临床实践中有着低成本和易获得的优势,与其他非侵入性标志物的组合是监测疾病活动可靠的指标。

3.2. 富亮氨酸α-2糖蛋白(Leucine -2 Glycoprotein, LRG)

富亮氨酸α-2糖蛋白(leucine -2 glycoprotein, LRG)是一种50 kda的糖蛋白,包含一个重复序列,带有一个富含亮氨酸的基序,不仅可以在肝细胞中表达,也可以在中性粒细胞、巨噬细胞和肠上皮细胞中表达 [63] ,近几年来有大量研究表明其与IBD疾病活动性相关。Eriko等人发现,在UC患者中LRG可预测粘膜愈合,且在CD患者中LRG的表现与CRP和FC相当 [64] 。此外,LRG还能够区分CRP水平正常但存在内窥镜活动的UC和CD患者的粘膜愈合情况 [65] ,在Takahiro等人的研究中得到了同样的结果,同时提出LRG可以替代CRP来评估UC [66] 。另一项研究表明,在CD患者中,当LRG临界值为8.9 µg/ml,灵敏度为93.3%;特异度为83.3%,预测内窥镜缓解的曲线下面积为0.904。Yasuda等人在儿童队列中也评估了LRG水平,结果发现血清LRG可能比CRP更好地反映疾病活动性 [67] ,LRG在CD患者较UC患者中更为适用。同时血清LRG还被证实与肠道狭窄相关 [68] 。综上,LRG可作为预测UC和CD患者粘膜愈合的生物标志物,特别是对CD患者更具应用价值。

3.3. 内脏脂肪素(Visfatin)

内脏脂肪素(Visfatin),是一种新发现的脂肪细胞因子,内脏脂肪素对应于一种之前被确定为B细胞群落增强因子(PBEF)的蛋白质 [69] 。其水平与多种代谢性疾病密切相关 [70] 。一项纳入85例初诊IBD患者及30例健康对照组的研究中,测定研究对象的血清内脂肪素、CRP、ESR等生化指标。结果表明,IBD组血清内脂肪素水平显著高于对照组,且内脂肪素与CRP、ESR和FC均呈现显著正相关。内脂肪素可作为诊断UC和CD的标志物 [71] 。Katarzyna等人的研究同样也证实了血清内脏脂肪素在炎症性肠病中的应用。研究结果表明血清内脂肪素在活动期的IBD患者中较缓解期组的更高,血清内脂肪素 ≤ 1.54 ng/ml为黏膜愈合的良好指标 [72] 。也有研究表明内脏脂肪素也可由中性粒细胞在炎症刺激下合成和释放,并可作为多种炎症刺激导致的凋亡抑制剂。血清内脂肪素在IBD的静止期与缓解期表达均上调,反映了IBD的临床活性。因此,血清内脂肪素可能作为一种无创标志物,可用于IBD患者疾病诊断、活动监测。

3.4. 半乳糖素(Galectins)

半乳糖素(galectins)是一种半乳糖苷结合蛋白家族,通常在癌症和炎症等疾病的循环中发生改变 [73] 。一项研究采集208例IBD患者和40例健康人的血清样本,分析半乳糖凝集素-1、-2、-3、-4、-7和-8水平,评估其是否可作为IBD和IBD疾病活动的生物标志物。结果显示,IBD患者血清中galectin-1和-3水平明显高于健康人,而galectin-2、-4、-7和-8水平则明显低于健康人,在截断值为4.1 ng/ml时,galectin-1与健康对照组区分IBD的敏感性为71%,特异性为87% [74] 。在该研究中,虽然没有半乳糖凝集素能够区分疾病的活动性,然而在另一项研究中表明Galectin-1在复发的患者中有所升高 [75] 。Galectin-1 (Gal-1)是一种内源性凝集素,具有关键的促溶解作用,包括诱导T细胞凋亡和分泌免疫抑制细胞因子 [76] 。对于Galectin-1是否能作为区分IBD活动性的生物标志物,可能需要在更大的队列进行进一步研究。D Cibor等人的研究中发现CD患者的Gal-3BP中位水平明显高于对照组,然而Gal-3、Gal-9和Gal-3BP仍不能区分疾病的状态 [77] 。因此,虽然半乳糖凝集素不能区分活动性和非活动性UC和CD,但其可与其他生物标志物联合使用作为IBD诊断的有用生物标志物。

4. 组学进展

4.1. 代谢组学生物标志物(Metabolomics)

代谢组学(Metabolomics)是一门新的研究技术,是一种对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式 [78] 。通过光谱和光谱技术,例如核磁共振(NMR)光谱或质谱(MS),根据测试的生物标本的类型,可以发现各种代谢物。

几项研究表明,来自血清样本的一些代谢物可以将IBD患者从健康队列中成功分离。一项关于IBD的血清代谢组学研究中发现,由丙酮酸、苯乙酰谷氨酰胺、异石胆酸、牛磺去氧胆酸、糖乙醇胆酸组成的模型能够较准确地区分CD患者和HC患者,曲线下面积为0.861 (P < 0.001),并能将IBD从其他肠道疾病中区分开 [79] 。另外,越来越多的证据表明,IBD患者的TCA循环受损,Stephens和Scoville的研究中,IBD与正常对照组相比,IBD组TCA循环中间体显著减少,琥珀酸和乌头酸的水平明显降低,Schicho的研究表明血清柠檬酸水平可以区分CD和UC [80] [81] [82] 。Daniluk等人对19名新诊断IBD的患者的血清样本进行了分析,他们发现乳酸神经酰胺18:1/16:0 (lacer),可以用来鉴别UD与CD患者 [83] 。这些结果表示IBD患者的代谢紊乱,这些差异代谢物不仅可以鉴别疾病,还可以为疾病发病机制提供见解。同时,代谢组学也能发现生物标志物以评估疾病的活动性,粪便来自于肠道,更能体现于疾病活动性的关系。有研究探讨了CD患者粪便代谢物与疾病活动性之间的关系,在缓解期组中检测到较高浓度的粪便戊酸盐,而在活动期组中,粪便赖氨酸上调,另一项研究表明在IBD活动期间,粪便中短链脂肪酸水平降低 [84] [85] 。另一项研究中发现儿童CD患者的粪便尿囊素和谷氨酰基半胱氨酸,以及UC患者的粪便氨基己二酸、肌肽和5-磷酸核糖与FC呈高度相关,是检测CD和UC内镜活动的敏感生物标志物 [86] 。

IBD的病因复杂,代谢组学的应用可以发现更多的生物标志物以促进IBD患者的精确管理。关于IBD相关的代谢组学一般包括血清代谢组学和粪便代谢组学。据文献报道IBD患者对血液检测的接受程度远远高于肠镜与粪便检查 [8] ,近几年关于IBD血清代谢组学的研究也越来越多,在炎症性肠病的诊断、监测疾病进展、评估疾病活动性中起到重要作用。

4.2. 蛋白质组学的应用(Proteomics)

蛋白质组学(Proteomics),是对蛋白质特别是其结构和功能的大规模研究,是在90年代初期,由Marc Wikins和学者们首先提出的新名词。各种技术已被用于分离和鉴定蛋白质种类,包括双向凝胶电泳、等电聚焦、生物质谱、飞行时间质谱、电喷雾质谱。

蛋白质组学研究已经帮助揭示了许多与IBD发病机制相关的宿主蛋白和途径,Skhoda等人利用MALDI-TOF和MS鉴定出UC中膜联蛋白A2和程序性细胞死亡蛋白8参与肠上皮细胞(IECs)的稳态和破坏 [87] ;Zhao等人鉴定出p38丝裂原活化蛋白激酶(MAPK)通路是UC中的分子标记 [88] 。蛋白质组学同样被应用来区分IBD患者与健康队列、IBD患者的亚型,预测疾病的活动性。Yunki等人研究使用非靶向LC-MS/MS定量蛋白质组学分析,在伴有肠道并发症的CD患者中发现上皮成分蛋白显著富集,并建立一个血清学生物标志物组,以将患有并发症的CD患者和无并发症的CD患者区分开来 [89] 。另一个针对儿童患者结肠活检的研究确定了两个候选生物标志物组,用于IBD的诊断和IBD亚型的分化,可指导儿童患者适当的治疗干预 [90] ,同样一组关于结肠活检的研究发现的生物标志物组模型同样能将UC与CD区分开来 [91] ,样本来源于结肠活检相较于血液的蛋白质组研究可能更容易将疾病进行分组。同时也可区分UC患者的不同时期,Kanmura S等人建立了一个22例CD患者、48例UC患者、5例CRC患者、6例感染性结肠炎患者和13例健康人的队列,分析血清以寻找能够正确反映疾病活动性的新的生物标志物。他们确定了三种蛋白(人中性粒细胞肽1、2和3),与其他所有组(包括非活性UC组)相比,活动性UC患者的血清水平更高 [92] 。使用蛋白质组学同时可以寻找生物标志物用于评估IBD对药物的治疗反应。一项研究调查了英夫利昔单抗和强的松对IBD患儿的治疗反应。该研究鉴定了对两种药物都有反应的18种蛋白质;其中一些随着炎症而下调,而另一些随着炎症的消除而上调,并发现炎症转录因子NF-κB调节的血清标志物是药效学生物标志物的潜在候选物,可对临床用药提供参考 [93] 。

蛋白质组学发现的IBD的生物标志物有助于发鉴定IBD患者表型及预测对治疗的反应,促进个性化医疗。通过不同的方法或在不同的实验室建立蛋白质组谱并不总是一致的。检测血清、结肠组织、粪便,随着采样位置不同所得到的研究结果也会不同。关于蛋白质组学在IBD中的应用仍需更多实验来进行验证。

5. 总结

目前IBD临床治疗终点的评定标准为内镜下黏膜愈合,已在UC和CD患者中被证明可以获得更优异的长期疗效。炎症标志物较临床症状更快速的反映疾病的活动度,较内窥镜侵入性更低。CRP、ESR等常见生物标志物便宜可靠但不具备特异性,FC、FL有着高灵敏度但患者接受程度差,外周血慢性炎症比值与一些新发现的生物标志物仍需进一步在更多队列进行验证,非侵入性采样具有最大的临床价值,随着代谢组学、遗传学和蛋白质组学的最新进展,现在有更多的工具可用来开发生物标记物来诊断IBD。本文综述了近年来IBD中生物标记物的研究进展,需要更多的工作来帮助将这些新生物标志物与新技术应用到日常的临床实践中。

文章引用

陈 舒,廖 璞. 炎症性肠病的生物标志物进展
Progress in Biomarkers of Inflammatory Bowel Disease[J]. 临床医学进展, 2024, 14(03): 1418-1428. https://doi.org/10.12677/acm.2024.143860

参考文献

  1. 1. Ng, S.C., Shi, H.Y., Hamidi, N., et al. (2017) Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. The Lancet, 390, 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0

  2. 2. Kaplan, G.G. (2015) The Global Burden of IBD: from 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. https://doi.org/10.1038/nrgastro.2015.150

  3. 3. Guan, Q. (2019) A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. Journal of Immunology Research, 2019, Article ID: 7247238. https://doi.org/10.1155/2019/7247238

  4. 4. Gonczi, L., Bessissow, T. and Lakatos, P.L. (2019) Disease Monitoring Strategies in Inflammatory Bowel Diseases: What Do We Mean by “tight Control”? World Journal of Gastroenterology, 25, 6172-6189. https://doi.org/10.3748/wjg.v25.i41.6172

  5. 5. 吴开春, 梁洁, 冉志华, 等. 炎症性肠病诊断与治疗的共识意见(2018年∙北京) [J]. 中国实用内科杂志, 2018, 38(9): 796-813.

  6. 6. Ahmadi, A.A. and Polyak, S. (2007) Endoscopy/Surveillance in Inflammatory Bowel Disease. The Surgical Clinics of North America, 87, 743-762. https://doi.org/10.1016/j.suc.2007.03.013

  7. 7. Schmidt, A., Fuchs, K.H., Caca, K., et al. (2016) The Endoscopic Treatment of Iatrogenic Gastrointestinal Perforation. Deutsches Arzteblatt International, 113, 121-128. https://doi.org/10.3238/arztebl.2016.0121

  8. 8. Buisson, A., Gonzalez, F., Poullenot, F., et al. (2017) Comparative Acceptability and Perceived Clinical Utility of Monitoring Tools: A Nationwide Survey of Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 23, 1425-1433. https://doi.org/10.1097/MIB.0000000000001140

  9. 9. Califf, R.M. (2018) Biomarker Definitions and Their Applications. Experimental Biology and Medicine, 243, 213-221. https://doi.org/10.1177/1535370217750088

  10. 10. Marnell, L., Mold, C. and Du Clos, T.W. (2005) C-Reactive Protein: Ligands, Receptors and Role in Inflammation. Clinical Immunology, 117, 104-111. https://doi.org/10.1016/j.clim.2005.08.004

  11. 11. Gewurz, H., Mold, C., Siegel, J., et al. (1982) C-Reactive Protein and the Acute Phase Response. Advances in Internal Medicine, 27, 345-372.

  12. 12. Turner, D., Mack, D.R., Hyams, J., et al. (2011) C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR) or Both? A Systematic Evaluation in Pediatric Ulcerative Colitis. Journal of Crohn’s & Colitis, 5, 423-429. https://doi.org/10.1016/j.crohns.2011.05.003

  13. 13. Khanna, R., Nelson, S.A., Feagan, B.G., et al. (2016) Endoscopic Scoring Indices for Evaluation of Disease Activity in Crohn’s Disease. The Cochrane Database of Systematic Reviews, 8, CD010642. https://doi.org/10.1002/14651858.CD010642.pub2

  14. 14. Yoon, J.Y., Park, S.J., Hong, S.P., et al. (2014) Correlations of C-Reactive Protein Levels and Erythrocyte Sedimentation Rates with Endoscopic Activity Indices in Patients with Ulcerative Colitis. Digestive Diseases and Sciences, 59, 829-837. https://doi.org/10.1007/s10620-013-2907-3

  15. 15. Henriksen, M., Jahnsen, J., Lygren, I., et al. (2008) C-Reactive Protein: A Predictive Factor and Marker of Inflammation in Inflammatory Bowel Disease. Results from a Prospective Population-Based Study. Gut, 57, 1518-1523. https://doi.org/10.1136/gut.2007.146357

  16. 16. Jürgens, M., Mahachie, John, J.M., Cleynen, I., et al. (2011) Levels of C-Reactive Protein Are Associated with Response to Infliximab Therapy in Patients with Crohn’s Disease. Clinical Gastroenterology and Hepatology, 9, 421-427.E1. https://doi.org/10.1016/j.cgh.2011.02.008

  17. 17. Karakas, M. and Koenig, W. (2009) CRP in Cardiovascular Disease. Herz, 34, 607-613. https://doi.org/10.1007/s00059-009-3305-7

  18. 18. Pope, J.E. and Choy, E.H. (2021) C-Reactive Protein and Implications in Rheumatoid Arthritis and Associated Comorbidities. Seminars in Arthritis and Rheumatism, 51, 219-229. https://doi.org/10.1016/j.semarthrit.2020.11.005

  19. 19. Solem, C.A., Loftus, E.V., Tremaine, W.J., et al. (2005) Correlation of C-Reactive Protein with Clinical, Endoscopic, Histologic, and Radiographic Activity in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 11, 707-712. https://doi.org/10.1097/01.MIB.0000173271.18319.53

  20. 20. Alper, A., Zhang, L. and Pashankar, D.S. (2017) Correlation of Erythrocyte Sedimentation Rate and C-Reactive Protein with Pediatric Inflammatory Bowel Disease Activity. Journal of Pediatric Gastroenterology and Nutrition, 65, e25-e27. https://doi.org/10.1097/MPG.0000000000001444

  21. 21. Kyle, B.D., Agbor, T.A., Sharif, S., et al. (2021) Fecal Calprotectin, CRP and Leucocytes in IBD Patients: Comparison of Biomarkers with Biopsy Results. Journal of the Canadian Association of Gastroenterology, 4, 84-90. https://doi.org/10.1093/jcag/gwaa009

  22. 22. Henderson, P., Kennedy, N.A., Van Limbergen, J.E., et al. (2015) Serum C-Reactive Protein and CRP Genotype in Pediatric Inflammatory Bowel Disease: Influence on Phenotype, Natural History, and Response to Therapy. Inflammatory Bowel Diseases, 21, 596-605. https://doi.org/10.1097/MIB.0000000000000296

  23. 23. Kucharz, E. (1987) Edmund Biernacki and the Erythrocyte Sedimentation Rate. Lancet, 1, 696. https://doi.org/10.1016/S0140-6736(87)90472-7

  24. 24. Grzybowski, A. and Sak, J. (2011) Who Discovered the Erythrocyte Sedimentation Rate? The Journal of Rheumatology, 38, 1521-1522. https://doi.org/10.3899/jrheum.101312

  25. 25. Bray, C., Bell, L.N., Liang, H., et al. (2016) Erythrocyte Sedimentation Rate and C-Reactive Protein Measurements and Their Relevance in Clinical Medicine. WMJ: Official Publication of the State Medical Society of Wisconsin, 115, 317-321.

  26. 26. Alende-Castro, V., Alonso-Sampedro, M., Vazquez-Temprano, N., et al. (2019) Factors Influencing Erythrocyte Sedimentation Rate in Adults: New Evidence for an Old Test. Medicine, 98, e16816. https://doi.org/10.1097/MD.0000000000016816

  27. 27. Keenan, R.T., Swearingen, C.J. and Yazici, Y. (2008) Erythrocyte Sedimentation Rate and C-Reactive Protein Levels Are Poorly Correlated with Clinical Measures of Disease Activity in Rheumatoid Arthritis, Systemic Lupus Erythematosus and Osteoarthritis Patients. Clinical and Experimental Rheumatology, 26, 814-819.

  28. 28. Yayan, J. (2012) Erythrocyte Sedimentation Rate as a Marker for Coronary Heart Disease. Vascular Health and Risk Management, 8, 219-223. https://doi.org/10.2147/VHRM.S29284

  29. 29. 张慧. 炎症性肠病血清RDW、ESR、ESR/CRP与疾病严重程度及疾病活动程度的关系[J]. 中国肛肠病杂志, 2023, 43(1): 36-38.

  30. 30. Li, T., Qian, Y., Bai, T., et al. (2022) Prediction of Complications in Inflammatory Bowel Disease Using Routine Blood Parameters at Diagnosis. Annals of Translational Medicine, 10, Article 185. https://doi.org/10.21037/atm-22-123

  31. 31. Colombet, I., Pouchot, J., Kronz, V., et al. (2010) Agreement between Erythrocyte Sedimentation Rate and C-Reactive Protein in Hospital Practice. The American Journal of Medicine, 123, 863.E7-863.E13. https://doi.org/10.1016/j.amjmed.2010.04.021

  32. 32. Zimmer, D.B., Eubanks, J.O., Ramakrishnan, D. and Criscitiello, M.F. (2013) Evolution of the S100 Family of Calcium Sensor Proteins. Cell Calcium, 53, 170-179. https://pubmed.ncbi.nlm.nih.gov/23246155/

  33. 33. Andersson, K.B., Sletten, K., Berntzen, H.B., et al. (1988) The Leucocyte L1 Protein: Identity with the Cystic Fibrosis Antigen and the Calcium-Binding MRP-8 and MRP-14 Macrophage Components. Scandinavian Journal of Immunology, 28, 241-245. https://doi.org/10.1111/j.1365-3083.1988.tb02437.x

  34. 34. Menees, S.B., Powell, C., Kurlander, J., et al. (2015) A Meta-Analysis of the Utility of C-Reactive Protein, Erythrocyte Sedimentation Rate, Fecal Calprotectin, and Fecal Lactoferrin to Exclude Inflammatory Bowel Disease in Adults with IBS. The American Journal of Gastroenterology, 110, 444-454. https://doi.org/10.1038/ajg.2015.6

  35. 35. Lee, Y.J. and Park, J.H. (2022) Fecal Calprotectin Assay at an Early Stage of Treatment Can Be Used as a Surrogate Marker to Predict Clinical Remission and Mucosal Healing in Pediatric Crohn’s Disease. Pediatric Gastroenterology, Hepatology & Nutrition, 25, 396-405. https://doi.org/10.5223/pghn.2022.25.5.396

  36. 36. Sipponen, T., Savilahti, E., Kolho, K.L., et al. (2008) Crohn’s Disease Activity Assessed by Fecal Calprotectin and Lactoferrin: Correlation with Crohn’s Disease Activity Index and Endoscopic Findings. Inflammatory Bowel Diseases, 14, 40-46. https://doi.org/10.1002/ibd.20312

  37. 37. Roblin, X., Duru, G., Williet, N., et al. (2017) Development and Internal Validation of a Model Using Fecal Calprotectin in Combination with Infliximab Trough Levels to Predict Clinical Relapse in Crohn’s Disease. Inflammatory Bowel Diseases, 23, 126-132. https://doi.org/10.1097/MIB.0000000000000986

  38. 38. Baveye, S., Elass, E., Mazurier, J., et al. (1999) Lactoferrin: A Multifunctional Glycoprotein Involved in the Modulation of the Inflammatory Process. Clinical Chemistry and Laboratory Medicine, 37, 281-286. https://doi.org/10.1515/CCLM.1999.049

  39. 39. Wang, B., Timilsena, Y.P., Blanch, E. and Adhikari, B. (2019) Lactoferrin: Structure, Function, Denaturation and Digestion. Critical Reviews in Food Science and Nutrition, 59, 580-596.

  40. 40. Connell, S., Kawashima, M., Nakamura, S., et al. (2021) Lactoferrin Ameliorates Dry Eye Disease Potentially through Enhancement of Short-Chain Fatty Acid Production by Gut Microbiota in Mice. International Journal of Molecular Sciences, 22, Article 12384. https://doi.org/10.3390/ijms222212384

  41. 41. Dai, J., Liu, W.Z., Zhao, Y.P., et al. (2007) Relationship between Fecal Lactoferrin and Inflammatory Bowel Disease. Scandinavian Journal of Gastroenterology, 42, 1440-1444. https://doi.org/10.1080/00365520701427094

  42. 42. Mohamed, W.A., Salama, R.M. and Schaalan, M.F. (2019) A Pilot Study on the Effect of Lactoferrin on Alzheimer’s Disease Pathological Sequelae: Impact of the P-Akt/PTEN Pathway. Biomedicine & Pharmacotherapy, 111, 714-723. https://doi.org/10.1016/j.biopha.2018.12.118

  43. 43. Kane, S.V., Sandborn, W.J., Rufo, P.A., et al. (2003) Fecal Lactoferrin Is a Sensitive and Specific Marker in Identifying Intestinal Inflammation. The American Journal of Gastroenterology, 98, 1309-1314. https://doi.org/10.1111/j.1572-0241.2003.07458.x

  44. 44. Łykowska-Szuber, L., Klimczak, K., Eder, P., et al. (2016) Diagnostic Importance of Faecal Markers in Long-Term Monitoring of Anti-TNF-α Therapy in Primary Responders with Crohn’s Disease. Przeglad Gastroenterologiczny, 11, 232-238. https://doi.org/10.5114/pg.2015.55700

  45. 45. Rubio, M.G., Amo-Mensah, K., Gray, J.M., et al. (2019) Fecal Lactoferrin Accurately Reflects Mucosal Inflammation in Inflammatory Bowel Disease. World Journal of Gastrointestinal Pathophysiology, 10, 54-63. https://doi.org/10.4291/wjgp.v10.i5.54

  46. 46. Gisbert, J.P., Bermejo, F., Pérez-Calle, J.L., et al. (2009) Fecal Calprotectin and Lactoferrin for the Prediction of Inflammatory Bowel Disease Relapse. Inflammatory Bowel Diseases, 15, 1190-1198. https://doi.org/10.1002/ibd.20933

  47. 47. Scarpa, M., D’Incà, R., Basso, D., et al. (2007) Fecal Lactoferrin and Calprotectin after Ileocolonic Resection for Crohn’s Disease. Diseases of the Colon and Rectum, 50, 861-869. https://doi.org/10.1007/s10350-007-0225-6

  48. 48. Lasson, A., Stotzer, P.O., Öhman, L., et al. (2015) The Intra-Individual Variability of Faecal Calprotectin: A Prospective Study in Patients with Active Ulcerative Colitis. Journal of Crohn’s & Colitis, 9, 26-32. https://doi.org/10.1016/j.crohns.2014.06.002

  49. 49. Cherfane, C.E., Gessel, L., Cirillo, D., et al. (2015) Monocytosis and a Low Lymphocyte to Monocyte Ratio Are Effective Biomarkers of Ulcerative Colitis Disease Activity. Inflammatory Bowel Diseases, 21, 1769-1775. https://doi.org/10.1097/MIB.0000000000000427

  50. 50. Chen, Y.H., Wang, L., Feng, S.Y., et al. (2020) The Relationship between C-Reactive Protein/Albumin Ratio and Disease Activity in Patients with Inflammatory Bowel Disease. Gastroenterology Research and Practice, 2020, Article ID: 3467419. https://doi.org/10.1155/2020/3467419

  51. 51. Jeong, Y., Jeon, S.R., Kim, H.G., et al. (2021) The Role of Platelet to Lymphocyte Ratio and Neutrophil to Lymphocyte Ratio in Ulcerative Colitis. Intestinal Research, 19, 62-70. https://doi.org/10.5217/ir.2019.09156

  52. 52. Gao, S.Q., Huang, L.D., Dai, R.J., et al. (2015) Neutrophil-Lymphocyte Ratio: A Controversial Marker in Predicting Crohn’s Disease Severity. International Journal of Clinical and Experimental Pathology, 8, 14779-14785.

  53. 53. Glapa-Nowak, A., Szczepanik, M., Banaszkiewicz, A., et al. (2022) C-Reactive Protein/Albumin Ratio at Diagnosis of Pediatric Inflammatory Bowel Disease: A Retrospective Multi-Center Study. Medical Science Monitor, 28, e937842. https://doi.org/10.12659/MSM.937842

  54. 54. Metwally, R.H. (2022) Can Neutrophil/Lymphocyte Ratio Assess Inflammatory Bowel Disease Activity and Severity in Children? The Turkish Journal of Gastroenterology, 33, 1058-1061. https://doi.org/10.5152/tjg.2022.21889

  55. 55. Feng, W., Liu, Y., Zhu, L., et al. (2022) Evaluation of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Potential Markers for Ulcerative Colitis: A Retrospective Study. BMC Gastroenterology, 22, Article No. 485. https://doi.org/10.1186/s12876-022-02571-9

  56. 56. Zhou, F.S., Gao, N., Sun, X., et al. (2021) C-Reactive Protein/Abumin Ratio Is a Useful Biomarker for Predicting the Mucosal Healing in the Crohn Disease: A Retrospective Study. Medicine, 100, e24925. https://doi.org/10.1097/MD.0000000000024925

  57. 57. Feng, W., Zhu, L., Liu, Y., et al. (2023) C-Reactive Protein/Albumin Ratio and IL-6 Are Associated with Disease Activity in Patients with Ulcerative Colitis. Journal of Clinical Laboratory Analysis, 37, e24843. https://doi.org/10.1002/jcla.24843

  58. 58. Pan, J., Li, J. and Gao, Y. (2023) The Value of 7 Peripheral Blood Serum Ratios in Diagnosis and Prediction of Disease Activity of Patients within Inflammatory Bowel Disease Individuals. Frontiers in Medicine, 10, Article 1122005. https://doi.org/10.3389/fmed.2023.1122005

  59. 59. Wang, Y., Li, C., Wang, W., et al. (2022) Serum Albumin to Globulin Ratio Is Associated with the Presence and Severity of Inflammatory Bowel Disease. Journal of Inflammation Research, 15, 1907-1920. https://doi.org/10.2147/JIR.S347161

  60. 60. Yagi, S., Furukawa, S., Shiraishi, K., et al. (2023) The Albumin to Globulin Ratio Is Associated with Clinical Outcome in Japanese Patients with Ulcerative Colitis. Annals of Coloproctology, 39, 155-163. https://doi.org/10.3393/ac.2021.01032.0147

  61. 61. Anderson, A., Cherfane, C., Click, B., et al. (2022) Monocytosis Is a Biomarker of Severity in Inflammatory Bowel Disease: Analysis of a 6-Year Prospective Natural History Registry. Inflammatory Bowel Diseases, 28, 70-78. https://doi.org/10.1093/ibd/izab031

  62. 62. Ishida, N., Asai, Y., Miyazu, T., et al. (2022) Lymphocyte-to-Monocyte Ratio Is a Short-Term Predictive Marker of Ulcerative Colitis after Induction of Advanced Therapy. Gastroenterology Report, 10, goac025. https://doi.org/10.1093/gastro/goac025

  63. 63. Takahashi, N., Takahashi, Y. and Putnam, F.W. (1985) Periodicity of Leucine and Tandem Repetition of a 24-Amino Acid Segment in the Primary Structure of Leucine-Rich α 2-Glycoprotein of Human Serum. Proceedings of the National Academy of Sciences of the United States of America, 82, 1906-1910. https://doi.org/10.1073/pnas.82.7.1906

  64. 64. Yasutomi, E., Inokuchi, T., Hiraoka, S., et al. (2021) Leucine-Rich α-2 Glycoprotein as a Marker of Mucosal Healing in Inflammatory Bowel Disease. Scientific Reports, 11, Article No. 11086. https://doi.org/10.1038/s41598-021-90441-x

  65. 65. Shinzaki, S., Matsuoka, K., Iijima, H., et al. (2017) Leucine-Rich α-2 Glycoprotein Is a Serum Biomarker of Mucosal Healing in Ulcerative Colitis. Journal of Crohn’s & Colitis, 11, 84-91. https://doi.org/10.1093/ecco-jcc/jjw132

  66. 66. Shimoyama, T., Yamamoto, T., Yoshiyama, S., et al. (2023) Leucine-Rich α-2 Glycoprotein Is a Reliable Serum Biomarker for Evaluating Clinical and Endoscopic Disease Activity in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 29, 1399-1408. https://doi.org/10.1093/ibd/izac230

  67. 67. Yasuda, R., Arai, K., Kudo, T., et al. (2023) Serum Leucine-Rich α-2 Glycoprotein and Calprotectin in Children with Inflammatory Bowel Disease: A Multicenter Study in Japan. Journal of Gastroenterology and Hepatology, 38, 1131-1139. https://doi.org/10.1111/jgh.16166

  68. 68. Yoshida, T., Shimodaira, Y., Fukuda, S., et al. (2022) Leucine-Rich α-2 Glycoprotein in Monitoring Disease Activity and Intestinal Stenosis in Inflammatory Bowel Disease. The Tohoku Journal of Experimental Medicine, 257, 301-308. https://doi.org/10.1620/tjem.2022.J042

  69. 69. Fukuhara, A., Matsuda, M., Nishizawa, M., et al. (2005) Visfatin: A Protein Secreted by Visceral Fat That Mimics the Effects of Insulin. Science, 307, 426-430. https://doi.org/10.1126/science.1097243

  70. 70. Dakroub, A., A.Nasser, S., Younis, N., et al. (2020) Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells, 9, Article 2444. https://doi.org/10.3390/cells9112444

  71. 71. Saadoun, M.M., Nosair, N.A., Abdel-Azeez, H.A.H., et al. (2021) Serum Visfatin as a Diagnostic Marker of Active Inflammatory Bowel Disease. Journal of Gastrointestinal and Liver Diseases, 30, 339-345. https://doi.org/10.15403/jgld-3504

  72. 72. Neubauer, K., Bednarz-Misa, I., Walecka-Zacharska, E., et al. (2019) Oversecretion and Overexpression of Nicotinamide Phosphoribosyltransferase/Pre-B Colony-Enhancing Factor/Visfatin in Inflammatory Bowel Disease Reflects the Disease Activity, Severity of Inflammatory Response and Hypoxia. International Journal of Molecular Sciences, 20, Article 166. https://doi.org/10.3390/ijms20010166

  73. 73. Sindrewicz, P., Lian, L.Y. and Yu, L.G. (2016) Interaction of the Oncofetal Thomsen-Friedenreich Antigen with Galectins in Cancer Progression and Metastasis. Frontiers in Oncology, 6, Article 79. https://doi.org/10.3389/fonc.2016.00079

  74. 74. Yu, T.B., Dodd, S., Yu, L.G. and Subramanian, S. (2020) Serum Galectins as Potential Biomarkers of Inflammatory Bowel Diseases. PLOS ONE, 15, e0227306. https://doi.org/10.1371/journal.pone.0227306

  75. 75. Kessel, C., Lavric, M., Weinhage, T., et al. (2021) Serum Biomarkers Confirming Stable Remission in Inflammatory Bowel Disease. Scientific Reports, 11, Article No. 6690. https://doi.org/10.1038/s41598-021-86251-w

  76. 76. Papa-Gobbi, R., Muglia, C.I., Rocca, A., et al. (2021) Spatiotemporal Regulation of Galectin-1-Induced T-Cell Death in Lamina Propria from Crohn’s Disease and Ulcerative Colitis Patients. Apoptosis, 26, 323-337. https://doi.org/10.1007/s10495-021-01675-z

  77. 77. Cibor, D., Szczeklik, K., Brzozowski, B., Mach, T. and Owczarek, D. (2019) Serum Galectin 3, Galectin 9 and Galectin 3-Binding Proteins in Patients with Active and Inactive Inflammatory Bowel Disease. Journal of Physiology and Pharmacology, 70.

  78. 78. Wishart, D.S. (2019) Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiological Reviews, 99, 1819-1875. https://doi.org/10.1152/physrev.00035.2018

  79. 79. Ma, R., Zhu, Y., Li, X., et al. (2023) A Novel Serum Metabolomic Panel for the Diagnosis of Crohn’s Disease. Inflammatory Bowel Diseases, 29, 1524-1535. https://doi.org/10.1093/ibd/izad080

  80. 80. Schicho, R., Shaykhutdinov, R., Ngo, J., et al. (2012) Quantitative Metabolomic Profiling of Serum, Plasma, and Urine by 1H NMR Spectroscopy Discriminates between Patients with Inflammatory Bowel Disease and Healthy Individuals. Journal of Proteome Research, 11, 3344-3357. https://doi.org/10.1021/pr300139q

  81. 81. Scoville, E.A., Allaman, M.M., Brown, C.T., et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn’s Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics, 14, Article No. 17. https://doi.org/10.1007/s11306-017-1311-y

  82. 82. Stephens, N.S., Siffledeen, J., Su, X., et al. (2013) Urinary NMR Metabolomic Profiles Discriminate Inflammatory Bowel Disease from Healthy. Journal of Crohn’s & Colitis, 7, e42-e48. https://doi.org/10.1016/j.crohns.2012.04.019

  83. 83. Daniluk, U., Daniluk, J., Kucharski, R., et al. (2019) Untargeted Metabolomics and Inflammatory Markers Profiling in Children with Crohn’s Disease and Ulcerative Colitis—A Preliminary Study. Inflammatory Bowel Diseases, 25, 1120-1128. https://doi.org/10.1093/ibd/izy402

  84. 84. Parada Venegas, D., De La Fuente, M.K., Landskron, G., et al. (2019) Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 10, Article 277. https://doi.org/10.3389/fimmu.2019.00277

  85. 85. Taylor, H., Serrano-Contreras, J.I., McDonald, J.A.K., et al. (2020) Multiomic Features Associated with Mucosal Healing and Inflammation in Paediatric Crohn’s Disease. Alimentary Pharmacology & Therapeutics, 52, 1491-1502. https://doi.org/10.1111/apt.16086

  86. 86. Kolho, K.L., Pessia, A., Jaakkola, T., et al. (2017) Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. Journal of Crohn’s & Colitis, 11, 321-334. https://doi.org/10.1093/ecco-jcc/jjw158

  87. 87. Shkoda, A., Werner, T., Daniel, H., et al. (2007) Differential Protein Expression Profile in the Intestinal Epithelium from Patients with Inflammatory Bowel Disease. Journal of Proteome Research, 6, 1114-1125. https://doi.org/10.1021/pr060433m

  88. 88. Zhao, Y., Liu, X., Qu, Y., et al. (2019) The Roles of P38 MAPK → COX2 and NF-κB → COX2 Signal Pathways in Age-Related Testosterone Reduction. Scientific Reports, 9, Article No. 10556. https://doi.org/10.1038/s41598-019-46794-5

  89. 89. Yau, Y.Y., Leong, R.W.L., Pudipeddi, A., et al. (2017) Serological Epithelial Component Proteins Identify Intestinal Complications in Crohn’s Disease. Molecular & Cellular Proteomics, 16, 1244-1257. https://doi.org/10.1074/mcp.M116.066506

  90. 90. Starr, A.E., Deeke, S.A., Ning, Z., et al. (2017) Proteomic Analysis of Ascending Colon Biopsies from a Paediatric Inflammatory Bowel Disease Inception Cohort Identifies Protein Biomarkers That Differentiate Crohn’s Disease from UC. Gut, 66, 1573-1583. https://doi.org/10.1136/gutjnl-2015-310705

  91. 91. Seeley, E.H., Washington, M.K., Caprioli, R.M., et al. (2013) Proteomic Patterns of Colonic Mucosal Tissues Delineate Crohn’s Colitis and Ulcerative Colitis. Proteomics. Clinical Applications, 7, 541-549. https://doi.org/10.1002/prca.201200107

  92. 92. Kanmura, S., Uto, H., Numata, M., et al. (2009) Human Neutrophil Peptides 1-3 Are Useful Biomarkers in Patients with Active Ulcerative Colitis. Inflammatory Bowel Diseases, 15, 909-917. https://doi.org/10.1002/ibd.20854

  93. 93. Heier, C.R., Fiorillo, A.A., Chaisson, E., et al. (2016) Identification of Pathway-Specific Serum Biomarkers of Response to Glucocorticoid and Infliximab Treatment in Children with Inflammatory Bowel Disease. Clinical and Translational Gastroenterology, 7, e192. https://doi.org/10.1038/ctg.2016.49

  94. NOTES

    *通讯作者。

期刊菜单